STIRLINGCYCLEB[0] 1
[1] 1, 1
[2] 3, 4, 1
[3] 15, 23, 9, 1
[4] 105, 176, 86, 16, 1
[5] 945, 1689, 950, 230, 25, 1

      OEIS Similars: A028338, A039757, A039758, A109692

↕ Type↕ Trait↕ Anum↕ Sequence
StdTriangleT(n, k), 0 ≤ k ≤ nA0283381 1 1 3 4 1 15 23 9 1 105 176 86 16 1 945 1689 950 230 25 1 10395 19524 12139 3480 505 36 1 135135
StdRevT(n, n - k), 0 ≤ k ≤ nA1096921 1 1 1 4 3 1 9 23 15 1 16 86 176 105 1 25 230 950 1689 945 1 36 505 3480 12139 19524 10395 1 49
StdInvT-1(n, k), 0 ≤ k ≤ nA0397551 -1 1 1 -4 1 -1 13 -9 1 1 -40 58 -16 1 -1 121 -330 170 -25 1 1 -364 1771 -1520 395 -36 1 -1 1093
StdRevInvT-1(n, n - k), 0 ≤ k ≤ nA0397561 1 -1 1 -4 1 1 -9 13 -1 1 -16 58 -40 1 1 -25 170 -330 121 -1 1 -36 395 -1520 1771 -364 1 1 -49 791
StdAccsee docsmissing1 1 2 3 7 8 15 38 47 48 105 281 367 383 384 945 2634 3584 3814 3839 3840 10395 29919 42058 45538
StdAccRevsee docsmissing1 1 2 1 5 8 1 10 33 48 1 17 103 279 384 1 26 256 1206 2895 3840 1 37 542 4022 16161 35685 46080 1
StdAntiDiagsee docsmissing1 1 3 1 15 4 105 23 1 945 176 9 10395 1689 86 1 135135 19524 950 16 2027025 264207 12139 230 1
StdDiffx1T(n, k) (k+1)missing1 1 2 3 8 3 15 46 27 4 105 352 258 64 5 945 3378 2850 920 125 6 10395 39048 36417 13920 2525 216 7
StdRowSum k=0..n T(n, k)A0001651 2 8 48 384 3840 46080 645120 10321920 185794560 3715891200 81749606400 1961990553600
StdEvenSum k=0..n T(n, k) even(k)A0028661 1 4 24 192 1920 23040 322560 5160960 92897280 1857945600 40874803200 980995276800 25505877196800
StdOddSum k=0..n T(n, k) odd(k)A0028660 1 4 24 192 1920 23040 322560 5160960 92897280 1857945600 40874803200 980995276800 25505877196800
StdAltSum k=0..n T(n, k) (-1)^kA0000071 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
StdAbsSum k=0..n | T(n, k) |A0001651 2 8 48 384 3840 46080 645120 10321920 185794560 3715891200 81749606400 1961990553600
StdDiagSum k=0..n // 2 T(n - k, k)missing1 1 4 19 129 1130 12171 155625 2303602 38738501 729408237 15200872256 347334515813 8634091342069
StdAccSum k=0..n j=0..k T(n, j)missing1 3 18 148 1520 18656 266112 4324608 78870528 1595142144 35432939520 857558384640 22461642178560
StdAccRevSum k=0..n j=0..k T(n, n - j)missing1 3 14 92 784 8224 102528 1481472 24348672 448598016 9157754880 205186498560 5006225571840
StdRowLcmLcm k=0..n | T(n, k) | > 1missing1 1 12 1035 794640 2324992950 4810656157072920 182911242997871793405 409032268138980471585600
StdRowGcdGcd k=0..n | T(n, k) | > 1A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
StdRowMaxMax k=0..n | T(n, k) |A0040411 1 4 23 176 1689 19524 264207 4098240 71697105 1396704420 29985521895 703416314160 17901641997225
StdColMiddleT(n, n // 2)missing1 1 4 23 86 950 3480 57379 208054 4574934 16486680 453714470 1628301884 53845005500 192666441968
StdCentralET(2 n, n)A2933181 4 86 3480 208054 16486680 1628301884 192666441968 26569595376038 4184718381424152
StdCentralOT(2 n + 1, n)missing1 23 950 57379 4574934 453714470 53845005500 7442156684963 1174199725349222 208251057899323218
StdColLeftT(n, 0)A0011471 1 3 15 105 945 10395 135135 2027025 34459425 654729075 13749310575 316234143225 7905853580625
StdColRightT(n, n)A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
StdBinConv k=0..n C(n, k) T(n, k)missing1 2 12 112 1390 21316 387016 8089152 190810614 5004826108 144299948936 4531481715168
StdInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kmissing1 0 -4 28 -146 176 13096 -332856 6220278 -100254944 1315515816 -7548862936 -376130570804
StdTransNat0 k=0..n T(n, k) kA2031590 1 6 44 400 4384 56448 836352 14026752 262803456 5441863680 123436892160 3044235018240
