OEIS Similars: A269939, A134991
↕ Type | ↕ Trait | ↕ Anum | ↕ Sequence |
---|---|---|---|
Std | TriangleT(n, k), 0 ≤ k ≤ n | A269939 | 1 0 1 0 1 3 0 1 10 15 0 1 25 105 105 0 1 56 490 1260 945 0 1 119 1918 9450 17325 10395 0 1 246 6825 |
Std | RevT(n, n - k), 0 ≤ k ≤ n | missing | 1 1 0 3 1 0 15 10 1 0 105 105 25 1 0 945 1260 490 56 1 0 10395 17325 9450 1918 119 1 0 135135 |
Std | Accsee docs | missing | 1 0 1 0 1 4 0 1 11 26 0 1 26 131 236 0 1 57 547 1807 2752 0 1 120 2038 11488 28813 39208 0 1 247 |
Std | AccRevsee docs | missing | 1 1 1 3 4 4 15 25 26 26 105 210 235 236 236 945 2205 2695 2751 2752 2752 10395 27720 37170 39088 |
Std | AntiDiagsee docs | A137375 | 1 0 0 1 0 1 0 1 3 0 1 10 0 1 25 15 0 1 56 105 0 1 119 490 105 0 1 246 1918 1260 0 1 501 6825 9450 |
Std | Diffx1T(n, k) (k+1) | missing | 1 0 2 0 2 9 0 2 30 60 0 2 75 420 525 0 2 168 1960 6300 5670 0 2 357 7672 47250 103950 72765 0 2 738 |
Std | RowSum∑ k=0..n T(n, k) | A000311 | 1 1 4 26 236 2752 39208 660032 12818912 282137824 6939897856 188666182784 5617349020544 |
Std | EvenSum∑ k=0..n T(n, k) even(k) | missing | 1 0 3 10 130 1316 19964 327496 6429616 140887472 3471763328 94313132992 2808914011072 |
Std | OddSum∑ k=0..n T(n, k) odd(k) | missing | 0 1 1 16 106 1436 19244 332536 6389296 141250352 3468134528 94353049792 2808435009472 |
Std | AltSum∑ k=0..n T(n, k) (-1)^k | A000142 | 1 -1 2 -6 24 -120 720 -5040 40320 -362880 3628800 -39916800 479001600 -6227020800 87178291200 |
Std | AbsSum∑ k=0..n | T(n, k) | | A000311 | 1 1 4 26 236 2752 39208 660032 12818912 282137824 6939897856 188666182784 5617349020544 |
Std | DiagSum∑ k=0..n // 2 T(n - k, k) | A000296 | 1 0 1 1 4 11 41 162 715 3425 17722 98253 580317 3633280 24011157 166888165 1216070380 9264071767 |
Std | AccSum∑ k=0..n ∑ j=0..k T(n, j) | missing | 1 1 5 38 394 5164 81668 1510928 31986400 762118432 20175223232 587316779840 18642954295744 |
Std | AccRevSum∑ k=0..n ∑ j=0..k T(n, n - j) | missing | 1 2 11 92 1022 14100 231996 4429360 96202720 2341397632 63103551040 1865343596352 59999931991872 |
Std | RowLcmLcm k=0..n | T(n, k) | > 1 | missing | 1 1 3 30 525 52920 242099550 45099954900 367310208815775225 127007737277649228000 |
Std | RowGcdGcd k=0..n | T(n, k) | > 1 | A110560 | 1 1 3 5 5 7 7 1 1 11 11 13 13 1 1 17 17 19 19 1 1 23 23 1 1 1 1 29 29 31 31 1 1 1 1 37 37 1 1 41 41 |
Std | RowMaxMax k=0..n | T(n, k) | | missing | 1 1 3 15 105 1260 17325 270270 4729725 94594500 2343240900 62199262125 1764494857125 53338158823950 |
Std | ColMiddleT(n, n // 2) | missing | 1 0 1 1 25 56 1918 6825 302995 1487200 81431350 510880370 33309926650 254752658160 19282395272140 |
Std | CentralET(2 n, n) | missing | 1 1 25 1918 302995 81431350 33309926650 19282395272140 15006064187108995 15112611709896650950 |
Std | CentralOT(2 n + 1, n) | missing | 0 1 56 6825 1487200 510880370 254752658160 174073797222325 156226380361251200 178278935386370568750 |
