STIRLINGCYCLE2[0] 1
[1] 0, 0
[2] 0, 1, 0
[3] 0, 2, 0, 0
[4] 0, 6, 3, 0, 0
[5] 0, 24, 20, 0, 0, 0

      OEIS Similars: A358622, A008306, A106828

↕ Type↕ Trait↕ Anum↕ Sequence
StdTriangleT(n, k), 0 ≤ k ≤ nA3586221 0 0 0 1 0 0 2 0 0 0 6 3 0 0 0 24 20 0 0 0 0 120 130 15 0 0 0 0 720 924 210 0 0 0 0 0 5040 7308
StdRevT(n, n - k), 0 ≤ k ≤ nmissing1 0 0 0 1 0 0 0 2 0 0 0 3 6 0 0 0 0 20 24 0 0 0 0 15 130 120 0 0 0 0 0 210 924 720 0 0 0 0 0 105
StdAccsee docsmissing1 0 0 0 1 1 0 2 2 2 0 6 9 9 9 0 24 44 44 44 44 0 120 250 265 265 265 265 0 720 1644 1854 1854 1854
StdAccRevsee docsmissing1 0 0 0 1 1 0 0 2 2 0 0 3 9 9 0 0 0 20 44 44 0 0 0 15 145 265 265 0 0 0 0 210 1134 1854 1854 0 0 0
StdAntiDiagsee docsmissing1 0 0 0 0 1 0 2 0 0 6 0 0 24 3 0 0 120 20 0 0 720 130 0 0 0 5040 924 15 0 0 40320 7308 210 0 0 0
StdDiffx1T(n, k) (k+1)missing1 0 0 0 2 0 0 4 0 0 0 12 9 0 0 0 48 60 0 0 0 0 240 390 60 0 0 0 0 1440 2772 840 0 0 0 0 0 10080
StdRowSum k=0..n T(n, k)A0001661 0 1 2 9 44 265 1854 14833 133496 1334961 14684570 176214841 2290792932 32071101049 481066515734
StdEvenSum k=0..n T(n, k) even(k)A2167781 0 0 0 3 20 130 924 7413 66744 667476 7342280 88107415 1145396460 16035550518 240533257860
StdOddSum k=0..n T(n, k) odd(k)A2167790 0 1 2 6 24 135 930 7420 66752 667485 7342290 88107426 1145396472 16035550531 240533257874
StdAltSum k=0..n T(n, k) (-1)^kA0000271 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25 -26
StdAbsSum k=0..n | T(n, k) |A0001661 0 1 2 9 44 265 1854 14833 133496 1334961 14684570 176214841 2290792932 32071101049 481066515734
StdDiagSum k=0..n // 2 T(n - k, k)missing1 0 0 1 2 6 27 140 850 5979 47838 429484 4278713 46859940 559722780 7242575921 100933697302
StdAccSum k=0..n j=0..k T(n, j)missing1 0 2 6 33 200 1430 11634 106281 1076816 11982834 145281070 1906117785 26907579192 406649161750
StdAccRevSum k=0..n j=0..k T(n, n - j)missing1 0 2 4 21 108 690 5052 42049 391640 4036698 45618340 560889989 7454314788 106488455034
StdRowLcmLcm k=0..n | T(n, k) | > 1missing1 1 1 2 6 120 1560 55440 2484720 530490240 1472289436800 3558122838547200 2088986264872103520000
StdRowGcdGcd k=0..n | T(n, k) | > 1A0000271 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
StdRowMaxMax k=0..n | T(n, k) |missing1 0 1 2 6 24 130 924 7308 64224 623376 6636960 76998240 967524480 13096736640 190060335360
StdColMiddleT(n, n // 2)missing1 0 1 2 3 20 15 210 105 2520 945 34650 10395 540540 135135 9459450 2027025 183783600 34459425
StdCentralET(2 n, n)A0011471 1 3 15 105 945 10395 135135 2027025 34459425 654729075 13749310575 316234143225 7905853580625
StdCentralOT(2 n + 1, n)A0009060 2 20 210 2520 34650 540540 9459450 183783600 3928374450 91662070500 2319050383650 63246828645000
StdColLeftT(n, 0)A0000071 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
StdColRightT(n, n)A0000071 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
StdBinConv k=0..n C(n, k) T(n, k)missing1 0 2 6 42 320 2970 31794 385574 5212752 77619060 1260722100 22161819240 418880108712 8465984110402
StdInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kmissing1 0 -2 6 -6 -80 930 -7014 38374 -46416 -2993220 65145300 -991049400 12507197352 -125646425086
StdTransNat0 k=0..n T(n, k) kA1629730 0 1 2 12 64 425 3198 27216 258144 2701737 30933770 384675148 5163521856 74417353985 1146203362822
StdTransNat1 k=0..n T(n, k) (k + 1)missing1 0 2 4 21 108 690 5052 42049 391640 4036698 45618340 560889989 7454314788 106488455034
StdTransSqrs k=0..n T(n, k) k^2missing0 0 1 2 18 104 775 6306 57372 575424 6318549 75437570 973440094 13505157288 200514112747
StdPosHalf k=0..n 2^n T(n, k) (1/2)^kA0538711 0 2 8 60 544 6040 79008 1190672 20314880 387099936 8148296320 187778717632 4702248334848
StdNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kA0551421 0 -2 8 -36 224 -1880 19872 -251888 3712256 -62286624 1171487360 -24402416192 557542291968
StdDiagRow1T(n + 1, n)A0635240 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
StdDiagRow2T(n + 2, n)missing0 2 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
StdDiagRow3T(n + 3, n)missing0 6 20 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
StdDiagCol1T(n + 1, 1)A0001420 1 2 6 24 120 720 5040 40320 362880 3628800 39916800 479001600 6227020800 87178291200
StdDiagCol2T(n + 2, 2)A0002760 0 3 20 130 924 7308 64224 623376 6636960 76998240 967524480 13096736640 190060335360
StdDiagCol3T(n + 3, 3)A0004830 0 0 15 210 2380 26432 303660 3678840 47324376 647536032 9418945536 145410580224 2377609752960
StdPolysee docsmissing1 0 1 0 0 1 0 1 0 1 0 2 2 0 1 0 9 4 3 0 1 0 44 24 6 4 0 1 0 265 128 45 8 5 0 1 0 1854 880 252 72 10
StdPolyRow2 k=0..2 T(2, k) n^kA0000270 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
StdPolyRow3 k=0..3 T(3, k) n^kA0058430 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68
StdPolyCol2 k=0..n T(n, k) 2^kA0879811 0 2 4 24 128 880 6816 60032 589312 6384384 75630080 972387328 13483769856 200571078656
StdPolyCol3 k=0..n T(n, k) 3^kA1377751 0 3 6 45 252 1935 16146 153657 1616760 18699579 235498590 3207570597 46968796404 735689606535
StdPolyDiag k=0..n T(n, k) n^kA2951821 0 2 6 72 620 8640 122346 2156672 41367672 905126400 21646532270 570077595648 16268377195044
AltTriangleT(n, k), 0 ≤ k ≤ nA3586221 0 0 0 -1 0 0 -2 0 0 0 -6 3 0 0 0 -24 20 0 0 0 0 -120 130 -15 0 0 0 0 -720 924 -210 0 0 0 0 0
AltRevT(n, n - k), 0 ≤ k ≤ nmissing1 0 0 0 -1 0 0 0 -2 0 0 0 3 -6 0 0 0 0 20 -24 0 0 0 0 -15 130 -120 0 0 0 0 0 -210 924 -720 0 0 0 0
AltAccsee docsmissing1 0 0 0 -1 -1 0 -2 -2 -2 0 -6 -3 -3 -3 0 -24 -4 -4 -4 -4 0 -120 10 -5 -5 -5 -5 0 -720 204 -6 -6 -6
AltAccRevsee docsmissing1 0 0 0 -1 -1 0 0 -2 -2 0 0 3 -3 -3 0 0 0 20 -4 -4 0 0 0 -15 115 -5 -5 0 0 0 0 -210 714 -6 -6 0 0 0
AltAntiDiagsee docsmissing1 0 0 0 0 -1 0 -2 0 0 -6 0 0 -24 3 0 0 -120 20 0 0 -720 130 0 0 0 -5040 924 -15 0 0 -40320 7308
AltDiffx1T(n, k) (k+1)missing1 0 0 0 -2 0 0 -4 0 0 0 -12 9 0 0 0 -48 60 0 0 0 0 -240 390 -60 0 0 0 0 -1440 2772 -840 0 0 0 0 0
AltRowSum k=0..n T(n, k)A0000271 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25 -26
AltEvenSum k=0..n T(n, k) even(k)A2167781 0 0 0 3 20 130 924 7413 66744 667476 7342280 88107415 1145396460 16035550518 240533257860