StdTransNat1 k=0..n T(n, k) (k + 1)missing1 3 14 92 784 8224 102528 1481472 24348672 448598016 9157754880 205186498560 5006225571840
StdTransSqrs k=0..n T(n, k) k^2missing0 1 8 68 680 7984 108416 1676800 29146624 563014656 11971694592 277976899584 7000068980736
StdPosHalf k=0..n 2^n T(n, k) (1/2)^kA0085451 3 21 231 3465 65835 1514205 40883535 1267389585 44358635475 1729986783525 74389431691575
StdNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kA0076961 -1 5 -45 585 -9945 208845 -5221125 151412625 -4996616625 184874815125 -7579867420125
StdDiagRow1T(n + 1, n)A0002901 4 9 16 25 36 49 64 81 100 121 144 169 196 225 256 289 324 361 400 441 484 529 576 625 676 729 784
StdDiagRow2T(n + 2, n)A0241963 23 86 230 505 973 1708 2796 4335 6435 9218 12818 17381 23065 30040 38488 48603 60591 74670 91070
StdDiagRow3T(n + 3, n)A02419715 176 950 3480 10045 24640 53676 106800 197835 345840 576290 922376 1426425 2141440 3132760
StdDiagCol1T(n + 1, 1)A0040411 4 23 176 1689 19524 264207 4098240 71697105 1396704420 29985521895 703416314160 17901641997225
StdDiagCol2T(n + 2, 2)A0283391 9 86 950 12139 177331 2924172 53809164 1094071221 24372200061 590546123298 15467069396610
StdDiagCol3T(n + 3, 3)A0283401 16 230 3480 57379 1038016 20570444 444647600 10431670821 264300628944 7198061846898
StdPolysee docsmissing1 1 1 3 2 1 15 8 3 1 105 48 15 4 1 945 384 105 24 5 1 10395 3840 945 192 35 6 1 135135 46080 10395
StdPolyRow1 k=0..1 T(1, k) n^kA0000271 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
StdPolyRow2 k=0..2 T(2, k) n^kA0055633 8 15 24 35 48 63 80 99 120 143 168 195 224 255 288 323 360 399 440 483 528 575 624 675 728 783
StdPolyRow3 k=0..3 T(3, k) n^kA37091215 48 105 192 315 480 693 960 1287 1680 2145 2688 3315 4032 4845 5760 6783 7920 9177 10560 12075
StdPolyCol2 k=0..n T(n, k) 2^kA0011471 3 15 105 945 10395 135135 2027025 34459425 654729075 13749310575 316234143225 7905853580625
StdPolyCol3 k=0..n T(n, k) 3^kA0028661 4 24 192 1920 23040 322560 5160960 92897280 1857945600 40874803200 980995276800 25505877196800
StdPolyDiag k=0..n T(n, k) n^kA3748661 2 15 192 3465 80640 2297295 77414400 3011753745 132843110400 6550564395375 357082280755200
AltTriangleT(n, k), 0 ≤ k ≤ nA0283381 1 -1 3 -4 1 15 -23 9 -1 105 -176 86 -16 1 945 -1689 950 -230 25 -1 10395 -19524 12139 -3480 505
AltRevT(n, n - k), 0 ≤ k ≤ nA1096921 -1 1 1 -4 3 -1 9 -23 15 1 -16 86 -176 105 -1 25 -230 950 -1689 945 1 -36 505 -3480 12139 -19524
AltInvT-1(n, k), 0 ≤ k ≤ nmissing1 -1 1 -7 4 1 25 -13 -9 1 721 -376 -230 16 1 -8259 4299 2730 -170 -25 1 -519375 270372 170971
AltRevInvT-1(n, n - k), 0 ≤ k ≤ nmissing1 1 -1 1 4 -7 1 -9 -13 25 1 16 -230 -376 721 1 -25 -170 2730 4299 -8259 1 36 -1405 -10720 170971
AltAccsee docsmissing1 1 0 3 -1 0 15 -8 1 0 105 -71 15 -1 0 945 -744 206 -24 1 0 10395 -9129 3010 -470 35 -1 0 135135
AltAccRevsee docsmissing1 -1 0 1 -3 0 -1 8 -15 0 1 -15 71 -105 0 -1 24 -206 744 -945 0 1 -35 470 -3010 9129 -10395 0 -1 48
AltAntiDiagsee docsmissing1 1 3 -1 15 -4 105 -23 1 945 -176 9 10395 -1689 86 -1 135135 -19524 950 -16 2027025 -264207 12139
AltDiffx1T(n, k) (k+1)missing1 1 -2 3 -8 3 15 -46 27 -4 105 -352 258 -64 5 945 -3378 2850 -920 125 -6 10395 -39048 36417 -13920
AltRowSum k=0..n T(n, k)A0000071 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
AltEvenSum k=0..n T(n, k) even(k)A0028661 1 4 24 192 1920 23040 322560 5160960 92897280 1857945600 40874803200 980995276800 25505877196800
