TERNARYTREES[0] 1
[1] 0, 1
[2] 0, 1, 3
[3] 0, 1, 5, 12
[4] 0, 1, 7, 25, 55
[5] 0, 1, 9, 42, 130, 273

      OEIS Similars: A355172

↕ Type↕ Trait↕ Anum↕ Sequence
StdTriangleT(n, k), 0 ≤ k ≤ nA3551721 0 1 0 1 3 0 1 5 12 0 1 7 25 55 0 1 9 42 130 273 0 1 11 63 245 700 1428 0 1 13 88 408 1428 3876
StdRevT(n, n - k), 0 ≤ k ≤ nmissing1 1 0 3 1 0 12 5 1 0 55 25 7 1 0 273 130 42 9 1 0 1428 700 245 63 11 1 0 7752 3876 1428 408 88 13 1
StdAccsee docsmissing1 0 1 0 1 4 0 1 6 18 0 1 8 33 88 0 1 10 52 182 455 0 1 12 75 320 1020 2448 0 1 14 102 510 1938 5814
StdAccRevsee docsmissing1 1 1 3 4 4 12 17 18 18 55 80 87 88 88 273 403 445 454 455 455 1428 2128 2373 2436 2447 2448 2448
StdAntiDiagsee docsmissing1 0 0 1 0 1 0 1 3 0 1 5 0 1 7 12 0 1 9 25 0 1 11 42 55 0 1 13 63 130 0 1 15 88 245 273 0 1 17 117
StdDiffx1T(n, k) (k+1)missing1 0 2 0 2 9 0 2 15 48 0 2 21 100 275 0 2 27 168 650 1638 0 2 33 252 1225 4200 9996 0 2 39 352 2040
StdRowSum k=0..n T(n, k)A0066291 1 4 18 88 455 2448 13566 76912 444015 2601300 15426840 92431584 558685348 3402497504 20858916870
StdEvenSum k=0..n T(n, k) even(k)missing1 0 3 5 62 139 1684 4297 52284 143366 1755839 5040716 62096408 184034460 2278156640 6911492673
StdOddSum k=0..n T(n, k) odd(k)missing0 1 1 13 26 316 764 9269 24628 300649 845461 10386124 30335176 374650888 1124340864 13947424197
StdAltSum k=0..n T(n, k) (-1)^kmissing1 -1 2 -8 36 -177 920 -4972 27656 -157283 910378 -5345408 31761232 -190616428 1153815776
StdAbsSum k=0..n | T(n, k) |A0066291 1 4 18 88 455 2448 13566 76912 444015 2601300 15426840 92431584 558685348 3402497504 20858916870
StdDiagSum k=0..n // 2 T(n - k, k)missing1 0 1 1 4 6 20 35 109 207 622 1243 3653 7560 21883 46461 133004 287970 817432 1797476 5068346
StdAccSum k=0..n j=0..k T(n, j)A1028931 1 5 25 130 700 3876 21945 126500 740025 4382625 26225628 158331880 963250600 5899491640
StdAccRevSum k=0..n j=0..k T(n, n - j)missing1 2 11 65 398 2485 15708 100149 642620 4144140 26832975 174323292 1135710296 7417029620 48540468424
StdRowLcmLcm k=0..n | T(n, k) | > 1missing1 1 3 60 1925 8190 8246700 7759752 413377965 135616981500 152499911850 612145495962000
StdRowGcdGcd k=0..n | T(n, k) | > 1A3495091 1 3 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
StdRowMaxMax k=0..n | T(n, k) |A0017641 1 3 12 55 273 1428 7752 43263 246675 1430715 8414640 50067108 300830572 1822766520 11124755664
StdColMiddleT(n, n // 2)missing1 0 1 1 7 9 63 88 627 910 6578 9750 71253 106981 788392 1193808 8855691 13489164 100591491
StdCentralET(2 n, n)missing1 1 7 63 627 6578 71253 788392 8855691 100591491 1152499502 13294840650 154215056385 1797023139408
StdCentralOT(2 n + 1, n)missing0 1 9 88 910 9750 106981 1193808 13489164 153883455 1768786250 20455114680 237739812414
StdColLeftT(n, 0)A0000071 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
StdColRightT(n, n)A0017641 1 3 12 55 273 1428 7752 43263 246675 1430715 8414640 50067108 300830572 1822766520 11124755664
StdBinConv k=0..n C(n, k) T(n, k)missing1 1 5 30 201 1438 10734 82512 647945 5170710 41782726 341013236 2805832506 23241121660 193591773704
StdInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kA2464341 1 1 0 -7 -42 -198 -858 -3575 -14586 -58786 -235144 -936054 -3714500 -14709420 -58169070