AltOddSum k=0..n T(n, k) odd(k)A2167790 0 -1 -2 -6 -24 -135 -930 -7420 -66752 -667485 -7342290 -88107426 -1145396472 -16035550531
AltAltSum k=0..n T(n, k) (-1)^kA0001661 0 1 2 9 44 265 1854 14833 133496 1334961 14684570 176214841 2290792932 32071101049 481066515734
AltAbsSum k=0..n | T(n, k) |A0001661 0 1 2 9 44 265 1854 14833 133496 1334961 14684570 176214841 2290792932 32071101049 481066515734
AltDiagSum k=0..n // 2 T(n - k, k)missing1 0 0 -1 -2 -6 -21 -100 -590 -4131 -33222 -301036 -3031751 -33580980 -405638100 -5306116321
AltAccSum k=0..n j=0..k T(n, j)missing1 0 -2 -6 -15 -40 -130 -546 -2919 -18992 -144666 -1256750 -12232935 -131714232 -1553256874
AltAccRevSum k=0..n j=0..k T(n, n - j)missing1 0 -2 -4 -3 12 90 492 2849 18904 144558 1256620 12232781 131714052 1553256666 19901596764
AltRowLcmLcm k=0..n | T(n, k) | > 1missing1 1 1 2 6 120 1560 55440 2484720 530490240 1472289436800 3558122838547200 2088986264872103520000
AltRowGcdGcd k=0..n | T(n, k) | > 1A0000271 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
AltRowMaxMax k=0..n | T(n, k) |missing1 0 1 2 6 24 130 924 7308 64224 623376 6636960 76998240 967524480 13096736640 190060335360
AltColMiddleT(n, n // 2)missing1 0 -1 -2 3 20 -15 -210 105 2520 -945 -34650 10395 540540 -135135 -9459450 2027025 183783600
AltCentralET(2 n, n)A0011471 -1 3 -15 105 -945 10395 -135135 2027025 -34459425 654729075 -13749310575 316234143225
AltCentralOT(2 n + 1, n)A0009060 -2 20 -210 2520 -34650 540540 -9459450 183783600 -3928374450 91662070500 -2319050383650
AltColLeftT(n, 0)A0000071 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
AltColRightT(n, n)A0000071 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
AltBinConv k=0..n C(n, k) T(n, k)missing1 0 -2 -6 -6 80 930 7014 38374 46416 -2993220 -65145300 -991049400 -12507197352 -125646425086
AltInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kmissing1 0 2 -6 42 -320 2970 -31794 385574 -5212752 77619060 -1260722100 22161819240 -418880108712
AltTransNat0 k=0..n T(n, k) kmissing0 0 -1 -2 0 16 95 498 2856 18912 144567 1256630 12232792 131714064 1553256679 19901596778
AltTransNat1 k=0..n T(n, k) (k + 1)missing1 0 -2 -4 -3 12 90 492 2849 18904 144558 1256620 12232781 131714052 1553256666 19901596764
AltTransSqrs k=0..n T(n, k) k^2missing0 0 -1 -2 6 56 265 1086 4452 19008 79659 228350 -1544774 -51436488 -966644731 -16500909026
AltPosHalf k=0..n 2^n T(n, k) (1/2)^kA0551421 0 -2 -8 -36 -224 -1880 -19872 -251888 -3712256 -62286624 -1171487360 -24402416192 -557542291968
AltNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kA0538711 0 2 -8 60 -544 6040 -79008 1190672 -20314880 387099936 -8148296320 187778717632 -4702248334848
AltDiagRow1T(n + 1, n)A0635240 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
AltDiagRow2T(n + 2, n)missing0 -2 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
AltDiagRow3T(n + 3, n)missing0 -6 20 -15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
AltDiagCol1T(n + 1, 1)A0001420 -1 -2 -6 -24 -120 -720 -5040 -40320 -362880 -3628800 -39916800 -479001600 -6227020800