AltOddSum k=0..n T(n, k) odd(k)A0028660 -1 -4 -24 -192 -1920 -23040 -322560 -5160960 -92897280 -1857945600 -40874803200 -980995276800
AltAltSum k=0..n T(n, k) (-1)^kA0001651 2 8 48 384 3840 46080 645120 10321920 185794560 3715891200 81749606400 1961990553600
AltAbsSum k=0..n | T(n, k) |A0001651 2 8 48 384 3840 46080 645120 10321920 185794560 3715891200 81749606400 1961990553600
AltDiagSum k=0..n // 2 T(n - k, k)missing1 1 2 11 83 778 8791 116545 1774728 30535061 585899267 12405387312 287322329189 7226369369269
AltAccSum k=0..n j=0..k T(n, j)A0001651 1 2 8 48 384 3840 46080 645120 10321920 185794560 3715891200 81749606400 1961990553600
AltAccRevSum k=0..n j=0..k T(n, n - j)A0001651 -1 -2 -8 -48 -384 -3840 -46080 -645120 -10321920 -185794560 -3715891200 -81749606400
AltRowLcmLcm k=0..n | T(n, k) | > 1missing1 1 12 1035 794640 2324992950 4810656157072920 182911242997871793405 409032268138980471585600
AltRowGcdGcd k=0..n | T(n, k) | > 1A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
AltRowMaxMax k=0..n | T(n, k) |A0040411 1 4 23 176 1689 19524 264207 4098240 71697105 1396704420 29985521895 703416314160 17901641997225
AltColMiddleT(n, n // 2)missing1 1 -4 -23 86 950 -3480 -57379 208054 4574934 -16486680 -453714470 1628301884 53845005500
AltCentralET(2 n, n)A2933181 -4 86 -3480 208054 -16486680 1628301884 -192666441968 26569595376038 -4184718381424152
AltCentralOT(2 n + 1, n)missing1 -23 950 -57379 4574934 -453714470 53845005500 -7442156684963 1174199725349222 -208251057899323218
AltColLeftT(n, 0)A0011471 1 3 15 105 945 10395 135135 2027025 34459425 654729075 13749310575 316234143225 7905853580625
AltBinConv k=0..n C(n, k) T(n, k)missing1 0 -4 -28 -146 -176 13096 332856 6220278 100254944 1315515816 7548862936 -376130570804
AltInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kmissing1 -2 12 -112 1390 -21316 387016 -8089152 190810614 -5004826108 144299948936 -4531481715168
AltTransNat0 k=0..n T(n, k) kA0001650 -1 -2 -8 -48 -384 -3840 -46080 -645120 -10321920 -185794560 -3715891200 -81749606400
AltTransNat1 k=0..n T(n, k) (k + 1)A0001651 -1 -2 -8 -48 -384 -3840 -46080 -645120 -10321920 -185794560 -3715891200 -81749606400
AltTransSqrs k=0..n T(n, k) k^2missing0 -1 0 4 40 416 4928 66816 1027584 17731584 339812352 7167836160 165124177920 4126479482880
AltPosHalf k=0..n 2^n T(n, k) (1/2)^kA0076961 1 5 45 585 9945 208845 5221125 151412625 4996616625 184874815125 7579867420125 341094033905625
AltNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kA0085451 -3 21 -231 3465 -65835 1514205 -40883535 1267389585 -44358635475 1729986783525 -74389431691575
AltDiagRow1T(n + 1, n)A0002901 -4 9 -16 25 -36 49 -64 81 -100 121 -144 169 -196 225 -256 289 -324 361 -400 441 -484 529 -576 625
AltDiagRow2T(n + 2, n)A0241963 -23 86 -230 505 -973 1708 -2796 4335 -6435 9218 -12818 17381 -23065 30040 -38488 48603 -60591
AltDiagRow3T(n + 3, n)A02419715 -176 950 -3480 10045 -24640 53676 -106800 197835 -345840 576290 -922376 1426425 -2141440 3132760
AltDiagCol1T(n + 1, 1)A004041-1 -4 -23 -176 -1689 -19524 -264207 -4098240 -71697105 -1396704420 -29985521895 -703416314160
AltDiagCol2T(n + 2, 2)A0283391 9 86 950 12139 177331 2924172 53809164 1094071221 24372200061 590546123298 15467069396610
AltDiagCol3T(n + 3, 3)A028340-1 -16 -230 -3480 -57379 -1038016 -20570444 -444647600 -10431670821 -264300628944 -7198061846898
AltPolysee docsmissing1 1 1 3 0 1 15 0 -1 1 105 0 -1 -2 1 945 0 -3 0 -3 1 10395 0 -15 0 3 -4 1 135135 0 -105 0 3 8 -5 1
AltPolyRow1 k=0..1 T(1, k) n^kA0000271 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25 -26
