STIRLINGSET[0] 1
[1] 0, 1
[2] 0, 1, 1
[3] 0, 1, 3, 1
[4] 0, 1, 7, 6, 1
[5] 0, 1, 15, 25, 10, 1

      OEIS Similars: A048993, A008277, A008278, A080417, A106800, A151511, A151512, A154959, A213735

↕ Type↕ Trait↕ Anum↕ Sequence
StdTriangleT(n, k), 0 ≤ k ≤ nA0489931 0 1 0 1 1 0 1 3 1 0 1 7 6 1 0 1 15 25 10 1 0 1 31 90 65 15 1 0 1 63 301 350 140 21 1 0 1 127 966
StdRevT(n, n - k), 0 ≤ k ≤ nA1068001 1 0 1 1 0 1 3 1 0 1 6 7 1 0 1 10 25 15 1 0 1 15 65 90 31 1 0 1 21 140 350 301 63 1 0 1 28 266
StdInvT-1(n, k), 0 ≤ k ≤ nA1323931 0 1 0 -1 1 0 2 -3 1 0 -6 11 -6 1 0 24 -50 35 -10 1 0 -120 274 -225 85 -15 1 0 720 -1764 1624 -735
StdRevInvT-1(n, n - k), 0 ≤ k ≤ nA0546541 1 0 1 -1 0 1 -3 2 0 1 -6 11 -6 0 1 -10 35 -50 24 0 1 -15 85 -225 274 -120 0 1 -21 175 -735 1624
StdAccsee docsA3591071 0 1 0 1 2 0 1 4 5 0 1 8 14 15 0 1 16 41 51 52 0 1 32 122 187 202 203 0 1 64 365 715 855 876 877 0
StdAccRevsee docsmissing1 1 1 1 2 2 1 4 5 5 1 7 14 15 15 1 11 36 51 52 52 1 16 81 171 202 203 203 1 22 162 512 813 876 877
StdAntiDiagsee docsmissing1 0 0 1 0 1 0 1 1 0 1 3 0 1 7 1 0 1 15 6 0 1 31 25 1 0 1 63 90 10 0 1 127 301 65 1 0 1 255 966 350
StdDiffx1T(n, k) (k+1)missing1 0 2 0 2 3 0 2 9 4 0 2 21 24 5 0 2 45 100 50 6 0 2 93 360 325 90 7 0 2 189 1204 1750 840 147 8 0 2
StdRowSum k=0..n T(n, k)A0001101 1 2 5 15 52 203 877 4140 21147 115975 678570 4213597 27644437 190899322 1382958545 10480142147
StdEvenSum k=0..n T(n, k) even(k)A0244301 0 1 3 8 25 97 434 2095 10707 58194 338195 2097933 13796952 95504749 692462671 5245040408
StdOddSum k=0..n T(n, k) odd(k)A0244290 1 1 2 7 27 106 443 2045 10440 57781 340375 2115664 13847485 95394573 690495874 5235101739
StdAltSum k=0..n T(n, k) (-1)^kA0005871 -1 0 1 1 -2 -9 -9 50 267 413 -2180 -17731 -50533 110176 1966797 9938669 8638718 -278475061
StdAbsSum k=0..n | T(n, k) |A0001101 1 2 5 15 52 203 877 4140 21147 115975 678570 4213597 27644437 190899322 1382958545 10480142147
StdDiagSum k=0..n // 2 T(n - k, k)A1713671 0 1 1 2 4 9 22 58 164 495 1587 5379 19195 71872 281571 1151338 4902687 21696505 99598840
StdAccSum k=0..n j=0..k T(n, j)A3591091 1 3 10 38 161 747 3753 20253 116642 713130 4607813 31345921 223767233 1671430607 13030153118
StdAccRevSum k=0..n j=0..k T(n, n - j)A0001101 2 5 15 52 203 877 4140 21147 115975 678570 4213597 27644437 190899322 1382958545 10480142147
StdRowLcmLcm k=0..n | T(n, k) | > 1A0630401 1 1 3 42 150 36270 270900 9440379900 3332912051700 2004302168707167000 1424191116445997823000
StdRowGcdGcd k=0..n | T(n, k) | > 1A0890261 1 1 3 1 5 1 7 1 1 1 11 1 13 1 1 1 17 1 19 1 1 1 23 1 1 1 1 1 29 1 31 1 1 1 1 1 37 1 1 1 41 1 43 1
StdRowMaxMax k=0..n | T(n, k) |A0028701 1 1 3 7 25 90 350 1701 7770 42525 246730 1379400 9321312 63436373 420693273 3281882604
StdColMiddleT(n, n // 2)A3432791 0 1 1 7 15 90 301 1701 7770 42525 246730 1323652 9321312 49329280 408741333 2141764053
StdCentralET(2 n, n)A0078201 1 7 90 1701 42525 1323652 49329280 2141764053 106175395755 5917584964655 366282500870286
StdCentralOT(2 n + 1, n)A2472380 1 15 301 7770 246730 9321312 408741333 20415995028 1144614626805 71187132291275 4864251308951100
StdColLeftT(n, 0)A0000071 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
StdColRightT(n, n)A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
StdBinConv k=0..n C(n, k) T(n, k)A1224551 1 3 13 71 456 3337 27203 243203 2357356 24554426 272908736 3218032897 40065665043 524575892037
StdInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kA3438411 1 -1 -5 15 56 -455 -237 16947 -64220 -529494 6833608 -8606015 -459331677 4335744673 6800310151
