OEIS Similars: A341101
↕ Type | ↕ Trait | ↕ Anum | ↕ Sequence |
---|---|---|---|
Std | TriangleT(n, k), 0 ≤ k ≤ n | A341101 | 1 0 2 0 1 4 0 2 6 8 0 6 19 24 16 0 24 80 110 80 32 0 120 418 615 500 240 64 0 720 2604 4046 3570 |
Std | RevT(n, n - k), 0 ≤ k ≤ n | missing | 1 2 0 4 1 0 8 6 2 0 16 24 19 6 0 32 80 110 80 24 0 64 240 500 615 418 120 0 128 672 1960 3570 4046 |
Std | Accsee docs | missing | 1 0 2 0 1 5 0 2 8 16 0 6 25 49 65 0 24 104 214 294 326 0 120 538 1153 1653 1893 1957 0 720 3324 |
Std | AccRevsee docs | missing | 1 2 2 4 5 5 8 14 16 16 16 40 59 65 65 32 112 222 302 326 326 64 304 804 1419 1837 1957 1957 128 800 |
Std | AntiDiagsee docs | missing | 1 0 0 2 0 1 0 2 4 0 6 6 0 24 19 8 0 120 80 24 0 720 418 110 16 0 5040 2604 615 80 0 40320 18828 |
Std | Diffx1T(n, k) (k+1) | missing | 1 0 4 0 2 12 0 4 18 32 0 12 57 96 80 0 48 240 440 400 192 0 240 1254 2460 2500 1440 448 0 1440 7812 |
Std | RowSum∑ k=0..n T(n, k) | A000522 | 1 2 5 16 65 326 1957 13700 109601 986410 9864101 108505112 1302061345 16926797486 236975164805 |
Std | EvenSum∑ k=0..n T(n, k) even(k) | missing | 1 0 4 6 35 160 982 6846 54805 493200 4932056 54252550 651030679 8463398736 118487582410 |
Std | OddSum∑ k=0..n T(n, k) odd(k) | missing | 0 2 1 10 30 166 975 6854 54796 493210 4932045 54252562 651030666 8463398750 118487582395 |
Std | AltSum∑ k=0..n T(n, k) (-1)^k | A000027 | 1 -2 3 -4 5 -6 7 -8 9 -10 11 -12 13 -14 15 -16 17 -18 19 -20 21 -22 23 -24 25 -26 27 -28 29 -30 31 |
Std | AbsSum∑ k=0..n | T(n, k) | | A000522 | 1 2 5 16 65 326 1957 13700 109601 986410 9864101 108505112 1302061345 16926797486 236975164805 |
Std | DiagSum∑ k=0..n // 2 T(n - k, k) | missing | 1 0 2 1 6 12 51 224 1264 8339 63726 552238 5351033 57309548 672108878 8564808105 117824815906 |
Std | AccSum∑ k=0..n ∑ j=0..k T(n, j) | missing | 1 2 6 26 145 962 7314 62526 593737 6204370 70795718 876281826 11697961961 167578760338 |
Std | AccRevSum∑ k=0..n ∑ j=0..k T(n, n - j) | missing | 1 4 14 54 245 1320 8342 60774 502273 4646140 47573494 534284630 6530896869 86323201952 |
Std | RowLcmLcm k=0..n | T(n, k) | > 1 | missing | 1 2 4 24 912 5280 205656000 2528588160 5874643821231360 916835503928037603840 |
Std | RowGcdGcd k=0..n | T(n, k) | > 1 | A000034 | 1 2 4 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 |
Std | RowMaxMax k=0..n | T(n, k) | | missing | 1 2 4 8 24 110 615 4046 30604 261656 2579380 28167920 334925404 4308766176 59645959464 884178662640 |
Std | ColMiddleT(n, n // 2) | missing | 1 0 1 2 19 80 615 4046 28777 259056 1769985 20268050 135131755 1880186880 12330989671 202043487646 |
Std | CentralET(2 n, n) | missing | 1 1 19 615 28777 1769985 135131755 12330989671 1309509778577 158670146018241 21603959342147715 |
Std | CentralOT(2 n + 1, n) | missing | 0 2 80 4046 259056 20268050 1880186880 202043487646 24699845506336 3386443161237474 |
Std | ColLeftT(n, 0) | A000007 | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Std | ColRightT(n, n) | A000079 | 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 1048576 |