AltPolyRow2 k=0..2 T(2, k) n^kA0055633 0 -1 0 3 8 15 24 35 48 63 80 99 120 143 168 195 224 255 288 323 360 399 440 483 528 575 624 675
AltPolyRow3 k=0..3 T(3, k) n^kmissing15 0 -3 0 3 0 -15 -48 -105 -192 -315 -480 -693 -960 -1287 -1680 -2145 -2688 -3315 -4032 -4845 -5760
AltPolyCol2 k=0..n T(n, k) 2^kA0011471 -1 -1 -3 -15 -105 -945 -10395 -135135 -2027025 -34459425 -654729075 -13749310575 -316234143225
AltPolyCol3 k=0..n T(n, k) 3^kA1307061 -2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
AltPolyDiag k=0..n T(n, k) n^kA1771451 0 -1 0 9 0 -225 0 11025 0 -893025 0 108056025 0 -18261468225 0 4108830350625 0 -1187451971330625
RevTriangleT(n, k), 0 ≤ k ≤ nA1096921 1 1 1 4 3 1 9 23 15 1 16 86 176 105 1 25 230 950 1689 945 1 36 505 3480 12139 19524 10395 1 49
RevInvRev(T(n, n - k))-1, 0 ≤ k ≤ nA0397551 -1 1 1 -4 1 -1 13 -9 1 1 -40 58 -16 1 -1 121 -330 170 -25 1 1 -364 1771 -1520 395 -36 1 -1 1093
RevAccsee docsmissing1 1 2 1 5 8 1 10 33 48 1 17 103 279 384 1 26 256 1206 2895 3840 1 37 542 4022 16161 35685 46080 1
RevAccRevsee docsmissing1 1 2 3 7 8 15 38 47 48 105 281 367 383 384 945 2634 3584 3814 3839 3840 10395 29919 42058 45538
RevAntiDiagsee docsmissing1 1 1 1 1 4 1 9 3 1 16 23 1 25 86 15 1 36 230 176 1 49 505 950 105 1 64 973 3480 1689 1 81 1708
RevDiffx1T(n, k) (k+1)missing1 1 2 1 8 9 1 18 69 60 1 32 258 704 525 1 50 690 3800 8445 5670 1 72 1515 13920 60695 117144 72765
RevRowSum k=0..n T(n, k)A0001651 2 8 48 384 3840 46080 645120 10321920 185794560 3715891200 81749606400 1961990553600
RevEvenSum k=0..n T(n, k) even(k)A0028661 1 4 24 192 1920 23040 322560 5160960 92897280 1857945600 40874803200 980995276800 25505877196800
RevOddSum k=0..n T(n, k) odd(k)A0028660 1 4 24 192 1920 23040 322560 5160960 92897280 1857945600 40874803200 980995276800 25505877196800
RevAltSum k=0..n T(n, k) (-1)^kA0000071 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RevAbsSum k=0..n | T(n, k) |A0001651 2 8 48 384 3840 46080 645120 10321920 185794560 3715891200 81749606400 1961990553600
RevDiagSum k=0..n // 2 T(n - k, k)A2021531 1 2 5 13 40 127 443 1610 6207 24919 104440 453913 2042537 9488242 45403797 223433077 1128619968
RevAccSum k=0..n j=0..k T(n, j)missing1 3 14 92 784 8224 102528 1481472 24348672 448598016 9157754880 205186498560 5006225571840
RevAccRevSum k=0..n j=0..k T(n, n - j)missing1 3 18 148 1520 18656 266112 4324608 78870528 1595142144 35432939520 857558384640 22461642178560
RevRowLcmLcm k=0..n | T(n, k) | > 1missing1 1 12 1035 794640 2324992950 4810656157072920 182911242997871793405 409032268138980471585600
RevRowGcdGcd k=0..n | T(n, k) | > 1A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
RevRowMaxMax k=0..n | T(n, k) |A0040411 1 4 23 176 1689 19524 264207 4098240 71697105 1396704420 29985521895 703416314160 17901641997225
RevColMiddleT(n, n // 2)missing1 1 4 9 86 230 3480 10045 208054 626934 16486680 51069018 1628301884 5141534684 192666441968
RevCentralET(2 n, n)A2933181 4 86 3480 208054 16486680 1628301884 192666441968 26569595376038 4184718381424152
RevCentralOT(2 n + 1, n)missing1 9 230 10045 626934 51069018 5141534684 617014151325 86014818744998 13663776163658478
RevColLeftT(n, 0)A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
RevColRightT(n, n)A0011471 1 3 15 105 945 10395 135135 2027025 34459425 654729075 13749310575 316234143225 7905853580625
RevBinConv k=0..n C(n, k) T(n, k)missing1 2 12 112 1390 21316 387016 8089152 190810614 5004826108 144299948936 4531481715168
RevInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kmissing1 0 -4 -28 -146 -176 13096 332856 6220278 100254944 1315515816 7548862936 -376130570804