Std | ColLeftT(n, 0) | A000007 | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Std | ColRightT(n, n) | A001147 | 1 1 3 15 105 945 10395 135135 2027025 34459425 654729075 13749310575 316234143225 7905853580625 |
Std | BinConv∑ k=0..n C(n, k) T(n, k) | missing | 1 1 5 48 679 12710 296246 8267448 268799091 9978566310 416461324630 19303231146496 983832736305574 |
Std | InvBinConv∑ k=0..n C(n, k) T(n, n - k) (-1)^k | missing | 1 1 1 -12 -169 -1010 11614 484736 7251635 -31586634 -5267648770 -152227865064 -803876214010 |
Std | TransNat0∑ k=0..n T(n, k) k | missing | 0 1 7 66 786 11348 192788 3769328 83383808 2059259808 56163653184 1676677413568 54382582971328 |
Std | TransNat1∑ k=0..n T(n, k) (k + 1) | missing | 1 2 11 92 1022 14100 231996 4429360 96202720 2341397632 63103551040 1865343596352 59999931991872 |
Std | TransSqrs∑ k=0..n T(n, k) k^2 | missing | 0 1 13 176 2726 48420 976284 22089800 555025760 15345208528 463187349472 15160891200768 |
Std | PosHalf∑ k=0..n 2^n T(n, k) (1/2)^k | missing | 1 1 5 39 423 5889 100125 2010951 46589967 1223110881 35883307125 1163450728359 41312822139063 |
Std | NegHalf∑ k=0..n (-2)^n T(n, k) (-1/2)^k | A001662 | 1 1 1 -1 -13 -47 73 2447 16811 -15551 -1726511 -18994849 -10979677 2983409137 48421103257 |
Std | DiagRow1T(n + 1, n) | A000457 | 0 1 10 105 1260 17325 270270 4729725 91891800 1964187225 45831035250 1159525191825 31623414322500 |
Std | DiagRow2T(n + 2, n) | A000497 | 0 1 25 490 9450 190575 4099095 94594500 2343240900 62199262125 1764494857125 53338158823950 |
Std | DiagRow3T(n + 3, n) | A000504 | 0 1 56 1918 56980 1636635 47507460 1422280860 44346982680 1446733012725 49473074851200 |
Std | DiagCol1T(n + 1, 1) | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Std | DiagCol2T(n + 2, 2) | A000247 | 3 10 25 56 119 246 501 1012 2035 4082 8177 16368 32751 65518 131053 262124 524267 1048554 2097129 |
Std | DiagCol3T(n + 3, 3) | A000478 | 15 105 490 1918 6825 22935 74316 235092 731731 2252341 6879678 20900922 63259533 190957923 |
Std | Polysee docs | missing | 1 0 1 0 1 1 0 4 2 1 0 26 14 3 1 0 236 162 30 4 1 0 2752 2622 498 52 5 1 0 39208 54546 11568 1124 80 |
Std | PolyRow1∑ k=0..1 T(1, k) n^k | A000027 | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 |
Std | PolyRow2∑ k=0..2 T(2, k) n^k | A049451 | 0 4 14 30 52 80 114 154 200 252 310 374 444 520 602 690 784 884 990 1102 1220 1344 1474 1610 1752 |
Std | PolyRow3∑ k=0..3 T(3, k) n^k | missing | 0 26 162 498 1124 2130 3606 5642 8328 11754 16010 21186 27372 34658 43134 52890 64016 76602 90738 |
Std | PolyCol2∑ k=0..n T(n, k) 2^k | A201465 | 1 2 14 162 2622 54546 1386702 41660226 1444071006 56728401138 2490626473326 120858220146978 |
Std | PolyCol3∑ k=0..n T(n, k) 3^k | A201466 | 1 3 30 498 11568 345432 12606240 543678672 27054328512 1525746223488 96167433279360 |
Std | PolyDiag∑ k=0..n T(n, k) n^k | missing | 1 1 14 498 34004 3803280 632374098 146428634576 45056223763272 17784343544317920 |