StdTransNat0 k=0..n T(n, k) kA0054930 1 3 10 37 151 674 3263 17007 94828 562595 3535027 23430840 163254885 1192059223 9097183602
StdTransNat1 k=0..n T(n, k) (k + 1)A0001101 2 5 15 52 203 877 4140 21147 115975 678570 4213597 27644437 190899322 1382958545 10480142147
StdTransSqrs k=0..n T(n, k) k^2A0334520 1 5 22 99 471 2386 12867 73681 446620 2856457 19217243 135610448 1001159901 7714225057
StdPosHalf k=0..n 2^n T(n, k) (1/2)^kA0042111 1 3 11 49 257 1539 10299 75905 609441 5284451 49134923 487026929 5120905441 56878092067
StdNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kA0092351 1 -1 -1 9 -23 -25 583 -3087 4401 79087 -902097 4783801 2361049 -348382697 4102879415 -24288551071
StdDiagRow1T(n + 1, n)A0002170 1 3 6 10 15 21 28 36 45 55 66 78 91 105 120 136 153 171 190 210 231 253 276 300 325 351 378 406
StdDiagRow2T(n + 2, n)A0012960 1 7 25 65 140 266 462 750 1155 1705 2431 3367 4550 6020 7820 9996 12597 15675 19285 23485 28336
StdDiagRow3T(n + 3, n)A0012970 1 15 90 350 1050 2646 5880 11880 22275 39325 66066 106470 165620 249900 367200 527136 741285
StdDiagCol1T(n + 1, 1)A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
StdDiagCol2T(n + 2, 2)A0002251 3 7 15 31 63 127 255 511 1023 2047 4095 8191 16383 32767 65535 131071 262143 524287 1048575
StdDiagCol3T(n + 3, 3)A0003921 6 25 90 301 966 3025 9330 28501 86526 261625 788970 2375101 7141686 21457825 64439010 193448101
StdPolysee docsA1892331 0 1 0 1 1 0 2 2 1 0 5 6 3 1 0 15 22 12 4 1 0 52 94 57 20 5 1 0 203 454 309 116 30 6 1 0 877 2430
StdPolyRow1 k=0..1 T(1, k) n^kA0000270 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
StdPolyRow2 k=0..2 T(2, k) n^kA0023780 2 6 12 20 30 42 56 72 90 110 132 156 182 210 240 272 306 342 380 420 462 506 552 600 650 702 756
StdPolyRow3 k=0..3 T(3, k) n^kA0334450 5 22 57 116 205 330 497 712 981 1310 1705 2172 2717 3346 4065 4880 5797 6822 7961 9220 10605
StdPolyCol2 k=0..n T(n, k) 2^kA0018611 2 6 22 94 454 2430 14214 89918 610182 4412798 33827974 273646526 2326980998 20732504062
StdPolyCol3 k=0..n T(n, k) 3^kA0277101 3 12 57 309 1866 12351 88563 681870 5597643 48718569 447428856 4318854429 43666895343
StdPolyDiag k=0..n T(n, k) n^kA2428171 1 6 57 756 12880 268098 6593839 187104200 6016681467 216229931110 8588688990640 373625770888956
AltTriangleT(n, k), 0 ≤ k ≤ nA0489931 0 -1 0 -1 1 0 -1 3 -1 0 -1 7 -6 1 0 -1 15 -25 10 -1 0 -1 31 -90 65 -15 1 0 -1 63 -301 350 -140 21
AltRevT(n, n - k), 0 ≤ k ≤ nA1068001 -1 0 1 -1 0 -1 3 -1 0 1 -6 7 -1 0 -1 10 -25 15 -1 0 1 -15 65 -90 31 -1 0 -1 21 -140 350 -301 63
AltInvT-1(n, k), 0 ≤ k ≤ nmissing1 0 1 0 1 1 0 -2 -3 1 0 -18 -25 6 1 0 116 160 -35 -10 1 0 2700 3724 -825 -215 15 1 0 -34824 -48020
AltRevInvT-1(n, n - k), 0 ≤ k ≤ nmissing1 1 0 1 1 0 1 -3 -2 0 1 6 -25 -18 0 1 -10 -35 160 116 0 1 15 -215 -825 3724 2700 0 1 -21 -175 2765
AltAccsee docsmissing1 0 -1 0 -1 0 0 -1 2 1 0 -1 6 0 1 0 -1 14 -11 -1 -2 0 -1 30 -60 5 -10 -9 0 -1 62 -239 111 -29 -8 -9
AltAccRevsee docsmissing1 -1 -1 1 0 0 -1 2 1 1 1 -5 2 1 1 -1 9 -16 -1 -2 -2 1 -14 51 -39 -8 -9 -9 -1 20 -120 230 -71 -8 -9
AltAntiDiagsee docsmissing1 0 0 -1 0 -1 0 -1 1 0 -1 3 0 -1 7 -1 0 -1 15 -6 0 -1 31 -25 1 0 -1 63 -90 10 0 -1 127 -301 65 -1 0
AltDiffx1T(n, k) (k+1)missing1 0 -2 0 -2 3 0 -2 9 -4 0 -2 21 -24 5 0 -2 45 -100 50 -6 0 -2 93 -360 325 -90 7 0 -2 189 -1204 1750
AltRowSum k=0..n T(n, k)A0005871 -1 0 1 1 -2 -9 -9 50 267 413 -2180 -17731 -50533 110176 1966797 9938669 8638718 -278475061