RevTransNat0 k=0..n T(n, k) kA1971300 1 10 100 1136 14816 220032 3679488 68548608 1409347584 31717048320 775808778240 20499651624960
RevTransNat1 k=0..n T(n, k) (k + 1)missing1 3 18 148 1520 18656 266112 4324608 78870528 1595142144 35432939520 857558384640 22461642178560
RevTransSqrs k=0..n T(n, k) k^2missing0 1 16 236 3624 60144 1089920 21578752 465321472 10881911808 274723540992 7454067646464
RevPosHalf k=0..n 2^n T(n, k) (1/2)^kA0011471 3 15 105 945 10395 135135 2027025 34459425 654729075 13749310575 316234143225 7905853580625
RevNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kA0011471 -1 -1 -3 -15 -105 -945 -10395 -135135 -2027025 -34459425 -654729075 -13749310575 -316234143225
RevDiagRow1T(n + 1, n)A0040411 4 23 176 1689 19524 264207 4098240 71697105 1396704420 29985521895 703416314160 17901641997225
RevDiagRow2T(n + 2, n)A0283391 9 86 950 12139 177331 2924172 53809164 1094071221 24372200061 590546123298 15467069396610
RevDiagRow3T(n + 3, n)A0283401 16 230 3480 57379 1038016 20570444 444647600 10431670821 264300628944 7198061846898
RevDiagCol1T(n + 1, 1)A0002901 4 9 16 25 36 49 64 81 100 121 144 169 196 225 256 289 324 361 400 441 484 529 576 625 676 729 784
RevDiagCol2T(n + 2, 2)A0241963 23 86 230 505 973 1708 2796 4335 6435 9218 12818 17381 23065 30040 38488 48603 60591 74670 91070
RevDiagCol3T(n + 3, 3)A02419715 176 950 3480 10045 24640 53676 106800 197835 345840 576290 922376 1426425 2141440 3132760
RevPolysee docsmissing1 1 1 1 2 1 1 8 3 1 1 48 21 4 1 1 384 231 40 5 1 1 3840 3465 640 65 6 1 1 46080 65835 14080 1365 96
RevPolyRow1 k=0..1 T(1, k) n^kA0000271 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
RevPolyRow2 k=0..2 T(2, k) n^kA0005671 8 21 40 65 96 133 176 225 280 341 408 481 560 645 736 833 936 1045 1160 1281 1408 1541 1680 1825
RevPolyRow3 k=0..3 T(3, k) n^kmissing1 48 231 640 1365 2496 4123 6336 9225 12880 17391 22848 29341 36960 45795 55936 67473 80496 95095
RevPolyCol2 k=0..n T(n, k) 2^kA0085451 3 21 231 3465 65835 1514205 40883535 1267389585 44358635475 1729986783525 74389431691575
RevPolyCol3 k=0..n T(n, k) 3^kA0493081 4 40 640 14080 394240 13404160 536166400 24663654400 1282510028800 74385581670400
RevPolyDiag k=0..n T(n, k) n^kmissing1 2 21 640 39585 4133376 653309965 145494835200 43403901242625 16705186398208000
InvTriangleT(n, k), 0 ≤ k ≤ nA0397551 -1 1 1 -4 1 -1 13 -9 1 1 -40 58 -16 1 -1 121 -330 170 -25 1 1 -364 1771 -1520 395 -36 1 -1 1093
InvRevT(n, n - k), 0 ≤ k ≤ nA0397561 1 -1 1 -4 1 1 -9 13 -1 1 -16 58 -40 1 1 -25 170 -330 121 -1 1 -36 395 -1520 1771 -364 1 1 -49 791
InvRevInvT-1(n, n - k), 0 ≤ k ≤ nA1096921 1 1 1 4 3 1 9 23 15 1 16 86 176 105 1 25 230 950 1689 945 1 36 505 3480 12139 19524 10395 1 49
InvInvRev(T(n, n - k))-1, 0 ≤ k ≤ nmissing1 -1 1 -5 4 1 55 -43 -13 1 2473 -1936 -578 40 1 -280259 219411 65478 -4510 -121 1 -106308421
InvAccsee docsmissing1 -1 0 1 -3 -2 -1 12 3 4 1 -39 19 3 4 -1 120 -210 -40 -65 -64 1 -363 1408 -112 283 247 248 -1 1092
InvAccRevsee docsmissing1 1 0 1 -3 -2 1 -8 5 4 1 -15 43 3 4 1 -24 146 -184 -63 -64 1 -35 360 -1160 611 247 248 1 -48 743
InvAntiDiagsee docsmissing1 -1 1 1 -1 -4 1 13 1 -1 -40 -9 1 121 58 1 -1 -364 -330 -16 1 1093 1771 170 1 -1 -3280 -9219 -1520
InvDiffx1T(n, k) (k+1)missing1 -1 2 1 -8 3 -1 26 -27 4 1 -80 174 -64 5 -1 242 -990 680 -125 6 1 -728 5313 -6080 1975 -216 7 -1
InvRowSum k=0..n T(n, k)A3341901 0 -2 4 4 -64 248 -48 -6512 51200 -171296 -830400 17870400 -144684032 441316224 5976726784