Alt | TriangleT(n, k), 0 ≤ k ≤ n | A269939 | 1 0 -1 0 -1 3 0 -1 10 -15 0 -1 25 -105 105 0 -1 56 -490 1260 -945 0 -1 119 -1918 9450 -17325 10395 |
Alt | RevT(n, n - k), 0 ≤ k ≤ n | missing | 1 -1 0 3 -1 0 -15 10 -1 0 105 -105 25 -1 0 -945 1260 -490 56 -1 0 10395 -17325 9450 -1918 119 -1 0 |
Alt | Accsee docs | missing | 1 0 -1 0 -1 2 0 -1 9 -6 0 -1 24 -81 24 0 -1 55 -435 825 -120 0 -1 118 -1800 7650 -9675 720 0 -1 245 |
Alt | AccRevsee docs | missing | 1 -1 -1 3 2 2 -15 -5 -6 -6 105 0 25 24 24 -945 315 -175 -119 -120 -120 10395 -6930 2520 602 721 720 |
Alt | AntiDiagsee docs | A137375 | 1 0 0 -1 0 -1 0 -1 3 0 -1 10 0 -1 25 -15 0 -1 56 -105 0 -1 119 -490 105 0 -1 246 -1918 1260 0 -1 |
Alt | Diffx1T(n, k) (k+1) | missing | 1 0 -2 0 -2 9 0 -2 30 -60 0 -2 75 -420 525 0 -2 168 -1960 6300 -5670 0 -2 357 -7672 47250 -103950 |
Alt | RowSum∑ k=0..n T(n, k) | A000142 | 1 -1 2 -6 24 -120 720 -5040 40320 -362880 3628800 -39916800 479001600 -6227020800 87178291200 |
Alt | EvenSum∑ k=0..n T(n, k) even(k) | missing | 1 0 3 10 130 1316 19964 327496 6429616 140887472 3471763328 94313132992 2808914011072 |
Alt | OddSum∑ k=0..n T(n, k) odd(k) | missing | 0 -1 -1 -16 -106 -1436 -19244 -332536 -6389296 -141250352 -3468134528 -94353049792 -2808435009472 |
Alt | AltSum∑ k=0..n T(n, k) (-1)^k | A000311 | 1 1 4 26 236 2752 39208 660032 12818912 282137824 6939897856 188666182784 5617349020544 |
Alt | AbsSum∑ k=0..n | T(n, k) | | A000311 | 1 1 4 26 236 2752 39208 660032 12818912 282137824 6939897856 188666182784 5617349020544 |
Alt | DiagSum∑ k=0..n // 2 T(n - k, k) | A000587 | 1 0 -1 -1 2 9 9 -50 -267 -413 2180 17731 50533 -110176 -1966797 -9938669 -8638718 278475061 |
Alt | AccSum∑ k=0..n ∑ j=0..k T(n, j) | A323618 | 1 -1 1 2 -34 324 -2988 28944 -300816 3371040 -40710240 528439680 -7348717440 109109064960 |
Alt | AccRevSum∑ k=0..n ∑ j=0..k T(n, n - j) | A121555 | 1 -2 7 -32 178 -1164 8748 -74304 704016 -7362720 84255840 -1047358080 14054739840 -202514376960 |
Alt | RowLcmLcm k=0..n | T(n, k) | > 1 | missing | 1 1 3 30 525 52920 242099550 45099954900 367310208815775225 127007737277649228000 |
Alt | RowGcdGcd k=0..n | T(n, k) | > 1 | A110560 | 1 1 3 5 5 7 7 1 1 11 11 13 13 1 1 17 17 19 19 1 1 23 23 1 1 1 1 29 29 31 31 1 1 1 1 37 37 1 1 41 41 |
Alt | RowMaxMax k=0..n | T(n, k) | | missing | 1 1 3 15 105 1260 17325 270270 4729725 94594500 2343240900 62199262125 1764494857125 53338158823950 |
Alt | ColMiddleT(n, n // 2) | missing | 1 0 -1 -1 25 56 -1918 -6825 302995 1487200 -81431350 -510880370 33309926650 254752658160 |
Alt | CentralET(2 n, n) | missing | 1 -1 25 -1918 302995 -81431350 33309926650 -19282395272140 15006064187108995 -15112611709896650950 |
Alt | CentralOT(2 n + 1, n) | missing | 0 -1 56 -6825 1487200 -510880370 254752658160 -174073797222325 156226380361251200 |
Alt | ColLeftT(n, 0) | A000007 | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Alt | ColRightT(n, n) | A001147 | 1 -1 3 -15 105 -945 10395 -135135 2027025 -34459425 654729075 -13749310575 316234143225 |