AltEvenSum k=0..n T(n, k) even(k)A0244301 0 1 3 8 25 97 434 2095 10707 58194 338195 2097933 13796952 95504749 692462671 5245040408
AltOddSum k=0..n T(n, k) odd(k)A0244290 -1 -1 -2 -7 -27 -106 -443 -2045 -10440 -57781 -340375 -2115664 -13847485 -95394573 -690495874
AltAltSum k=0..n T(n, k) (-1)^kA0001101 1 2 5 15 52 203 877 4140 21147 115975 678570 4213597 27644437 190899322 1382958545 10480142147
AltAbsSum k=0..n | T(n, k) |A0001101 1 2 5 15 52 203 877 4140 21147 115975 678570 4213597 27644437 190899322 1382958545 10480142147
AltDiagSum k=0..n // 2 T(n - k, k)A3532601 0 -1 -1 0 2 5 8 6 -18 -111 -377 -953 -1567 964 23411 133702 554185 1801323 3910514 -2415952
AltAccSum k=0..n j=0..k T(n, j)missing1 -1 -1 2 6 -1 -45 -113 133 1990 6310 -6249 -162239 -767105 -424333 19563286 150379986 425333267
AltAccRevSum k=0..n j=0..k T(n, n - j)missing1 -2 1 3 0 -13 -27 32 367 947 -1354 -22091 -85995 9110 2187149 13872263 28516056 -261197625
AltRowLcmLcm k=0..n | T(n, k) | > 1A0630401 1 1 3 42 150 36270 270900 9440379900 3332912051700 2004302168707167000 1424191116445997823000
AltRowGcdGcd k=0..n | T(n, k) | > 1A0890261 1 1 3 1 5 1 7 1 1 1 11 1 13 1 1 1 17 1 19 1 1 1 23 1 1 1 1 1 29 1 31 1 1 1 1 1 37 1 1 1 41 1 43 1
AltRowMaxMax k=0..n | T(n, k) |A0028701 1 1 3 7 25 90 350 1701 7770 42525 246730 1379400 9321312 63436373 420693273 3281882604
AltColMiddleT(n, n // 2)A3432791 0 -1 -1 7 15 -90 -301 1701 7770 -42525 -246730 1323652 9321312 -49329280 -408741333 2141764053
AltCentralET(2 n, n)A0078201 -1 7 -90 1701 -42525 1323652 -49329280 2141764053 -106175395755 5917584964655 -366282500870286
AltCentralOT(2 n + 1, n)A2472380 -1 15 -301 7770 -246730 9321312 -408741333 20415995028 -1144614626805 71187132291275
AltColLeftT(n, 0)A0000071 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
AltBinConv k=0..n C(n, k) T(n, k)A3438411 -1 -1 5 15 -56 -455 237 16947 64220 -529494 -6833608 -8606015 459331677 4335744673 -6800310151
AltInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kA1224551 -1 3 -13 71 -456 3337 -27203 243203 -2357356 24554426 -272908736 3218032897 -40065665043
AltTransNat0 k=0..n T(n, k) kA1018510 -1 1 2 -1 -11 -18 41 317 680 -1767 -19911 -68264 59643 2076973 11905466 18577387 -269836343
AltTransNat1 k=0..n T(n, k) (k + 1)missing1 -2 1 3 0 -13 -27 32 367 947 -1354 -22091 -85995 9110 2187149 13872263 28516056 -261197625
AltTransSqrs k=0..n T(n, k) k^2A3728030 -1 3 2 -11 -31 14 349 1047 -820 -21265 -90355 -26352 2086083 14092615 32449650 -241320287
AltPosHalf k=0..n 2^n T(n, k) (1/2)^kA0092351 -1 -1 1 9 23 -25 -583 -3087 -4401 79087 902097 4783801 -2361049 -348382697 -4102879415
AltNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kA0042111 -1 3 -11 49 -257 1539 -10299 75905 -609441 5284451 -49134923 487026929 -5120905441 56878092067
AltDiagRow1T(n + 1, n)A0002170 -1 3 -6 10 -15 21 -28 36 -45 55 -66 78 -91 105 -120 136 -153 171 -190 210 -231 253 -276 300 -325
AltDiagRow2T(n + 2, n)A0012960 -1 7 -25 65 -140 266 -462 750 -1155 1705 -2431 3367 -4550 6020 -7820 9996 -12597 15675 -19285
AltDiagRow3T(n + 3, n)A0012970 -1 15 -90 350 -1050 2646 -5880 11880 -22275 39325 -66066 106470 -165620 249900 -367200 527136
AltDiagCol1T(n + 1, 1)A000012-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
AltDiagCol2T(n + 2, 2)A0002251 3 7 15 31 63 127 255 511 1023 2047 4095 8191 16383 32767 65535 131071 262143 524287 1048575
AltDiagCol3T(n + 3, 3)A000392-1 -6 -25 -90 -301 -966 -3025 -9330 -28501 -86526 -261625 -788970 -2375101 -7141686 -21457825