Std | BinConv∑ k=0..n C(n, k) T(n, k) | missing | 1 2 6 32 250 2452 28294 372276 5476902 88843388 1572182524 30095481528 618922505656 13596524483960 |
Std | InvBinConv∑ k=0..n C(n, k) T(n, n - k) (-1)^k | missing | 1 2 2 -4 10 52 -626 3600 -4378 -209092 3583684 -37666352 228658456 1320343832 -74742710402 |
Std | TransNat0∑ k=0..n T(n, k) k | missing | 0 2 9 38 180 994 6385 47074 392672 3659730 37709393 425779518 5228835524 69396404466 989898002665 |
Std | TransNat1∑ k=0..n T(n, k) (k + 1) | missing | 1 4 14 54 245 1320 8342 60774 502273 4646140 47573494 534284630 6530896869 86323201952 |
Std | TransSqrs∑ k=0..n T(n, k) k^2 | missing | 0 2 17 98 554 3414 23631 184134 1604396 15497994 164595605 1907674394 23971232006 324703850366 |
Std | PosHalf∑ k=0..n 2^n T(n, k) (1/2)^k | A084262 | 1 2 6 28 188 1656 17992 232016 3460368 58574368 1109200736 23230928832 533139875776 13304094478208 |
Std | NegHalf∑ k=0..n (-2)^n T(n, k) (-1/2)^k | missing | 1 2 2 4 -4 56 -488 5552 -73456 1117216 -19197664 367902272 -7780394048 179998323584 -4522250011264 |
Std | DiagRow1T(n + 1, n) | A001788 | 0 1 6 24 80 240 672 1792 4608 11520 28160 67584 159744 372736 860160 1966080 4456448 10027008 |
Std | DiagRow2T(n + 2, n) | missing | 0 2 19 110 500 1960 6944 22848 71040 211200 605440 1683968 4566016 12113920 31539200 80773120 |
Std | DiagRow3T(n + 3, n) | missing | 0 6 80 615 3570 17360 74592 292320 1066560 3674880 12080640 38182144 116712960 346644480 1004093440 |
Std | DiagCol1T(n + 1, 1) | A000142 | 2 1 2 6 24 120 720 5040 40320 362880 3628800 39916800 479001600 6227020800 87178291200 |
Std | DiagCol2T(n + 2, 2) | missing | 4 6 19 80 418 2604 18828 154944 1429776 14620320 164089440 2005361280 26508781440 376870959360 |
Std | DiagCol3T(n + 3, 3) | missing | 8 24 110 615 4046 30604 261656 2495340 26263512 302411736 3781675872 51039346176 739493351424 |
Std | Polysee docs | missing | 1 0 1 0 2 1 0 5 4 1 0 16 18 6 1 0 65 92 39 8 1 0 326 536 276 68 10 1 0 1957 3552 2133 616 105 12 1 |
Std | PolyRow1∑ k=0..1 T(1, k) n^k | A005843 | 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 |
Std | PolyRow2∑ k=0..2 T(2, k) n^k | A007742 | 0 5 18 39 68 105 150 203 264 333 410 495 588 689 798 915 1040 1173 1314 1463 1620 1785 1958 2139 |
Std | PolyRow3∑ k=0..3 T(3, k) n^k | missing | 0 16 92 276 616 1160 1956 3052 4496 6336 8620 11396 14712 18616 23156 28380 34336 41072 48636 57076 |
Std | PolyCol2∑ k=0..n T(n, k) 2^k | A081923 | 1 4 18 92 536 3552 26608 223456 2085504 21450752 241320704 2949474816 38933066752 552141672448 |
Std | PolyCol3∑ k=0..n T(n, k) 3^k | missing | 1 6 39 276 2133 18018 166203 1670112 18221193 215014014 2733237999 37281387564 543586734621 |
Std | PolyDiag∑ k=0..n T(n, k) n^k | A295183 | 1 2 18 276 5960 165870 5648832 227507336 10577029248 557457222330 32843470246400 2139014862736092 |