AltDiagCol2T(n + 2, 2)A0002760 0 3 20 130 924 7308 64224 623376 6636960 76998240 967524480 13096736640 190060335360
AltDiagCol3T(n + 3, 3)A0004830 0 0 -15 -210 -2380 -26432 -303660 -3678840 -47324376 -647536032 -9418945536 -145410580224
AltPolysee docsmissing1 0 1 0 0 1 0 -1 0 1 0 -2 -2 0 1 0 -3 -4 -3 0 1 0 -4 0 -6 -4 0 1 0 -5 32 9 -8 -5 0 1 0 -6 160 108
AltPolyRow2 k=0..2 T(2, k) n^kA0000270 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25 -26
AltPolyRow3 k=0..3 T(3, k) n^kA0058430 -2 -4 -6 -8 -10 -12 -14 -16 -18 -20 -22 -24 -26 -28 -30 -32 -34 -36 -38 -40 -42 -44 -46 -48 -50
AltPolyCol2 k=0..n T(n, k) 2^kmissing1 0 -2 -4 0 32 160 576 1792 5120 13824 35840 90112 221184 532480 1261568 2949120 6815744 15597568
AltPolyCol3 k=0..n T(n, k) 3^kmissing1 0 -3 -6 9 108 405 486 -5103 -52488 -334611 -1771470 -8444007 -37555164 -158900859 -647295138
AltPolyDiag k=0..n T(n, k) n^kA2774231 0 -2 -6 24 380 720 -31794 -361088 2104056 101548800 612792290 -25534891008 -593660731404
RevTriangleT(n, k), 0 ≤ k ≤ nmissing1 0 0 0 1 0 0 0 2 0 0 0 3 6 0 0 0 0 20 24 0 0 0 0 15 130 120 0 0 0 0 0 210 924 720 0 0 0 0 0 105
RevAccsee docsmissing1 0 0 0 1 1 0 0 2 2 0 0 3 9 9 0 0 0 20 44 44 0 0 0 15 145 265 265 0 0 0 0 210 1134 1854 1854 0 0 0
RevAccRevsee docsmissing1 0 0 0 1 1 0 2 2 2 0 6 9 9 9 0 24 44 44 44 44 0 120 250 265 265 265 265 0 720 1644 1854 1854 1854
RevAntiDiagsee docsmissing1 0 0 0 0 1 0 0 0 0 0 2 0 0 3 0 0 0 0 6 0 0 0 20 0 0 0 0 15 24 0 0 0 0 130 0 0 0 0 0 210 120 0 0 0
RevDiffx1T(n, k) (k+1)missing1 0 0 0 2 0 0 0 6 0 0 0 9 24 0 0 0 0 80 120 0 0 0 0 60 650 720 0 0 0 0 0 1050 5544 5040 0 0 0 0 0
RevRowSum k=0..n T(n, k)A0001661 0 1 2 9 44 265 1854 14833 133496 1334961 14684570 176214841 2290792932 32071101049 481066515734
RevEvenSum k=0..n T(n, k) even(k)A0032211 0 0 2 3 24 130 930 7413 66752 667476 7342290 88107415 1145396472 16035550518 240533257874
RevOddSum k=0..n T(n, k) odd(k)A0003870 0 1 0 6 20 135 924 7420 66744 667485 7342280 88107426 1145396460 16035550531 240533257860
RevAltSum k=0..n T(n, k) (-1)^kA0000271 0 -1 2 -3 4 -5 6 -7 8 -9 10 -11 12 -13 14 -15 16 -17 18 -19 20 -21 22 -23 24 -25 26 -27 28 -29 30
RevAbsSum k=0..n | T(n, k) |A0001661 0 1 2 9 44 265 1854 14833 133496 1334961 14684570 176214841 2290792932 32071101049 481066515734
RevDiagSum k=0..n // 2 T(n - k, k)missing1 0 0 1 0 2 3 6 20 39 130 330 1029 3100 9828 32417 108324 378630 1339091 4907970 18276280 69947151
RevAccSum k=0..n j=0..k T(n, j)missing1 0 2 4 21 108 690 5052 42049 391640 4036698 45618340 560889989 7454314788 106488455034
RevAccRevSum k=0..n j=0..k T(n, n - j)missing1 0 2 6 33 200 1430 11634 106281 1076816 11982834 145281070 1906117785 26907579192 406649161750
RevRowLcmLcm k=0..n | T(n, k) | > 1missing1 1 1 2 6 120 1560 55440 2484720 530490240 1472289436800 3558122838547200 2088986264872103520000
RevRowGcdGcd k=0..n | T(n, k) | > 1A0000271 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
RevRowMaxMax k=0..n | T(n, k) |missing1 0 1 2 6 24 130 924 7308 64224 623376 6636960 76998240 967524480 13096736640 190060335360