Alt | BinConv∑ k=0..n C(n, k) T(n, k) | missing | 1 -1 1 12 -169 1010 11614 -484736 7251635 31586634 -5267648770 152227865064 -803876214010 |
Alt | InvBinConv∑ k=0..n C(n, k) T(n, n - k) (-1)^k | missing | 1 -1 5 -48 679 -12710 296246 -8267448 268799091 -9978566310 416461324630 -19303231146496 |
Alt | TransNat0∑ k=0..n T(n, k) k | A001705 | 0 -1 5 -26 154 -1044 8028 -69264 663696 -6999840 80627040 -1007441280 13575738240 -196287356160 |
Alt | TransNat1∑ k=0..n T(n, k) (k + 1) | A121555 | 1 -2 7 -32 178 -1164 8748 -74304 704016 -7362720 84255840 -1047358080 14054739840 -202514376960 |
Alt | TransSqrs∑ k=0..n T(n, k) k^2 | missing | 0 -1 11 -96 834 -7652 75508 -805032 9268128 -114922512 1529695584 -21780381312 330590371968 |
Alt | PosHalf∑ k=0..n 2^n T(n, k) (1/2)^k | A001662 | 1 -1 1 1 -13 47 73 -2447 16811 15551 -1726511 18994849 -10979677 -2983409137 48421103257 |
Alt | NegHalf∑ k=0..n (-2)^n T(n, k) (-1/2)^k | missing | 1 -1 5 -39 423 -5889 100125 -2010951 46589967 -1223110881 35883307125 -1163450728359 41312822139063 |
Alt | DiagRow1T(n + 1, n) | A000457 | 0 -1 10 -105 1260 -17325 270270 -4729725 91891800 -1964187225 45831035250 -1159525191825 |
Alt | DiagRow2T(n + 2, n) | A000497 | 0 -1 25 -490 9450 -190575 4099095 -94594500 2343240900 -62199262125 1764494857125 -53338158823950 |
Alt | DiagRow3T(n + 3, n) | A000504 | 0 -1 56 -1918 56980 -1636635 47507460 -1422280860 44346982680 -1446733012725 49473074851200 |
Alt | DiagCol1T(n + 1, 1) | A000012 | -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 |
Alt | DiagCol2T(n + 2, 2) | A000247 | 3 10 25 56 119 246 501 1012 2035 4082 8177 16368 32751 65518 131053 262124 524267 1048554 2097129 |
Alt | DiagCol3T(n + 3, 3) | A000478 | -15 -105 -490 -1918 -6825 -22935 -74316 -235092 -731731 -2252341 -6879678 -20900922 -63259533 |
Alt | Polysee docs | missing | 1 0 1 0 -1 1 0 2 -2 1 0 -6 10 -3 1 0 24 -82 24 -4 1 0 -120 938 -318 44 -5 1 0 720 -13778 5892 -804 |
Alt | PolyRow1∑ k=0..1 T(1, k) n^k | A000027 | 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25 -26 |
Alt | PolyRow2∑ k=0..2 T(2, k) n^k | A049450 | 0 2 10 24 44 70 102 140 184 234 290 352 420 494 574 660 752 850 954 1064 1180 1302 1430 1564 1704 |
Alt | PolyRow3∑ k=0..3 T(3, k) n^k | missing | 0 -6 -82 -318 -804 -1630 -2886 -4662 -7048 -10134 -14010 -18766 -24492 -31278 -39214 -48390 -58896 |
Alt | PolyCol2∑ k=0..n T(n, k) 2^k | A112487 | 1 -2 10 -82 938 -13778 247210 -5240338 128149802 -3551246162 109979486890 -3764281873042 |
Alt | PolyCol3∑ k=0..n T(n, k) 3^k | missing | 1 -3 24 -318 5892 -140304 4082712 -140389824 5569868256 -250435202592 12584594167296 |
Alt | PolyDiag∑ k=0..n T(n, k) n^k | missing | 1 -1 10 -318 20556 -2225480 362107110 -82561002048 25111037280056 -9822547851440256 |
Rev | TriangleT(n, k), 0 ≤ k ≤ n | missing | 1 1 0 3 1 0 15 10 1 0 105 105 25 1 0 945 1260 490 56 1 0 10395 17325 9450 1918 119 1 0 135135 |