StdTransNat0 k=0..n T(n, k) kmissing0 1 7 47 310 2030 13260 86583 565708 3700125 24231675 158896452 1043278712 6858344272 45137970920
StdTransNat1 k=0..n T(n, k) (k + 1)missing1 2 11 65 398 2485 15708 100149 642620 4144140 26832975 174323292 1135710296 7417029620 48540468424
StdTransSqrs k=0..n T(n, k) k^2missing0 1 13 129 1134 9320 73440 562457 4221052 31202145 227981325 1650553212 11861686488 84727522776
StdPosHalf k=0..n 2^n T(n, k) (1/2)^kmissing1 1 5 26 141 789 4520 26368 156053 934451 5650213 34445894 211475644 1306245628 8111488952
StdNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kmissing1 1 1 6 25 125 648 3504 19489 110835 641505 3766530 22378956 134302876 812914520 4956949440
StdDiagRow1T(n + 1, n)A1028930 1 5 25 130 700 3876 21945 126500 740025 4382625 26225628 158331880 963250600 5899491640
StdDiagRow2T(n + 2, n)A1025940 1 7 42 245 1428 8379 49588 296010 1781325 10798788 65900296 404565252 2496994136 15486165555
StdDiagRow3T(n + 3, n)A2305470 1 9 63 408 2565 15939 98670 610740 3786588 23535820 146710476 917263152 5752004349 36174046743
StdDiagCol1T(n + 1, 1)A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
StdDiagCol2T(n + 2, 2)A0054083 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69
StdDiagCol3T(n + 3, 3)A07135512 25 42 63 88 117 150 187 228 273 322 375 432 493 558 627 700 777 858 943 1032 1125 1222 1323 1428
StdPolysee docsmissing1 0 1 0 1 1 0 4 2 1 0 18 14 3 1 0 88 118 30 4 1 0 455 1110 372 52 5 1 0 2448 11190 5196 852 80 6 1
StdPolyRow1 k=0..1 T(1, k) n^kA0000270 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
StdPolyRow2 k=0..2 T(2, k) n^kA0494510 4 14 30 52 80 114 154 200 252 310 374 444 520 602 690 784 884 990 1102 1220 1344 1474 1610 1752
StdPolyRow3 k=0..3 T(3, k) n^kmissing0 18 118 372 852 1630 2778 4368 6472 9162 12510 16588 21468 27222 33922 41640 50448 60418 71622
StdPolyCol2 k=0..n T(n, k) 2^kmissing1 2 14 118 1110 11190 118262 1293302 14513654 166200310 1934366710 22815703030 272122413046
StdPolyCol3 k=0..n T(n, k) 3^kmissing1 3 30 372 5196 78087 1232760 20161776 338627928 5806446033 101228109222 1788916572048
StdPolyDiag k=0..n T(n, k) n^kmissing1 1 14 372 15796 939855 72399498 6865123692 774137880008 101258263989207 15077791200638910
AltTriangleT(n, k), 0 ≤ k ≤ nA3551721 0 -1 0 -1 3 0 -1 5 -12 0 -1 7 -25 55 0 -1 9 -42 130 -273 0 -1 11 -63 245 -700 1428 0 -1 13 -88
AltRevT(n, n - k), 0 ≤ k ≤ nmissing1 -1 0 3 -1 0 -12 5 -1 0 55 -25 7 -1 0 -273 130 -42 9 -1 0 1428 -700 245 -63 11 -1 0 -7752 3876
AltAccsee docsmissing1 0 -1 0 -1 2 0 -1 4 -8 0 -1 6 -19 36 0 -1 8 -34 96 -177 0 -1 10 -53 192 -508 920 0 -1 12 -76 332
AltAccRevsee docsmissing1 -1 -1 3 2 2 -12 -7 -8 -8 55 30 37 36 36 -273 -143 -185 -176 -177 -177 1428 728 973 910 921 920
AltAntiDiagsee docsmissing1 0 0 -1 0 -1 0 -1 3 0 -1 5 0 -1 7 -12 0 -1 9 -25 0 -1 11 -42 55 0 -1 13 -63 130 0 -1 15 -88 245
AltDiffx1T(n, k) (k+1)missing1 0 -2 0 -2 9 0 -2 15 -48 0 -2 21 -100 275 0 -2 27 -168 650 -1638 0 -2 33 -252 1225 -4200 9996 0 -2
AltRowSum k=0..n T(n, k)missing1 -1 2 -8 36 -177 920 -4972 27656 -157283 910378 -5345408 31761232 -190616428 1153815776
AltEvenSum k=0..n T(n, k) even(k)missing1 0 3 5 62 139 1684 4297 52284 143366 1755839 5040716 62096408 184034460 2278156640 6911492673