RevColMiddleT(n, n // 2)A1230231 0 1 0 3 0 15 0 105 0 945 0 10395 0 135135 0 2027025 0 34459425 0 654729075 0 13749310575 0
RevCentralET(2 n, n)A0011471 1 3 15 105 945 10395 135135 2027025 34459425 654729075 13749310575 316234143225 7905853580625
RevColLeftT(n, 0)A0000071 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RevColRightT(n, n)A0000071 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RevBinConv k=0..n C(n, k) T(n, k)missing1 0 2 6 42 320 2970 31794 385574 5212752 77619060 1260722100 22161819240 418880108712 8465984110402
RevInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kmissing1 0 -2 -6 -6 80 930 7014 38374 46416 -2993220 -65145300 -991049400 -12507197352 -125646425086
RevTransNat0 k=0..n T(n, k) kmissing0 0 1 4 24 156 1165 9780 91448 943320 10647873 130596500 1729902944 24616786260 374578060701
RevTransNat1 k=0..n T(n, k) (k + 1)missing1 0 2 6 33 200 1430 11634 106281 1076816 11982834 145281070 1906117785 26907579192 406649161750
RevTransSqrs k=0..n T(n, k) k^2missing0 0 1 8 66 564 5215 52380 571228 6742008 85779909 1171727600 17116173646 266397594540 4402764006771
RevPosHalf k=0..n 2^n T(n, k) (1/2)^kA0879811 0 2 4 24 128 880 6816 60032 589312 6384384 75630080 972387328 13483769856 200571078656
RevNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kmissing1 0 -2 -4 0 32 160 576 1792 5120 13824 35840 90112 221184 532480 1261568 2949120 6815744 15597568
RevDiagRow1T(n + 1, n)A0001420 1 2 6 24 120 720 5040 40320 362880 3628800 39916800 479001600 6227020800 87178291200
RevDiagRow2T(n + 2, n)A0002760 0 3 20 130 924 7308 64224 623376 6636960 76998240 967524480 13096736640 190060335360
RevDiagRow3T(n + 3, n)A0004830 0 0 15 210 2380 26432 303660 3678840 47324376 647536032 9418945536 145410580224 2377609752960
RevDiagCol1T(n + 1, 1)A0635240 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RevDiagCol2T(n + 2, 2)missing0 2 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RevDiagCol3T(n + 3, 3)missing0 6 20 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RevPolysee docsmissing1 0 1 0 0 1 0 1 0 1 0 2 2 0 1 0 9 8 3 0 1 0 44 60 18 4 0 1 0 265 544 189 32 5 0 1 0 1854 6040 2484
RevPolyRow2 k=0..2 T(2, k) n^kA0000270 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
RevPolyRow3 k=0..3 T(3, k) n^kA0011050 2 8 18 32 50 72 98 128 162 200 242 288 338 392 450 512 578 648 722 800 882 968 1058 1152 1250
RevPolyCol2 k=0..n T(n, k) 2^kA0538711 0 2 8 60 544 6040 79008 1190672 20314880 387099936 8148296320 187778717632 4702248334848
RevPolyCol3 k=0..n T(n, k) 3^kA0330301 0 3 18 189 2484 40095 766422 16936857 424878696 11929019931 370616958810 12624017298453
RevPolyDiag k=0..n T(n, k) n^kmissing1 0 2 18 432 17500 1104840 100741158 12563812352 2057021043768 428298394500000 110573729001184570
 << TableSourceSimilarsIndex >> 

Note: The A-numbers are based on a finite number of numerical comparisons. They ignore the sign and the OEIS-offset. Sometimes they differ in the first few values. In such cases, we consider our version to be the better one because it has a common formula as a root. Since the offset of all triangles is 0 also the offset of all sequences is 0.