AltPolysee docsmissing1 0 1 0 -1 1 0 0 -2 1 0 1 2 -3 1 0 1 2 6 -4 1 0 -2 -6 -3 12 -5 1 0 -9 -14 -21 -20 20 -6 1 0 -9 26
AltPolyRow1 k=0..1 T(1, k) n^kA0000270 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25 -26
AltPolyRow2 k=0..2 T(2, k) n^kA0023780 0 2 6 12 20 30 42 56 72 90 110 132 156 182 210 240 272 306 342 380 420 462 506 552 600 650 702
AltPolyRow3 k=0..3 T(3, k) n^kA3187650 1 2 -3 -20 -55 -114 -203 -328 -495 -710 -979 -1308 -1703 -2170 -2715 -3344 -4063 -4878 -5795
AltPolyCol2 k=0..n T(n, k) 2^kA2131701 -2 2 2 -6 -14 26 178 90 -2382 -9446 13746 287194 998578 -3687782 -56264782 -208446118 1017677490
AltPolyCol3 k=0..n T(n, k) 3^kA3090841 -3 6 -3 -21 24 195 -111 -3072 -4053 57003 277854 -697539 -12261567 -29861778 371727465 3511027599
AltPolyDiag k=0..n T(n, k) n^kA2928661 -1 2 -3 -20 370 -4074 34293 -138312 -2932533 106271090 -2192834490 32208497124 -206343936097
RevTriangleT(n, k), 0 ≤ k ≤ nA1068001 1 0 1 1 0 1 3 1 0 1 6 7 1 0 1 10 25 15 1 0 1 15 65 90 31 1 0 1 21 140 350 301 63 1 0 1 28 266
RevInvRev(T(n, n - k))-1, 0 ≤ k ≤ nA1323931 0 1 0 -1 1 0 2 -3 1 0 -6 11 -6 1 0 24 -50 35 -10 1 0 -120 274 -225 85 -15 1 0 720 -1764 1624 -735
RevAccsee docsmissing1 1 1 1 2 2 1 4 5 5 1 7 14 15 15 1 11 36 51 52 52 1 16 81 171 202 203 203 1 22 162 512 813 876 877
RevAccRevsee docsA3591071 0 1 0 1 2 0 1 4 5 0 1 8 14 15 0 1 16 41 51 52 0 1 32 122 187 202 203 0 1 64 365 715 855 876 877 0
RevAntiDiagsee docsmissing1 1 1 0 1 1 1 3 0 1 6 1 1 10 7 0 1 15 25 1 1 21 65 15 0 1 28 140 90 1 1 36 266 350 31 0 1 45 462
RevDiffx1T(n, k) (k+1)missing1 1 0 1 2 0 1 6 3 0 1 12 21 4 0 1 20 75 60 5 0 1 30 195 360 155 6 0 1 42 420 1400 1505 378 7 0 1 56
RevRowSum k=0..n T(n, k)A0001101 1 2 5 15 52 203 877 4140 21147 115975 678570 4213597 27644437 190899322 1382958545 10480142147
RevEvenSum k=0..n T(n, k) even(k)A0966471 1 1 2 8 27 97 443 2095 10440 58194 340375 2097933 13847485 95504749 690495874 5245040408
RevOddSum k=0..n T(n, k) odd(k)A0966480 0 1 3 7 25 106 434 2045 10707 57781 338195 2115664 13796952 95394573 692462671 5235101739
RevAltSum k=0..n T(n, k) (-1)^kA0005871 1 0 -1 1 2 -9 9 50 -267 413 2180 -17731 50533 110176 -1966797 9938669 -8638718 -278475061
RevAbsSum k=0..n | T(n, k) |A0001101 1 2 5 15 52 203 877 4140 21147 115975 678570 4213597 27644437 190899322 1382958545 10480142147
RevDiagSum k=0..n // 2 T(n - k, k)A0244281 1 1 2 4 8 18 42 102 260 684 1860 5216 15020 44388 134336 415672 1313696 4234904 13911528 46525992
RevAccSum k=0..n j=0..k T(n, j)A0001101 2 5 15 52 203 877 4140 21147 115975 678570 4213597 27644437 190899322 1382958545 10480142147
RevAccRevSum k=0..n j=0..k T(n, n - j)A3591091 1 3 10 38 161 747 3753 20253 116642 713130 4607813 31345921 223767233 1671430607 13030153118
RevRowLcmLcm k=0..n | T(n, k) | > 1A0630401 1 1 3 42 150 36270 270900 9440379900 3332912051700 2004302168707167000 1424191116445997823000
RevRowGcdGcd k=0..n | T(n, k) | > 1A0890261 1 1 3 1 5 1 7 1 1 1 11 1 13 1 1 1 17 1 19 1 1 1 23 1 1 1 1 1 29 1 31 1 1 1 1 1 37 1 1 1 41 1 43 1
RevRowMaxMax k=0..n | T(n, k) |A0028701 1 1 3 7 25 90 350 1701 7770 42525 246730 1379400 9321312 63436373 420693273 3281882604
RevColMiddleT(n, n // 2)A3432781 1 1 3 7 25 90 350 1701 6951 42525 179487 1323652 5715424 49329280 216627840 2141764053 9528822303
RevCentralET(2 n, n)A0078201 1 7 90 1701 42525 1323652 49329280 2141764053 106175395755 5917584964655 366282500870286
RevCentralOT(2 n + 1, n)A1295061 3 25 350 6951 179487 5715424 216627840 9528822303 477297033785 26826851689001 1672162773483930