InvEvenSum k=0..n T(n, k) even(k)missing1 -1 2 -10 60 -356 2168 -14344 106704 -890512 8129440 -79192224 812374720 -8747469888 98997480832
InvOddSum k=0..n T(n, k) odd(k)missing0 1 -4 14 -56 292 -1920 14296 -113216 941712 -8300736 78361824 -794504320 8602785856 -98556164608
InvAltSum k=0..n T(n, k) (-1)^kA0074051 -2 6 -24 116 -648 4088 -28640 219920 -1832224 16430176 -157554048 1606879040 -17350255744
InvAbsSum k=0..n | T(n, k) |A0074051 2 6 24 116 648 4088 28640 219920 1832224 16430176 157554048 1606879040 17350255744 197553645440
InvDiagSum k=0..n // 2 T(n - k, k)missing1 -1 2 -5 15 -50 181 -711 3036 -14045 69837 -369952 2073253 -12235885 75836242 -492557937
InvAccSum k=0..n j=0..k T(n, j)missing1 -1 -4 18 -12 -260 1712 -3640 -33008 426352 -2299456 -1029600 159973184 -1804918336 9608106752
InvAccRevSum k=0..n j=0..k T(n, n - j)missing1 1 -4 2 36 -188 272 3208 -32112 136848 243904 -9765600 90212416 -365342144 -2547047168 65916404864
InvRowLcmLcm k=0..n | T(n, k) | > 1missing1 1 4 117 2320 308550 24881416560 3415119838107075 10927777609869120 8184449743464324553963740
InvRowGcdGcd k=0..n | T(n, k) | > 1A2973821 1 4 1 2 1 1 1 2 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
InvRowMaxMax k=0..n | T(n, k) |missing1 1 4 13 58 330 1771 12411 96096 719860 6289690 61885450 595122671 5929706783 70856013228
InvColMiddleT(n, n // 2)missing1 -1 -4 13 58 -330 -1520 12411 58086 -618870 -2924712 38461522 182959876 -2863440580 -13685763520
InvCentralET(2 n, n)missing1 -4 58 -1520 58086 -2924712 182959876 -13685763520 1191663940038 -118406147270840
InvCentralOT(2 n + 1, n)A348087-1 13 -330 12411 -618870 38461522 -2863440580 248440887123 -24616763946918 2742625188929990
InvColRightT(n, n)A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
InvBinConv k=0..n C(n, k) T(n, k)missing1 0 -6 12 126 -1120 -308 87080 -752314 -2251680 128688828 -1301351480 -5093196628 349093094272
InvInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kmissing1 2 10 68 574 5732 65292 830216 11606854 176361980 2886472156 50523676216 940246612268
InvTransNat0 k=0..n T(n, k) kmissing0 1 -2 -2 32 -124 24 3256 -25600 85648 415200 -8935200 72342016 -220658112 -2988363392 59939678080
InvTransNat1 k=0..n T(n, k) (k + 1)missing1 1 -4 2 36 -188 272 3208 -32112 136848 243904 -9765600 90212416 -365342144 -2547047168 65916404864
InvTransSqrs k=0..n T(n, k) k^2missing0 1 0 -14 64 -44 -1504 12776 -46080 -182000 4381952 -36586208 119264256 1421839680 -29749180928
InvPosHalf k=0..n 2^n T(n, k) (1/2)^kmissing1 -1 -3 27 -103 -105 6101 -64141 350129 1270447 -63509459 965614155 -8377825207 -7124350649
InvNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kA3551651 3 13 79 601 5339 53861 607527 7560625 102637235 1506225085 23726435583 398852249097 7120170905995
InvDiagRow1T(n + 1, n)A000290-1 -4 -9 -16 -25 -36 -49 -64 -81 -100 -121 -144 -169 -196 -225 -256 -289 -324 -361 -400 -441 -484
InvDiagRow2T(n + 2, n)A1032201 13 58 170 395 791 1428 2388 3765 5665 8206 11518 15743 21035 27560 35496 45033 56373 69730 85330
InvDiagRow3T(n + 3, n)missing-1 -40 -330 -1520 -5075 -13776 -32340 -68160 -132165 -239800 -412126 -677040 -1070615 -1638560
InvDiagCol1T(n + 1, 1)A0034621 -4 13 -40 121 -364 1093 -3280 9841 -29524 88573 -265720 797161 -2391484 7174453 -21523360
InvDiagCol2T(n + 2, 2)A0162091 -9 58 -330 1771 -9219 47188 -239220 1205941 -6059229 30384718 -152189310 761743711 -3811110039
InvDiagCol3T(n + 3, 3)A0214241 -16 170 -1520 12411 -96096 719860 -5278240 38153621 -273134576 1942326750 -13748476560