Alt | TriangleT(n, k), 0 ≤ k ≤ n | A341101 | 1 0 -2 0 -1 4 0 -2 6 -8 0 -6 19 -24 16 0 -24 80 -110 80 -32 0 -120 418 -615 500 -240 64 0 -720 2604 |
Alt | RevT(n, n - k), 0 ≤ k ≤ n | missing | 1 -2 0 4 -1 0 -8 6 -2 0 16 -24 19 -6 0 -32 80 -110 80 -24 0 64 -240 500 -615 418 -120 0 -128 672 |
Alt | Accsee docs | missing | 1 0 -2 0 -1 3 0 -2 4 -4 0 -6 13 -11 5 0 -24 56 -54 26 -6 0 -120 298 -317 183 -57 7 0 -720 1884 |
Alt | AccRevsee docs | missing | 1 -2 -2 4 3 3 -8 -2 -4 -4 16 -8 11 5 5 -32 48 -62 18 -6 -6 64 -176 324 -291 127 7 7 -128 544 -1416 |
Alt | AntiDiagsee docs | missing | 1 0 0 -2 0 -1 0 -2 4 0 -6 6 0 -24 19 -8 0 -120 80 -24 0 -720 418 -110 16 0 -5040 2604 -615 80 0 |
Alt | Diffx1T(n, k) (k+1) | missing | 1 0 -4 0 -2 12 0 -4 18 -32 0 -12 57 -96 80 0 -48 240 -440 400 -192 0 -240 1254 -2460 2500 -1440 448 |
Alt | RowSum∑ k=0..n T(n, k) | A000027 | 1 -2 3 -4 5 -6 7 -8 9 -10 11 -12 13 -14 15 -16 17 -18 19 -20 21 -22 23 -24 25 -26 27 -28 29 -30 31 |
Alt | EvenSum∑ k=0..n T(n, k) even(k) | missing | 1 0 4 6 35 160 982 6846 54805 493200 4932056 54252550 651030679 8463398736 118487582410 |
Alt | OddSum∑ k=0..n T(n, k) odd(k) | missing | 0 -2 -1 -10 -30 -166 -975 -6854 -54796 -493210 -4932045 -54252562 -651030666 -8463398750 |
Alt | AltSum∑ k=0..n T(n, k) (-1)^k | A000522 | 1 2 5 16 65 326 1957 13700 109601 986410 9864101 108505112 1302061345 16926797486 236975164805 |
Alt | AbsSum∑ k=0..n | T(n, k) | | A000522 | 1 2 5 16 65 326 1957 13700 109601 986410 9864101 108505112 1302061345 16926797486 236975164805 |
Alt | DiagSum∑ k=0..n // 2 T(n - k, k) | missing | 1 0 -2 -1 2 0 -13 -64 -396 -2971 -25070 -235210 -2433799 -27549452 -338757350 -4497600521 |
Alt | AccSum∑ k=0..n ∑ j=0..k T(n, j) | missing | 1 -2 2 -2 1 -2 -6 -30 -199 -1426 -11782 -108506 -1106167 -12363730 -150381214 -1977666774 |
Alt | AccRevSum∑ k=0..n ∑ j=0..k T(n, n - j) | missing | 1 -4 10 -18 29 -40 62 -42 289 1316 11914 108350 1106349 12363520 150381454 1977666502 27965386593 |
Alt | RowLcmLcm k=0..n | T(n, k) | > 1 | missing | 1 2 4 24 912 5280 205656000 2528588160 5874643821231360 916835503928037603840 |
Alt | RowGcdGcd k=0..n | T(n, k) | > 1 | A000034 | 1 2 4 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 |
Alt | RowMaxMax k=0..n | T(n, k) | | missing | 1 2 4 8 24 110 615 4046 30604 261656 2579380 28167920 334925404 4308766176 59645959464 884178662640 |
Alt | ColMiddleT(n, n // 2) | missing | 1 0 -1 -2 19 80 -615 -4046 28777 259056 -1769985 -20268050 135131755 1880186880 -12330989671 |
Alt | CentralET(2 n, n) | missing | 1 -1 19 -615 28777 -1769985 135131755 -12330989671 1309509778577 -158670146018241 21603959342147715 |
Alt | CentralOT(2 n + 1, n) | missing | 0 -2 80 -4046 259056 -20268050 1880186880 -202043487646 24699845506336 -3386443161237474 |
Alt | ColLeftT(n, 0) | A000007 | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Alt | ColRightT(n, n) | A000079 | 1 -2 4 -8 16 -32 64 -128 256 -512 1024 -2048 4096 -8192 16384 -32768 65536 -131072 262144 -524288 |