Rev | Accsee docs | missing | 1 1 1 3 4 4 15 25 26 26 105 210 235 236 236 945 2205 2695 2751 2752 2752 10395 27720 37170 39088 |
Rev | AccRevsee docs | missing | 1 0 1 0 1 4 0 1 11 26 0 1 26 131 236 0 1 57 547 1807 2752 0 1 120 2038 11488 28813 39208 0 1 247 |
Rev | AntiDiagsee docs | missing | 1 1 3 0 15 1 105 10 0 945 105 1 10395 1260 25 0 135135 17325 490 1 2027025 270270 9450 56 0 |
Rev | Diffx1T(n, k) (k+1) | missing | 1 1 0 3 2 0 15 20 3 0 105 210 75 4 0 945 2520 1470 224 5 0 10395 34650 28350 7672 595 6 0 135135 |
Rev | RowSum∑ k=0..n T(n, k) | A000311 | 1 1 4 26 236 2752 39208 660032 12818912 282137824 6939897856 188666182784 5617349020544 |
Rev | EvenSum∑ k=0..n T(n, k) even(k) | missing | 1 1 3 16 130 1436 19964 332536 6429616 141250352 3471763328 94353049792 2808914011072 |
Rev | OddSum∑ k=0..n T(n, k) odd(k) | missing | 0 0 1 10 106 1316 19244 327496 6389296 140887472 3468134528 94313132992 2808435009472 |
Rev | AltSum∑ k=0..n T(n, k) (-1)^k | A000142 | 1 1 2 6 24 120 720 5040 40320 362880 3628800 39916800 479001600 6227020800 87178291200 |
Rev | AbsSum∑ k=0..n | T(n, k) | | A000311 | 1 1 4 26 236 2752 39208 660032 12818912 282137824 6939897856 188666182784 5617349020544 |
Rev | DiagSum∑ k=0..n // 2 T(n - k, k) | missing | 1 1 3 16 115 1051 11680 152951 2306801 39381644 750777069 15809735761 364456230076 9129012460481 |
Rev | AccSum∑ k=0..n ∑ j=0..k T(n, j) | missing | 1 2 11 92 1022 14100 231996 4429360 96202720 2341397632 63103551040 1865343596352 59999931991872 |
Rev | AccRevSum∑ k=0..n ∑ j=0..k T(n, n - j) | missing | 1 1 5 38 394 5164 81668 1510928 31986400 762118432 20175223232 587316779840 18642954295744 |
Rev | RowLcmLcm k=0..n | T(n, k) | > 1 | missing | 1 1 3 30 525 52920 242099550 45099954900 367310208815775225 127007737277649228000 |
Rev | RowGcdGcd k=0..n | T(n, k) | > 1 | A110560 | 1 1 3 5 5 7 7 1 1 11 11 13 13 1 1 17 17 19 19 1 1 23 23 1 1 1 1 29 29 31 31 1 1 1 1 37 37 1 1 41 41 |
Rev | RowMaxMax k=0..n | T(n, k) | | missing | 1 1 3 15 105 1260 17325 270270 4729725 94594500 2343240900 62199262125 1764494857125 53338158823950 |
Rev | ColMiddleT(n, n // 2) | missing | 1 1 1 10 25 490 1918 56980 302995 12122110 81431350 4104160060 33309926650 2026763158420 |
Rev | CentralET(2 n, n) | missing | 1 1 25 1918 302995 81431350 33309926650 19282395272140 15006064187108995 15112611709896650950 |
Rev | CentralOT(2 n + 1, n) | missing | 1 10 490 56980 12122110 4104160060 2026763158420 1375295856374440 1227858424500457750 |
Rev | ColLeftT(n, 0) | A001147 | 1 1 3 15 105 945 10395 135135 2027025 34459425 654729075 13749310575 316234143225 7905853580625 |
Rev | ColRightT(n, n) | A000007 | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Rev | BinConv∑ k=0..n C(n, k) T(n, k) | missing | 1 1 5 48 679 12710 296246 8267448 268799091 9978566310 416461324630 19303231146496 983832736305574 |