AltOddSum k=0..n T(n, k) odd(k)missing0 -1 -1 -13 -26 -316 -764 -9269 -24628 -300649 -845461 -10386124 -30335176 -374650888 -1124340864
AltAltSum k=0..n T(n, k) (-1)^kA0066291 1 4 18 88 455 2448 13566 76912 444015 2601300 15426840 92431584 558685348 3402497504 20858916870
AltAbsSum k=0..n | T(n, k) |A0066291 1 4 18 88 455 2448 13566 76912 444015 2601300 15426840 92431584 558685348 3402497504 20858916870
AltDiagSum k=0..n // 2 T(n - k, k)missing1 0 -1 -1 2 4 -6 -17 23 79 -102 -393 495 2054 -2549 -11133 13682 62032 -75714 -353168 428882
AltAccSum k=0..n j=0..k T(n, j)missing1 -1 1 -5 22 -108 560 -3021 16780 -95321 551217 -3234028 19203256 -115184440 696881572 -4247759901
AltAccRevSum k=0..n j=0..k T(n, n - j)missing1 -2 7 -35 194 -1131 6800 -41727 259780 -1634792 10373319 -66256276 425453992 -2744061980
AltRowLcmLcm k=0..n | T(n, k) | > 1missing1 1 3 60 1925 8190 8246700 7759752 413377965 135616981500 152499911850 612145495962000
AltRowGcdGcd k=0..n | T(n, k) | > 1A3495091 1 3 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
AltRowMaxMax k=0..n | T(n, k) |A0017641 1 3 12 55 273 1428 7752 43263 246675 1430715 8414640 50067108 300830572 1822766520 11124755664
AltColMiddleT(n, n // 2)missing1 0 -1 -1 7 9 -63 -88 627 910 -6578 -9750 71253 106981 -788392 -1193808 8855691 13489164 -100591491
AltCentralET(2 n, n)missing1 -1 7 -63 627 -6578 71253 -788392 8855691 -100591491 1152499502 -13294840650 154215056385
AltCentralOT(2 n + 1, n)missing0 -1 9 -88 910 -9750 106981 -1193808 13489164 -153883455 1768786250 -20455114680 237739812414
AltColLeftT(n, 0)A0000071 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
AltColRightT(n, n)A0017641 -1 3 -12 55 -273 1428 -7752 43263 -246675 1430715 -8414640 50067108 -300830572 1822766520
AltBinConv k=0..n C(n, k) T(n, k)A2464341 -1 1 0 -7 42 -198 858 -3575 14586 -58786 235144 -936054 3714500 -14709420 58169070 -229824855
AltInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kmissing1 -1 5 -30 201 -1438 10734 -82512 647945 -5170710 41782726 -341013236 2805832506 -23241121660
AltTransNat0 k=0..n T(n, k) kmissing0 -1 5 -27 158 -954 5880 -36755 232124 -1477509 9462941 -60910868 393692760 -2553445552 16610355068
AltTransNat1 k=0..n T(n, k) (k + 1)missing1 -2 7 -35 194 -1131 6800 -41727 259780 -1634792 10373319 -66256276 425453992 -2744061980
AltTransSqrs k=0..n T(n, k) k^2missing0 -1 11 -89 682 -5088 37304 -270225 1940084 -13833281 98095347 -692513564 4870697416 -34149698824
AltPosHalf k=0..n 2^n T(n, k) (1/2)^kmissing1 -1 1 -6 25 -125 648 -3504 19489 -110835 641505 -3766530 22378956 -134302876 812914520 -4956949440
AltNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kmissing1 -1 5 -26 141 -789 4520 -26368 156053 -934451 5650213 -34445894 211475644 -1306245628 8111488952
AltDiagRow1T(n + 1, n)A1028930 -1 5 -25 130 -700 3876 -21945 126500 -740025 4382625 -26225628 158331880 -963250600 5899491640
AltDiagRow2T(n + 2, n)A1025940 -1 7 -42 245 -1428 8379 -49588 296010 -1781325 10798788 -65900296 404565252 -2496994136
AltDiagRow3T(n + 3, n)A2305470 -1 9 -63 408 -2565 15939 -98670 610740 -3786588 23535820 -146710476 917263152 -5752004349
AltDiagCol1T(n + 1, 1)A000012-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
AltDiagCol2T(n + 2, 2)A0054083 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69