Alt | BinConv∑ k=0..n C(n, k) T(n, k) | missing | 1 -2 2 4 10 -52 -626 -3600 -4378 209092 3583684 37666352 228658456 -1320343832 -74742710402 |
Alt | InvBinConv∑ k=0..n C(n, k) T(n, n - k) (-1)^k | missing | 1 -2 6 -32 250 -2452 28294 -372276 5476902 -88843388 1572182524 -30095481528 618922505656 |
Alt | TransNat0∑ k=0..n T(n, k) k | missing | 0 -2 7 -14 24 -34 55 -34 280 1326 11903 108362 1106336 12363534 150381439 1977666518 27965386576 |
Alt | TransNat1∑ k=0..n T(n, k) (k + 1) | missing | 1 -4 10 -18 29 -40 62 -42 289 1316 11914 108350 1106349 12363520 150381454 1977666502 27965386593 |
Alt | TransSqrs∑ k=0..n T(n, k) k^2 | missing | 0 -2 15 -50 110 -214 321 -678 -172 -8202 -59125 -576234 -6007918 -68818814 -855799091 -11488399518 |
Alt | PosHalf∑ k=0..n 2^n T(n, k) (1/2)^k | missing | 1 -2 2 -4 -4 -56 -488 -5552 -73456 -1117216 -19197664 -367902272 -7780394048 -179998323584 |
Alt | NegHalf∑ k=0..n (-2)^n T(n, k) (-1/2)^k | A084262 | 1 -2 6 -28 188 -1656 17992 -232016 3460368 -58574368 1109200736 -23230928832 533139875776 |
Alt | DiagRow1T(n + 1, n) | A001788 | 0 -1 6 -24 80 -240 672 -1792 4608 -11520 28160 -67584 159744 -372736 860160 -1966080 4456448 |
Alt | DiagRow2T(n + 2, n) | missing | 0 -2 19 -110 500 -1960 6944 -22848 71040 -211200 605440 -1683968 4566016 -12113920 31539200 |
Alt | DiagRow3T(n + 3, n) | missing | 0 -6 80 -615 3570 -17360 74592 -292320 1066560 -3674880 12080640 -38182144 116712960 -346644480 |
Alt | DiagCol1T(n + 1, 1) | A000142 | -2 -1 -2 -6 -24 -120 -720 -5040 -40320 -362880 -3628800 -39916800 -479001600 -6227020800 |
Alt | DiagCol2T(n + 2, 2) | missing | 4 6 19 80 418 2604 18828 154944 1429776 14620320 164089440 2005361280 26508781440 376870959360 |
Alt | DiagCol3T(n + 3, 3) | missing | -8 -24 -110 -615 -4046 -30604 -261656 -2495340 -26263512 -302411736 -3781675872 -51039346176 |
Alt | Polysee docs | missing | 1 0 1 0 -2 1 0 3 -4 1 0 -4 14 -6 1 0 5 -44 33 -8 1 0 -6 128 -168 60 -10 1 0 7 -352 801 -424 95 -12 |
Alt | PolyRow1∑ k=0..1 T(1, k) n^k | A005843 | 0 -2 -4 -6 -8 -10 -12 -14 -16 -18 -20 -22 -24 -26 -28 -30 -32 -34 -36 -38 -40 -42 -44 -46 -48 -50 |
Alt | PolyRow2∑ k=0..2 T(2, k) n^k | A033991 | 0 3 14 33 60 95 138 189 248 315 390 473 564 663 770 885 1008 1139 1278 1425 1580 1743 1914 2093 |
Alt | PolyRow3∑ k=0..3 T(3, k) n^k | missing | 0 -4 -44 -168 -424 -860 -1524 -2464 -3728 -5364 -7420 -9944 -12984 -16588 -20804 -25680 -31264 |
Alt | PolyCol2∑ k=0..n T(n, k) 2^k | A007466 | 1 -4 14 -44 128 -352 928 -2368 5888 -14336 34304 -80896 188416 -434176 991232 -2244608 5046272 |
Alt | PolyCol3∑ k=0..n T(n, k) 3^k | missing | 1 -6 33 -168 801 -3618 15633 -65124 263169 -1036638 3995649 -15116544 56273697 -206553402 748800369 |
Alt | PolyDiag∑ k=0..n T(n, k) n^k | A277373 | 1 -2 14 -168 2840 -61870 1649232 -51988748 1891712384 -78031713690 3598075308800 -183396819358192 |