Rev | InvBinConv∑ k=0..n C(n, k) T(n, n - k) (-1)^k | missing | 1 -1 1 12 -169 1010 11614 -484736 7251635 31586634 -5267648770 152227865064 -803876214010 |
Rev | TransNat0∑ k=0..n T(n, k) k | missing | 0 0 1 12 158 2412 42460 850896 19167488 479980608 13235325376 398650597056 13025605275200 |
Rev | TransNat1∑ k=0..n T(n, k) (k + 1) | missing | 1 1 5 38 394 5164 81668 1510928 31986400 762118432 20175223232 587316779840 18642954295744 |
Rev | TransSqrs∑ k=0..n T(n, k) k^2 | missing | 0 0 1 14 214 3740 74316 1660776 41295200 1131695728 33904071392 1102596219136 38689467601152 |
Rev | PosHalf∑ k=0..n 2^n T(n, k) (1/2)^k | A201465 | 1 2 14 162 2622 54546 1386702 41660226 1444071006 56728401138 2490626473326 120858220146978 |
Rev | NegHalf∑ k=0..n (-2)^n T(n, k) (-1/2)^k | A112487 | 1 -2 10 -82 938 -13778 247210 -5240338 128149802 -3551246162 109979486890 -3764281873042 |
Rev | DiagRow1T(n + 1, n) | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Rev | DiagRow2T(n + 2, n) | A000247 | 3 10 25 56 119 246 501 1012 2035 4082 8177 16368 32751 65518 131053 262124 524267 1048554 2097129 |
Rev | DiagRow3T(n + 3, n) | A000478 | 15 105 490 1918 6825 22935 74316 235092 731731 2252341 6879678 20900922 63259533 190957923 |
Rev | DiagCol1T(n + 1, 1) | A000457 | 0 1 10 105 1260 17325 270270 4729725 91891800 1964187225 45831035250 1159525191825 31623414322500 |
Rev | DiagCol2T(n + 2, 2) | A000497 | 0 1 25 490 9450 190575 4099095 94594500 2343240900 62199262125 1764494857125 53338158823950 |
Rev | DiagCol3T(n + 3, 3) | A000504 | 0 1 56 1918 56980 1636635 47507460 1422280860 44346982680 1446733012725 49473074851200 |
Rev | Polysee docs | missing | 1 1 1 3 1 1 15 4 1 1 105 26 5 1 1 945 236 39 6 1 1 10395 2752 423 54 7 1 1 135135 39208 5889 672 71 |
Rev | PolyRow1∑ k=0..1 T(1, k) n^k | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Rev | PolyRow2∑ k=0..2 T(2, k) n^k | A000027 | 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 |
Rev | PolyRow3∑ k=0..3 T(3, k) n^k | missing | 15 26 39 54 71 90 111 134 159 186 215 246 279 314 351 390 431 474 519 566 615 666 719 774 831 890 |
Rev | PolyCol2∑ k=0..n T(n, k) 2^k | missing | 1 1 5 39 423 5889 100125 2010951 46589967 1223110881 35883307125 1163450728359 41312822139063 |
Rev | PolyCol3∑ k=0..n T(n, k) 3^k | missing | 1 1 6 54 672 10728 209088 4812912 127780416 3843863424 129211334784 4800040010496 195279931289088 |
Rev | PolyDiag∑ k=0..n T(n, k) n^k | missing | 1 1 5 54 989 27120 1030833 51548336 3266196921 254885395680 23959128651325 2664724081561344 |
<< | Table | Source | Similars | Index | >> |
Note: The A-numbers are based on a finite number of numerical comparisons. They ignore the sign and the OEIS-offset. Sometimes they differ in the first few values. In such cases, we consider our version to be the better one because it has a common formula as a root. Since the offset of all triangles is 0 also the offset of all sequences is 0.