RevColLeftT(n, 0)A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
RevColRightT(n, n)A0000071 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RevBinConv k=0..n C(n, k) T(n, k)A1224551 1 3 13 71 456 3337 27203 243203 2357356 24554426 272908736 3218032897 40065665043 524575892037
RevInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kA3438411 -1 -1 5 15 -56 -455 237 16947 64220 -529494 -6833608 -8606015 459331677 4335744673 -6800310151
RevTransNat0 k=0..n T(n, k) kA2786770 0 1 5 23 109 544 2876 16113 95495 597155 3929243 27132324 196122796 1480531285 11647194573
RevTransNat1 k=0..n T(n, k) (k + 1)A3591091 1 3 10 38 161 747 3753 20253 116642 713130 4607813 31345921 223767233 1671430607 13030153118
RevTransSqrs k=0..n T(n, k) k^2missing0 0 1 7 43 261 1606 10158 66529 452623 3202057 23553619 180028256 1428442744 11752833925
RevPosHalf k=0..n 2^n T(n, k) (1/2)^kA0018611 2 6 22 94 454 2430 14214 89918 610182 4412798 33827974 273646526 2326980998 20732504062
RevNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kA2131701 -2 2 2 -6 -14 26 178 90 -2382 -9446 13746 287194 998578 -3687782 -56264782 -208446118 1017677490
RevDiagRow1T(n + 1, n)A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
RevDiagRow2T(n + 2, n)A0002251 3 7 15 31 63 127 255 511 1023 2047 4095 8191 16383 32767 65535 131071 262143 524287 1048575
RevDiagRow3T(n + 3, n)A0003921 6 25 90 301 966 3025 9330 28501 86526 261625 788970 2375101 7141686 21457825 64439010 193448101
RevDiagCol1T(n + 1, 1)A0002170 1 3 6 10 15 21 28 36 45 55 66 78 91 105 120 136 153 171 190 210 231 253 276 300 325 351 378 406
RevDiagCol2T(n + 2, 2)A0012960 1 7 25 65 140 266 462 750 1155 1705 2431 3367 4550 6020 7820 9996 12597 15675 19285 23485 28336
RevDiagCol3T(n + 3, 3)A0012970 1 15 90 350 1050 2646 5880 11880 22275 39325 66066 106470 165620 249900 367200 527136 741285
RevPolysee docsA1116731 1 1 1 1 1 1 2 1 1 1 5 3 1 1 1 15 11 4 1 1 1 52 49 19 5 1 1 1 203 257 109 29 6 1 1 1 877 1539 742
RevPolyRow1 k=0..1 T(1, k) n^kA0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
RevPolyRow2 k=0..2 T(2, k) n^kA0000271 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
RevPolyRow3 k=0..3 T(3, k) n^kA0283871 5 11 19 29 41 55 71 89 109 131 155 181 209 239 271 305 341 379 419 461 505 551 599 649 701 755
RevPolyCol2 k=0..n T(n, k) 2^kA0042111 1 3 11 49 257 1539 10299 75905 609441 5284451 49134923 487026929 5120905441 56878092067
RevPolyCol3 k=0..n T(n, k) 3^kA0042121 1 4 19 109 742 5815 51193 498118 5296321 60987817 754940848 9983845261 140329768789 2087182244308
RevPolyDiag k=0..n T(n, k) n^kA3014191 1 3 19 201 3176 69823 2026249 74565473 3376695763 183991725451 11854772145800 890415496931689
InvTriangleT(n, k), 0 ≤ k ≤ nA1323931 0 1 0 -1 1 0 2 -3 1 0 -6 11 -6 1 0 24 -50 35 -10 1 0 -120 274 -225 85 -15 1 0 720 -1764 1624 -735
InvRevT(n, n - k), 0 ≤ k ≤ nA0546541 1 0 1 -1 0 1 -3 2 0 1 -6 11 -6 0 1 -10 35 -50 24 0 1 -15 85 -225 274 -120 0 1 -21 175 -735 1624
InvRevInvT-1(n, n - k), 0 ≤ k ≤ nA1068001 1 0 1 1 0 1 3 1 0 1 6 7 1 0 1 10 25 15 1 0 1 15 65 90 31 1 0 1 21 140 350 301 63 1 0 1 28 266
InvAccsee docsmissing1 0 1 0 -1 0 0 2 -1 0 0 -6 5 -1 0 0 24 -26 9 -1 0 0 -120 154 -71 14 -1 0 0 720 -1044 580 -155 20 -1
InvAccRevsee docsmissing1 1 1 1 0 0 1 -2 0 0 1 -5 6 0 0 1 -9 26 -24 0 0 1 -14 71 -154 120 0 0 1 -20 155 -580 1044 -720 0 0
InvAntiDiagsee docsA3313271 0 0 1 0 -1 0 2 1 0 -6 -3 0 24 11 1 0 -120 -50 -6 0 720 274 35 1 0 -5040 -1764 -225 -10 0 40320