AltDiagCol3T(n + 3, 3)A071355-12 -25 -42 -63 -88 -117 -150 -187 -228 -273 -322 -375 -432 -493 -558 -627 -700 -777 -858 -943
AltPolysee docsmissing1 0 1 0 -1 1 0 2 -2 1 0 -8 10 -3 1 0 36 -78 24 -4 1 0 -177 706 -282 44 -5 1 0 920 -6958 3840 -692
AltPolyRow1 k=0..1 T(1, k) n^kA0000270 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25 -26
AltPolyRow2 k=0..2 T(2, k) n^kA0494500 2 10 24 44 70 102 140 184 234 290 352 420 494 574 660 752 850 954 1064 1180 1302 1430 1564 1704
AltPolyRow3 k=0..3 T(3, k) n^kmissing0 -8 -78 -282 -692 -1380 -2418 -3878 -5832 -8352 -11510 -15378 -20028 -25532 -31962 -39390 -47888
AltPolyCol2 k=0..n T(n, k) 2^kmissing1 -2 10 -78 706 -6958 72450 -784014 8729698 -99362862 1150897602 -13521492942 160744835874
AltPolyCol3 k=0..n T(n, k) 3^kmissing1 -3 24 -282 3840 -56865 889152 -14444238 241387584 -4123126245 71661495480 -1263256390200
AltPolyDiag k=0..n T(n, k) n^kmissing1 -1 10 -282 12588 -776905 61485870 -5951148154 681925659064 -90350490356235 13595766484664890
RevTriangleT(n, k), 0 ≤ k ≤ nmissing1 1 0 3 1 0 12 5 1 0 55 25 7 1 0 273 130 42 9 1 0 1428 700 245 63 11 1 0 7752 3876 1428 408 88 13 1
RevAccsee docsmissing1 1 1 3 4 4 12 17 18 18 55 80 87 88 88 273 403 445 454 455 455 1428 2128 2373 2436 2447 2448 2448
RevAccRevsee docsmissing1 0 1 0 1 4 0 1 6 18 0 1 8 33 88 0 1 10 52 182 455 0 1 12 75 320 1020 2448 0 1 14 102 510 1938 5814
RevAntiDiagsee docsmissing1 1 3 0 12 1 55 5 0 273 25 1 1428 130 7 0 7752 700 42 1 43263 3876 245 9 0 246675 21945 1428 63 1
RevDiffx1T(n, k) (k+1)missing1 1 0 3 2 0 12 10 3 0 55 50 21 4 0 273 260 126 36 5 0 1428 1400 735 252 55 6 0 7752 7752 4284 1632
RevRowSum k=0..n T(n, k)A0066291 1 4 18 88 455 2448 13566 76912 444015 2601300 15426840 92431584 558685348 3402497504 20858916870
RevEvenSum k=0..n T(n, k) even(k)missing1 1 3 13 62 316 1684 9269 52284 300649 1755839 10386124 62096408 374650888 2278156640 13947424197
RevOddSum k=0..n T(n, k) odd(k)missing0 0 1 5 26 139 764 4297 24628 143366 845461 5040716 30335176 184034460 1124340864 6911492673
RevAltSum k=0..n T(n, k) (-1)^kmissing1 1 2 8 36 177 920 4972 27656 157283 910378 5345408 31761232 190616428 1153815776 7035931524
RevAbsSum k=0..n | T(n, k) |A0066291 1 4 18 88 455 2448 13566 76912 444015 2601300 15426840 92431584 558685348 3402497504 20858916870
RevDiagSum k=0..n // 2 T(n - k, k)missing1 1 3 13 60 299 1565 8495 47393 270112 1566013 9206907 54762322 328940548 1992536683 12157880057
RevAccSum k=0..n j=0..k T(n, j)missing1 2 11 65 398 2485 15708 100149 642620 4144140 26832975 174323292 1135710296 7417029620 48540468424
RevAccRevSum k=0..n j=0..k T(n, n - j)A1028931 1 5 25 130 700 3876 21945 126500 740025 4382625 26225628 158331880 963250600 5899491640
RevRowLcmLcm k=0..n | T(n, k) | > 1missing1 1 3 60 1925 8190 8246700 7759752 413377965 135616981500 152499911850 612145495962000
RevRowGcdGcd k=0..n | T(n, k) | > 1A3495091 1 3 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
RevRowMaxMax k=0..n | T(n, k) |A0017641 1 3 12 55 273 1428 7752 43263 246675 1430715 8414640 50067108 300830572 1822766520 11124755664
RevColMiddleT(n, n // 2)missing1 1 1 5 7 42 63 408 627 4235 6578 45630 71253 503440 788392 5645904 8855691 64073529 100591491