InvPolysee docsmissing1 -1 1 1 0 1 -1 -2 1 1 1 4 -3 2 1 -1 4 -3 -2 3 1 1 -64 41 -16 1 4 1 -1 248 -87 52 -29 6 5 1 1 -48
InvPolyRow1 k=0..1 T(1, k) n^kA000027-1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
InvPolyRow2 k=0..2 T(2, k) n^kA1239681 -2 -3 -2 1 6 13 22 33 46 61 78 97 118 141 166 193 222 253 286 321 358 397 438 481 526 573 622 673
InvPolyRow3 k=0..3 T(3, k) n^kmissing-1 4 -3 -16 -29 -36 -31 -8 39 116 229 384 587 844 1161 1544 1999 2532 3149 3856 4659 5564 6577 7704
InvPolyCol2 k=0..n T(n, k) 2^kA3086451 1 -3 -3 41 -87 -571 5701 -14575 -156655 2094925 -9148851 -63364423 1474212665 -11494853995
InvPolyCol3 k=0..n T(n, k) 3^kmissing1 2 -2 -16 52 200 -2216 3008 85264 -742624 39904 57578240 -559969472 54927488 63964454272
InvPolyDiag k=0..n T(n, k) n^kmissing1 0 -3 -16 1 1104 11893 -19104 -2797951 -41382784 209758861 22229683200 390747598657 -4304791023872
Inv:RevTriangleT(n, k), 0 ≤ k ≤ nA0397561 1 -1 1 -4 1 1 -9 13 -1 1 -16 58 -40 1 1 -25 170 -330 121 -1 1 -36 395 -1520 1771 -364 1 1 -49 791
Inv:RevRevT(n, n - k), 0 ≤ k ≤ nA0397551 -1 1 1 -4 1 -1 13 -9 1 1 -40 58 -16 1 -1 121 -330 170 -25 1 1 -364 1771 -1520 395 -36 1 -1 1093
Inv:RevInvT-1(n, k), 0 ≤ k ≤ nmissing1 -1 1 -5 4 1 55 -43 -13 1 2473 -1936 -578 40 1 -280259 219411 65478 -4510 -121 1 -106308421
Inv:RevRevInvT-1(n, n - k), 0 ≤ k ≤ nmissing1 1 -1 1 4 -5 1 -13 -43 55 1 40 -578 -1936 2473 1 -121 -4510 65478 219411 -280259 1 364 -45815
Inv:RevInvRev(T(n, n - k))-1, 0 ≤ k ≤ nA0283381 1 1 3 4 1 15 23 9 1 105 176 86 16 1 945 1689 950 230 25 1 10395 19524 12139 3480 505 36 1 135135
Inv:RevAccsee docsmissing1 1 0 1 -3 -2 1 -8 5 4 1 -15 43 3 4 1 -24 146 -184 -63 -64 1 -35 360 -1160 611 247 248 1 -48 743
Inv:RevAccRevsee docsmissing1 -1 0 1 -3 -2 -1 12 3 4 1 -39 19 3 4 -1 120 -210 -40 -65 -64 1 -363 1408 -112 283 247 248 -1 1092
Inv:RevAntiDiagsee docsmissing1 1 1 -1 1 -4 1 -9 1 1 -16 13 1 -25 58 -1 1 -36 170 -40 1 -49 395 -330 1 1 -64 791 -1520 121 1 -81
Inv:RevDiffx1T(n, k) (k+1)missing1 1 -2 1 -8 3 1 -18 39 -4 1 -32 174 -160 5 1 -50 510 -1320 605 -6 1 -72 1185 -6080 8855 -2184 7 1
Inv:RevRowSum k=0..n T(n, k)A3341901 0 -2 4 4 -64 248 -48 -6512 51200 -171296 -830400 17870400 -144684032 441316224 5976726784
Inv:RevEvenSum k=0..n T(n, k) even(k)missing1 1 2 14 60 292 2168 14296 106704 941712 8129440 78361824 812374720 8602785856 98997480832
Inv:RevOddSum k=0..n T(n, k) odd(k)missing0 -1 -4 -10 -56 -356 -1920 -14344 -113216 -890512 -8300736 -79192224 -794504320 -8747469888
Inv:RevAltSum k=0..n T(n, k) (-1)^kA0074051 2 6 24 116 648 4088 28640 219920 1832224 16430176 157554048 1606879040 17350255744 197553645440
Inv:RevAbsSum k=0..n | T(n, k) |A0074051 2 6 24 116 648 4088 28640 219920 1832224 16430176 157554048 1606879040 17350255744 197553645440
Inv:RevDiagSum k=0..n // 2 T(n - k, k)missing1 1 0 -3 -7 -2 33 95 18 -671 -1957 560 20173 51981 -65768 -784167 -1562147 5090422 36158029
Inv:RevAccSum k=0..n j=0..k T(n, j)missing1 1 -4 2 36 -188 272 3208 -32112 136848 243904 -9765600 90212416 -365342144 -2547047168 65916404864
Inv:RevAccRevSum k=0..n j=0..k T(n, n - j)missing1 -1 -4 18 -12 -260 1712 -3640 -33008 426352 -2299456 -1029600 159973184 -1804918336 9608106752
Inv:RevRowLcmLcm k=0..n | T(n, k) | > 1missing1 1 4 117 2320 308550 24881416560 3415119838107075 10927777609869120 8184449743464324553963740
Inv:RevRowGcdGcd k=0..n | T(n, k) | > 1A2973821 1 4 1 2 1 1 1 2 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Inv:RevRowMaxMax k=0..n | T(n, k) |missing1 1 4 13 58 330 1771 12411 96096 719860 6289690 61885450 595122671 5929706783 70856013228