InvDiffx1T(n, k) (k+1)A3601741 0 2 0 -2 3 0 4 -9 4 0 -12 33 -24 5 0 48 -150 140 -50 6 0 -240 822 -900 425 -90 7 0 1440 -5292
InvRowSum k=0..n T(n, k)A0195901 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
InvEvenSum k=0..n T(n, k) even(k)A0017101 0 1 -3 12 -60 360 -2520 20160 -181440 1814400 -19958400 239500800 -3113510400 43589145600
InvOddSum k=0..n T(n, k) odd(k)A0017100 1 -1 3 -12 60 -360 2520 -20160 181440 -1814400 19958400 -239500800 3113510400 -43589145600
InvAltSum k=0..n T(n, k) (-1)^kA0001421 -1 2 -6 24 -120 720 -5040 40320 -362880 3628800 -39916800 479001600 -6227020800 87178291200
InvAbsSum k=0..n | T(n, k) |A0001421 1 2 6 24 120 720 5040 40320 362880 3628800 39916800 479001600 6227020800 87178291200
InvDiagSum k=0..n // 2 T(n - k, k)A3435791 0 1 -1 3 -9 36 -176 1030 -7039 55098 -486346 4780445 -51787405 613045468 -7873065045 109021348618
InvAccSum k=0..n j=0..k T(n, j)A0001421 1 -1 1 -2 6 -24 120 -720 5040 -40320 362880 -3628800 39916800 -479001600 6227020800 -87178291200
InvAccRevSum k=0..n j=0..k T(n, n - j)A0001421 2 1 -1 2 -6 24 -120 720 -5040 40320 -362880 3628800 -39916800 479001600 -6227020800 87178291200
InvRowLcmLcm k=0..n | T(n, k) | > 1A0630391 1 1 6 66 4200 4192200 5115600 19083776176080 10086416728304192640 126556188275836361347200
InvRowGcdGcd k=0..n | T(n, k) | > 1A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
InvRowMaxMax k=0..n | T(n, k) |A0650481 1 1 3 11 50 274 1764 13132 118124 1172700 12753576 150917976 1931559552 26596717056 392156797824
InvColMiddleT(n, n // 2)A1544151 0 -1 2 11 -50 -225 1624 6769 -67284 -269325 3416930 13339535 -206070150 -790943153 14409322928
InvCentralET(2 n, n)A1876461 -1 11 -225 6769 -269325 13339535 -790943153 54631129553 -4308105301929 381922055502195
InvCentralOT(2 n + 1, n)A3677770 2 -50 1624 -67284 3416930 -206070150 14409322928 -1146901283528 102417740732658
InvColLeftT(n, 0)A0000071 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
InvColRightT(n, n)A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
InvBinConv k=0..n C(n, k) T(n, k)A3172741 1 -1 -2 19 -79 76 2640 -36945 329371 -1861949 -4438774 355714228 -7292531180 109844527612
InvInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kA2112101 1 3 16 115 1021 10696 128472 1734447 25937683 424852351 7554471156 144767131444 2971727661124
InvTransNat0 k=0..n T(n, k) kA0001420 1 1 -1 2 -6 24 -120 720 -5040 40320 -362880 3628800 -39916800 479001600 -6227020800 87178291200
InvTransNat1 k=0..n T(n, k) (k + 1)A0001421 2 1 -1 2 -6 24 -120 720 -5040 40320 -362880 3628800 -39916800 479001600 -6227020800 87178291200
InvTransSqrs k=0..n T(n, k) k^2A0454060 1 3 -1 0 4 -28 188 -1368 11016 -98208 964512 -10370880 121337280 -1535880960 20924455680
InvPosHalf k=0..n 2^n T(n, k) (1/2)^kA0011471 1 -1 3 -15 105 -945 10395 -135135 2027025 -34459425 654729075 -13749310575 316234143225
InvNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kA0011471 1 3 15 105 945 10395 135135 2027025 34459425 654729075 13749310575 316234143225 7905853580625
InvDiagRow1T(n + 1, n)A0002170 -1 -3 -6 -10 -15 -21 -28 -36 -45 -55 -66 -78 -91 -105 -120 -136 -153 -171 -190 -210 -231 -253
InvDiagRow2T(n + 2, n)A0009140 2 11 35 85 175 322 546 870 1320 1925 2717 3731 5005 6580 8500 10812 13566 16815 20615 25025 30107
InvDiagRow3T(n + 3, n)A0013030 -6 -50 -225 -735 -1960 -4536 -9450 -18150 -32670 -55770 -91091 -143325 -218400 -323680 -468180
InvDiagCol1T(n + 1, 1)A0001421 -1 2 -6 24 -120 720 -5040 40320 -362880 3628800 -39916800 479001600 -6227020800 87178291200