Rev | TriangleT(n, k), 0 ≤ k ≤ n | missing | 1 2 0 4 1 0 8 6 2 0 16 24 19 6 0 32 80 110 80 24 0 64 240 500 615 418 120 0 128 672 1960 3570 4046 |
Rev | Accsee docs | missing | 1 2 2 4 5 5 8 14 16 16 16 40 59 65 65 32 112 222 302 326 326 64 304 804 1419 1837 1957 1957 128 800 |
Rev | AccRevsee docs | missing | 1 0 2 0 1 5 0 2 8 16 0 6 25 49 65 0 24 104 214 294 326 0 120 538 1153 1653 1893 1957 0 720 3324 |
Rev | AntiDiagsee docs | missing | 1 2 4 0 8 1 16 6 0 32 24 2 64 80 19 0 128 240 110 6 256 672 500 80 0 512 1792 1960 615 24 1024 4608 |
Rev | Diffx1T(n, k) (k+1) | missing | 1 2 0 4 2 0 8 12 6 0 16 48 57 24 0 32 160 330 320 120 0 64 480 1500 2460 2090 720 0 128 1344 5880 |
Rev | RowSum∑ k=0..n T(n, k) | A000522 | 1 2 5 16 65 326 1957 13700 109601 986410 9864101 108505112 1302061345 16926797486 236975164805 |
Rev | EvenSum∑ k=0..n T(n, k) even(k) | missing | 1 2 4 10 35 166 982 6854 54805 493210 4932056 54252562 651030679 8463398750 118487582410 |
Rev | OddSum∑ k=0..n T(n, k) odd(k) | A038155 | 0 0 1 6 30 160 975 6846 54796 493200 4932045 54252550 651030666 8463398736 118487582395 |
Rev | AltSum∑ k=0..n T(n, k) (-1)^k | A000027 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
Rev | AbsSum∑ k=0..n | T(n, k) | | A000522 | 1 2 5 16 65 326 1957 13700 109601 986410 9864101 108505112 1302061345 16926797486 236975164805 |
Rev | DiagSum∑ k=0..n // 2 T(n - k, k) | missing | 1 2 4 9 22 58 163 484 1508 4903 16564 57942 209269 778494 2976848 11679985 46950810 193094310 |
Rev | AccSum∑ k=0..n ∑ j=0..k T(n, j) | missing | 1 4 14 54 245 1320 8342 60774 502273 4646140 47573494 534284630 6530896869 86323201952 |
Rev | AccRevSum∑ k=0..n ∑ j=0..k T(n, n - j) | missing | 1 2 6 26 145 962 7314 62526 593737 6204370 70795718 876281826 11697961961 167578760338 |
Rev | RowLcmLcm k=0..n | T(n, k) | > 1 | missing | 1 2 4 24 912 5280 205656000 2528588160 5874643821231360 916835503928037603840 |
Rev | RowGcdGcd k=0..n | T(n, k) | > 1 | A000034 | 1 2 4 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 |
Rev | RowMaxMax k=0..n | T(n, k) | | missing | 1 2 4 8 24 110 615 4046 30604 261656 2579380 28167920 334925404 4308766176 59645959464 884178662640 |
Rev | ColMiddleT(n, n // 2) | missing | 1 2 1 6 19 110 615 3570 28777 167874 1769985 10369590 135131755 794409902 12330989671 72692509890 |
Rev | CentralET(2 n, n) | missing | 1 1 19 615 28777 1769985 135131755 12330989671 1309509778577 158670146018241 21603959342147715 |
Rev | CentralOT(2 n + 1, n) | missing | 2 6 110 3570 167874 10369590 794409902 72692509890 7737183602434 939252936527334 128086499559331950 |
Rev | ColLeftT(n, 0) | A000079 | 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 1048576 |
Rev | ColRightT(n, n) | A000007 | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Rev | BinConv∑ k=0..n C(n, k) T(n, k) | missing | 1 2 6 32 250 2452 28294 372276 5476902 88843388 1572182524 30095481528 618922505656 13596524483960 |