Inv:RevColMiddleT(n, n // 2)missing1 1 -4 -9 58 170 -1520 -5075 58086 209622 -2924712 -11115258 182959876 721488196 -13685763520
Inv:RevCentralET(2 n, n)missing1 -4 58 -1520 58086 -2924712 182959876 -13685763520 1191663940038 -118406147270840
Inv:RevCentralOT(2 n + 1, n)missing1 -9 170 -5075 209622 -11115258 721488196 -55483708995 4936283332838 -498999482959406
Inv:RevColLeftT(n, 0)A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Inv:RevBinConv k=0..n C(n, k) T(n, k)missing1 0 -6 12 126 -1120 -308 87080 -752314 -2251680 128688828 -1301351480 -5093196628 349093094272
Inv:RevInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kmissing1 -2 10 -68 574 -5732 65292 -830216 11606854 -176361980 2886472156 -50523676216 940246612268
Inv:RevTransNat0 k=0..n T(n, k) kmissing0 -1 -2 14 -16 -196 1464 -3592 -26496 375152 -2128160 -199200 142102784 -1660234304 9166790528
Inv:RevTransNat1 k=0..n T(n, k) (k + 1)missing1 -1 -4 18 -12 -260 1712 -3640 -33008 426352 -2299456 -1029600 159973184 -1804918336 9608106752
Inv:RevTransSqrs k=0..n T(n, k) k^2missing0 -1 0 34 -128 -404 7136 -35160 -53248 2423536 -21051648 59509792 956393472 -17292650816
Inv:RevPosHalf k=0..n 2^n T(n, k) (1/2)^kA3086451 1 -3 -3 41 -87 -571 5701 -14575 -156655 2094925 -9148851 -63364423 1474212665 -11494853995
Inv:RevNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kA1263901 -3 13 -71 457 -3355 27509 -248127 2434129 -25741939 291397789 -3510328695 44782460313
Inv:RevDiagRow1T(n + 1, n)A0034621 -4 13 -40 121 -364 1093 -3280 9841 -29524 88573 -265720 797161 -2391484 7174453 -21523360
Inv:RevDiagRow2T(n + 2, n)A0162091 -9 58 -330 1771 -9219 47188 -239220 1205941 -6059229 30384718 -152189310 761743711 -3811110039
Inv:RevDiagRow3T(n + 3, n)A0214241 -16 170 -1520 12411 -96096 719860 -5278240 38153621 -273134576 1942326750 -13748476560
Inv:RevDiagCol1T(n + 1, 1)A000290-1 -4 -9 -16 -25 -36 -49 -64 -81 -100 -121 -144 -169 -196 -225 -256 -289 -324 -361 -400 -441 -484
Inv:RevDiagCol2T(n + 2, 2)A1032201 13 58 170 395 791 1428 2388 3765 5665 8206 11518 15743 21035 27560 35496 45033 56373 69730 85330
Inv:RevDiagCol3T(n + 3, 3)missing-1 -40 -330 -1520 -5075 -13776 -32340 -68160 -132165 -239800 -412126 -677040 -1070615 -1638560
Inv:RevPolysee docsmissing1 1 1 1 0 1 1 -2 -1 1 1 4 -3 -2 1 1 4 27 -2 -3 1 1 -64 -103 64 1 -4 1 1 248 -105 -524 109 6 -5 1 1
Inv:RevPolyRow1 k=0..1 T(1, k) n^kA0000271 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25 -26
Inv:RevPolyRow2 k=0..2 T(2, k) n^kA1239681 -2 -3 -2 1 6 13 22 33 46 61 78 97 118 141 166 193 222 253 286 321 358 397 438 481 526 573 622 673
Inv:RevPolyRow3 k=0..3 T(3, k) n^kmissing1 4 27 64 109 156 199 232 249 244 211 144 37 -116 -321 -584 -911 -1308 -1781 -2336 -2979 -3716
Inv:RevPolyCol2 k=0..n T(n, k) 2^kmissing1 -1 -3 27 -103 -105 6101 -64141 350129 1270447 -63509459 965614155 -8377825207 -7124350649
Inv:RevPolyCol3 k=0..n T(n, k) 3^kmissing1 -2 -2 64 -524 2104 18136 -570368 8227600 -68107040 -288688160 26416365568 -660041056448
Inv:RevPolyDiag k=0..n T(n, k) n^kmissing1 0 -3 64 -1439 35376 -802907 919584 2590253825 -373575072896 44301151435501 -4951308848044800
 << TableSourceSimilarsIndex >> 

Note: The A-numbers are based on a finite number of numerical comparisons. They ignore the sign and the OEIS-offset. Sometimes they differ in the first few values. In such cases, we consider our version to be the better one because it has a common formula as a root. Since the offset of all triangles is 0 also the offset of all sequences is 0.