InvDiagCol2T(n + 2, 2)A0002541 -3 11 -50 274 -1764 13068 -109584 1026576 -10628640 120543840 -1486442880 19802759040
InvDiagCol3T(n + 3, 3)A0003991 -6 35 -225 1624 -13132 118124 -1172700 12753576 -150917976 1931559552 -26596717056 392156797824
InvPolysee docsA1228511 0 1 0 1 1 0 0 2 1 0 0 2 3 1 0 0 0 6 4 1 0 0 0 6 12 5 1 0 0 0 0 24 20 6 1 0 0 0 0 24 60 30 7 1 0 0
InvPolyRow1 k=0..1 T(1, k) n^kA0000270 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
InvPolyRow2 k=0..2 T(2, k) n^kA0023780 0 2 6 12 20 30 42 56 72 90 110 132 156 182 210 240 272 306 342 380 420 462 506 552 600 650 702
InvPolyRow3 k=0..3 T(3, k) n^kA0075310 0 0 6 24 60 120 210 336 504 720 990 1320 1716 2184 2730 3360 4080 4896 5814 6840 7980 9240 10626
InvPolyCol2 k=0..n T(n, k) 2^kmissing1 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
InvPolyCol3 k=0..n T(n, k) 3^kA1866851 3 6 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
InvPolyDiag k=0..n T(n, k) n^kA0001421 1 2 6 24 120 720 5040 40320 362880 3628800 39916800 479001600 6227020800 87178291200
Inv:RevTriangleT(n, k), 0 ≤ k ≤ nA0546541 1 0 1 -1 0 1 -3 2 0 1 -6 11 -6 0 1 -10 35 -50 24 0 1 -15 85 -225 274 -120 0 1 -21 175 -735 1624
Inv:RevRevT(n, n - k), 0 ≤ k ≤ nA1323931 0 1 0 -1 1 0 2 -3 1 0 -6 11 -6 1 0 24 -50 35 -10 1 0 -120 274 -225 85 -15 1 0 720 -1764 1624 -735
Inv:RevInvRev(T(n, n - k))-1, 0 ≤ k ≤ nA0489931 0 1 0 1 1 0 1 3 1 0 1 7 6 1 0 1 15 25 10 1 0 1 31 90 65 15 1 0 1 63 301 350 140 21 1 0 1 127 966
Inv:RevAccsee docsmissing1 1 1 1 0 0 1 -2 0 0 1 -5 6 0 0 1 -9 26 -24 0 0 1 -14 71 -154 120 0 0 1 -20 155 -580 1044 -720 0 0
Inv:RevAccRevsee docsmissing1 0 1 0 -1 0 0 2 -1 0 0 -6 5 -1 0 0 24 -26 9 -1 0 0 -120 154 -71 14 -1 0 0 720 -1044 580 -155 20 -1
Inv:RevAntiDiagsee docsmissing1 1 1 0 1 -1 1 -3 0 1 -6 2 1 -10 11 0 1 -15 35 -6 1 -21 85 -50 0 1 -28 175 -225 24 1 -36 322 -735
Inv:RevDiffx1T(n, k) (k+1)missing1 1 0 1 -2 0 1 -6 6 0 1 -12 33 -24 0 1 -20 105 -200 120 0 1 -30 255 -900 1370 -720 0 1 -42 525
Inv:RevRowSum k=0..n T(n, k)A0195901 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Inv:RevEvenSum k=0..n T(n, k) even(k)A0017101 1 1 3 12 60 360 2520 20160 181440 1814400 19958400 239500800 3113510400 43589145600 653837184000
Inv:RevOddSum k=0..n T(n, k) odd(k)A0017100 0 -1 -3 -12 -60 -360 -2520 -20160 -181440 -1814400 -19958400 -239500800 -3113510400 -43589145600
Inv:RevAltSum k=0..n T(n, k) (-1)^kA0001421 1 2 6 24 120 720 5040 40320 362880 3628800 39916800 479001600 6227020800 87178291200
Inv:RevAbsSum k=0..n | T(n, k) |A0001421 1 2 6 24 120 720 5040 40320 362880 3628800 39916800 479001600 6227020800 87178291200
Inv:RevDiagSum k=0..n // 2 T(n - k, k)missing1 1 1 0 -2 -3 2 15 15 -53 -174 46 1285 1842 -7245 -28511 17321 310250 367570 -2744761 -9129932
Inv:RevAccSum k=0..n j=0..k T(n, j)A0001421 2 1 -1 2 -6 24 -120 720 -5040 40320 -362880 3628800 -39916800 479001600 -6227020800 87178291200
Inv:RevAccRevSum k=0..n j=0..k T(n, n - j)A0001421 1 -1 1 -2 6 -24 120 -720 5040 -40320 362880 -3628800 39916800 -479001600 6227020800 -87178291200
Inv:RevRowLcmLcm k=0..n | T(n, k) | > 1A0630391 1 1 6 66 4200 4192200 5115600 19083776176080 10086416728304192640 126556188275836361347200
Inv:RevRowGcdGcd k=0..n | T(n, k) | > 1A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Inv:RevRowMaxMax k=0..n | T(n, k) |A0650481 1 1 3 11 50 274 1764 13132 118124 1172700 12753576 150917976 1931559552 26596717056 392156797824