RevCentralET(2 n, n)missing1 1 7 63 627 6578 71253 788392 8855691 100591491 1152499502 13294840650 154215056385 1797023139408
RevCentralOT(2 n + 1, n)missing1 5 42 408 4235 45630 503440 5645904 64073529 733734155 8461873420 98143227000 1143610476957
RevColLeftT(n, 0)A0017641 1 3 12 55 273 1428 7752 43263 246675 1430715 8414640 50067108 300830572 1822766520 11124755664
RevColRightT(n, n)A0000071 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RevBinConv k=0..n C(n, k) T(n, k)missing1 1 5 30 201 1438 10734 82512 647945 5170710 41782726 341013236 2805832506 23241121660 193591773704
RevInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kA2464341 -1 1 0 -7 42 -198 858 -3575 14586 -58786 235144 -936054 3714500 -14709420 58169070 -229824855
RevTransNat0 k=0..n T(n, k) kA1025940 0 1 7 42 245 1428 8379 49588 296010 1781325 10798788 65900296 404565252 2496994136 15486165555
RevTransNat1 k=0..n T(n, k) (k + 1)A1028931 1 5 25 130 700 3876 21945 126500 740025 4382625 26225628 158331880 963250600 5899491640
RevTransSqrs k=0..n T(n, k) k^2missing0 0 1 9 62 395 2448 15029 92092 565110 3477825 21478908 133145496 828395516 5172344996 32403825405
RevPosHalf k=0..n 2^n T(n, k) (1/2)^kmissing1 2 14 118 1110 11190 118262 1293302 14513654 166200310 1934366710 22815703030 272122413046
RevNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kmissing1 -2 10 -78 706 -6958 72450 -784014 8729698 -99362862 1150897602 -13521492942 160744835874
RevDiagRow1T(n + 1, n)A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
RevDiagRow2T(n + 2, n)A0054083 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69
RevDiagRow3T(n + 3, n)A07135512 25 42 63 88 117 150 187 228 273 322 375 432 493 558 627 700 777 858 943 1032 1125 1222 1323 1428
RevDiagCol1T(n + 1, 1)A1028930 1 5 25 130 700 3876 21945 126500 740025 4382625 26225628 158331880 963250600 5899491640
RevDiagCol2T(n + 2, 2)A1025940 1 7 42 245 1428 8379 49588 296010 1781325 10798788 65900296 404565252 2496994136 15486165555
RevDiagCol3T(n + 3, 3)A2305470 1 9 63 408 2565 15939 98670 610740 3786588 23535820 146710476 917263152 5752004349 36174046743
RevPolysee docsmissing1 1 1 3 1 1 12 4 1 1 55 18 5 1 1 273 88 26 6 1 1 1428 455 141 36 7 1 1 7752 2448 789 220 48 8 1 1
RevPolyRow1 k=0..1 T(1, k) n^kA0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
RevPolyRow2 k=0..2 T(2, k) n^kA0000273 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
RevPolyRow3 k=0..3 T(3, k) n^kA02769112 18 26 36 48 62 78 96 116 138 162 188 216 246 278 312 348 386 426 468 512 558 606 656 708 762 818
RevPolyCol2 k=0..n T(n, k) 2^kmissing1 1 5 26 141 789 4520 26368 156053 934451 5650213 34445894 211475644 1306245628 8111488952
RevPolyCol3 k=0..n T(n, k) 3^kA0043191 1 6 36 220 1365 8568 54264 346104 2220075 14307150 92561040 600805296 3910797436 25518731280
RevPolyDiag k=0..n T(n, k) n^kmissing1 1 5 36 331 3723 50088 792228 14499719 302615103 7108201965 185800892720 5352508635444
 << TableSourceSimilarsIndex >> 

Note: The A-numbers are based on a finite number of numerical comparisons. They ignore the sign and the OEIS-offset. Sometimes they differ in the first few values. In such cases, we consider our version to be the better one because it has a common formula as a root. Since the offset of all triangles is 0 also the offset of all sequences is 0.