Rev | InvBinConv∑ k=0..n C(n, k) T(n, n - k) (-1)^k | missing | 1 -2 2 4 10 -52 -626 -3600 -4378 209092 3583684 37666352 228658456 -1320343832 -74742710402 |
Rev | TransNat0∑ k=0..n T(n, k) k | missing | 0 0 1 10 80 636 5357 48826 484136 5217960 60931617 767776714 10395900616 150651962852 2327754304605 |
Rev | TransNat1∑ k=0..n T(n, k) (k + 1) | missing | 1 2 6 26 145 962 7314 62526 593737 6204370 70795718 876281826 11697961961 167578760338 |
Rev | TransSqrs∑ k=0..n T(n, k) k^2 | missing | 0 0 1 14 154 1624 17463 196398 2336108 29522064 396817845 5669643550 85976013110 1381026109384 |
Rev | PosHalf∑ k=0..n 2^n T(n, k) (1/2)^k | A081923 | 1 4 18 92 536 3552 26608 223456 2085504 21450752 241320704 2949474816 38933066752 552141672448 |
Rev | NegHalf∑ k=0..n (-2)^n T(n, k) (-1/2)^k | A007466 | 1 -4 14 -44 128 -352 928 -2368 5888 -14336 34304 -80896 188416 -434176 991232 -2244608 5046272 |
Rev | DiagRow1T(n + 1, n) | A000142 | 2 1 2 6 24 120 720 5040 40320 362880 3628800 39916800 479001600 6227020800 87178291200 |
Rev | DiagRow2T(n + 2, n) | missing | 4 6 19 80 418 2604 18828 154944 1429776 14620320 164089440 2005361280 26508781440 376870959360 |
Rev | DiagRow3T(n + 3, n) | missing | 8 24 110 615 4046 30604 261656 2495340 26263512 302411736 3781675872 51039346176 739493351424 |
Rev | DiagCol1T(n + 1, 1) | A001788 | 0 1 6 24 80 240 672 1792 4608 11520 28160 67584 159744 372736 860160 1966080 4456448 10027008 |
Rev | DiagCol2T(n + 2, 2) | missing | 0 2 19 110 500 1960 6944 22848 71040 211200 605440 1683968 4566016 12113920 31539200 80773120 |
Rev | DiagCol3T(n + 3, 3) | missing | 0 6 80 615 3570 17360 74592 292320 1066560 3674880 12080640 38182144 116712960 346644480 1004093440 |
Rev | Polysee docs | missing | 1 2 1 4 2 1 8 5 2 1 16 16 6 2 1 32 65 28 7 2 1 64 326 188 44 8 2 1 128 1957 1656 421 64 9 2 1 256 |
Rev | PolyRow1∑ k=0..1 T(1, k) n^k | A055642 | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 |
Rev | PolyRow2∑ k=0..2 T(2, k) n^k | A000027 | 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 |
Rev | PolyRow3∑ k=0..3 T(3, k) n^k | A137882 | 8 16 28 44 64 88 116 148 184 224 268 316 368 424 484 548 616 688 764 844 928 1016 1108 1204 1304 |
Rev | PolyCol2∑ k=0..n T(n, k) 2^k | A084262 | 1 2 6 28 188 1656 17992 232016 3460368 58574368 1109200736 23230928832 533139875776 13304094478208 |
Rev | PolyCol3∑ k=0..n T(n, k) 3^k | A346258 | 1 2 7 44 421 5366 84907 1601552 35052649 872931626 24368595631 753607111412 25572085243597 |
Rev | PolyDiag∑ k=0..n T(n, k) n^k | missing | 1 2 6 44 800 28182 1627192 139512536 16635343104 2632245555050 533576186400224 134812040651954052 |
<< | Table | Source | Similars | Index | >> |
Note: The A-numbers are based on a finite number of numerical comparisons. They ignore the sign and the OEIS-offset. Sometimes they differ in the first few values. In such cases, we consider our version to be the better one because it has a common formula as a root. Since the offset of all triangles is 0 also the offset of all sequences is 0.