Inv:RevColMiddleT(n, n // 2)missing1 1 -1 -3 11 35 -225 -735 6769 22449 -269325 -902055 13339535 44990231 -790943153 -2681453775
Inv:RevCentralET(2 n, n)A1876461 -1 11 -225 6769 -269325 13339535 -790943153 54631129553 -4308105301929 381922055502195
Inv:RevCentralOT(2 n + 1, n)A1295051 -3 35 -735 22449 -902055 44990231 -2681453775 185953177553 -14710753408923 1307535010540395
Inv:RevColLeftT(n, 0)A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Inv:RevColRightT(n, n)A0000071 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Inv:RevBinConv k=0..n C(n, k) T(n, k)A3172741 1 -1 -2 19 -79 76 2640 -36945 329371 -1861949 -4438774 355714228 -7292531180 109844527612
Inv:RevInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kA2112101 -1 3 -16 115 -1021 10696 -128472 1734447 -25937683 424852351 -7554471156 144767131444
Inv:RevTransNat0 k=0..n T(n, k) kA0001420 0 -1 1 -2 6 -24 120 -720 5040 -40320 362880 -3628800 39916800 -479001600 6227020800 -87178291200
Inv:RevTransNat1 k=0..n T(n, k) (k + 1)A0001421 1 -1 1 -2 6 -24 120 -720 5040 -40320 362880 -3628800 39916800 -479001600 6227020800 -87178291200
Inv:RevTransSqrs k=0..n T(n, k) k^2missing0 0 -1 5 -16 64 -316 1868 -12888 101736 -904608 8947872 -97462080 1159174080 -14947925760
Inv:RevPosHalf k=0..n 2^n T(n, k) (1/2)^kmissing1 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Inv:RevNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kA0001421 -2 6 -24 120 -720 5040 -40320 362880 -3628800 39916800 -479001600 6227020800 -87178291200
Inv:RevDiagRow1T(n + 1, n)A0001421 -1 2 -6 24 -120 720 -5040 40320 -362880 3628800 -39916800 479001600 -6227020800 87178291200
Inv:RevDiagRow2T(n + 2, n)A0002541 -3 11 -50 274 -1764 13068 -109584 1026576 -10628640 120543840 -1486442880 19802759040
Inv:RevDiagRow3T(n + 3, n)A0003991 -6 35 -225 1624 -13132 118124 -1172700 12753576 -150917976 1931559552 -26596717056 392156797824
Inv:RevDiagCol1T(n + 1, 1)A0002170 -1 -3 -6 -10 -15 -21 -28 -36 -45 -55 -66 -78 -91 -105 -120 -136 -153 -171 -190 -210 -231 -253
Inv:RevDiagCol2T(n + 2, 2)A0009140 2 11 35 85 175 322 546 870 1320 1925 2717 3731 5005 6580 8500 10812 13566 16815 20615 25025 30107
Inv:RevDiagCol3T(n + 3, 3)A0013030 -6 -50 -225 -735 -1960 -4536 -9450 -18150 -32670 -55770 -91091 -143325 -218400 -323680 -468180
Inv:RevPolysee docsmissing1 1 1 1 1 1 1 0 1 1 1 0 -1 1 1 1 0 3 -2 1 1 1 0 -15 10 -3 1 1 1 0 105 -80 21 -4 1 1 1 0 -945 880
Inv:RevPolyRow1 k=0..1 T(1, k) n^kA0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Inv:RevPolyRow2 k=0..2 T(2, k) n^kA0000271 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25 -26
Inv:RevPolyRow3 k=0..3 T(3, k) n^kA0141051 0 3 10 21 36 55 78 105 136 171 210 253 300 351 406 465 528 595 666 741 820 903 990 1081 1176 1275
Inv:RevPolyCol2 k=0..n T(n, k) 2^kA0011471 1 -1 3 -15 105 -945 10395 -135135 2027025 -34459425 654729075 -13749310575 316234143225
Inv:RevPolyCol3 k=0..n T(n, k) 3^kA0085441 1 -2 10 -80 880 -12320 209440 -4188800 96342400 -2504902400 72642169600 -2324549427200
Inv:RevPolyDiag k=0..n T(n, k) n^kA3497311 1 -1 10 -231 9576 -623645 58715280 -7547514975 1270453824640 -271252029133449 71635824470246400
 << TableSourceSimilarsIndex >> 

Note: The A-numbers are based on a finite number of numerical comparisons. They ignore the sign and the OEIS-offset. Sometimes they differ in the first few values. In such cases, we consider our version to be the better one because it has a common formula as a root. Since the offset of all triangles is 0 also the offset of all sequences is 0.