OEIS Similars: A358622, A008306, A106828
↕ Type | ↕ Trait | ↕ Anum | ↕ Sequence |
---|---|---|---|
Std | TriangleT(n, k), 0 ≤ k ≤ n | A358622 | 1 0 0 0 1 0 0 2 0 0 0 6 3 0 0 0 24 20 0 0 0 0 120 130 15 0 0 0 0 720 924 210 0 0 0 0 0 5040 7308 |
Std | RevT(n, n - k), 0 ≤ k ≤ n | missing | 1 0 0 0 1 0 0 0 2 0 0 0 3 6 0 0 0 0 20 24 0 0 0 0 15 130 120 0 0 0 0 0 210 924 720 0 0 0 0 0 105 |
Std | Accsee docs | missing | 1 0 0 0 1 1 0 2 2 2 0 6 9 9 9 0 24 44 44 44 44 0 120 250 265 265 265 265 0 720 1644 1854 1854 1854 |
Std | AccRevsee docs | missing | 1 0 0 0 1 1 0 0 2 2 0 0 3 9 9 0 0 0 20 44 44 0 0 0 15 145 265 265 0 0 0 0 210 1134 1854 1854 0 0 0 |
Std | AntiDiagsee docs | missing | 1 0 0 0 0 1 0 2 0 0 6 0 0 24 3 0 0 120 20 0 0 720 130 0 0 0 5040 924 15 0 0 40320 7308 210 0 0 0 |
Std | Diffx1T(n, k) (k+1) | missing | 1 0 0 0 2 0 0 4 0 0 0 12 9 0 0 0 48 60 0 0 0 0 240 390 60 0 0 0 0 1440 2772 840 0 0 0 0 0 10080 |
Std | RowSum∑ k=0..n T(n, k) | A000166 | 1 0 1 2 9 44 265 1854 14833 133496 1334961 14684570 176214841 2290792932 32071101049 481066515734 |
Std | EvenSum∑ k=0..n T(n, k) even(k) | A216778 | 1 0 0 0 3 20 130 924 7413 66744 667476 7342280 88107415 1145396460 16035550518 240533257860 |
Std | OddSum∑ k=0..n T(n, k) odd(k) | A216779 | 0 0 1 2 6 24 135 930 7420 66752 667485 7342290 88107426 1145396472 16035550531 240533257874 |
Std | AltSum∑ k=0..n T(n, k) (-1)^k | A000027 | 1 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25 -26 |
Std | AbsSum∑ k=0..n | T(n, k) | | A000166 | 1 0 1 2 9 44 265 1854 14833 133496 1334961 14684570 176214841 2290792932 32071101049 481066515734 |
Std | DiagSum∑ k=0..n // 2 T(n - k, k) | missing | 1 0 0 1 2 6 27 140 850 5979 47838 429484 4278713 46859940 559722780 7242575921 100933697302 |
Std | AccSum∑ k=0..n ∑ j=0..k T(n, j) | missing | 1 0 2 6 33 200 1430 11634 106281 1076816 11982834 145281070 1906117785 26907579192 406649161750 |
Std | AccRevSum∑ k=0..n ∑ j=0..k T(n, n - j) | missing | 1 0 2 4 21 108 690 5052 42049 391640 4036698 45618340 560889989 7454314788 106488455034 |
Std | RowLcmLcm k=0..n | T(n, k) | > 1 | missing | 1 1 1 2 6 120 1560 55440 2484720 530490240 1472289436800 3558122838547200 2088986264872103520000 |
Std | RowGcdGcd k=0..n | T(n, k) | > 1 | A000027 | 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 |
Std | RowMaxMax k=0..n | T(n, k) | | missing | 1 0 1 2 6 24 130 924 7308 64224 623376 6636960 76998240 967524480 13096736640 190060335360 |
Std | ColMiddleT(n, n // 2) | missing | 1 0 1 2 3 20 15 210 105 2520 945 34650 10395 540540 135135 9459450 2027025 183783600 34459425 |
Std | CentralET(2 n, n) | A001147 | 1 1 3 15 105 945 10395 135135 2027025 34459425 654729075 13749310575 316234143225 7905853580625 |
Std | CentralOT(2 n + 1, n) | A000906 | 0 2 20 210 2520 34650 540540 9459450 183783600 3928374450 91662070500 2319050383650 63246828645000 |
Std | ColLeftT(n, 0) | A000007 | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Std | ColRightT(n, n) | A000007 | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Std | BinConv∑ k=0..n C(n, k) T(n, k) | missing | 1 0 2 6 42 320 2970 31794 385574 5212752 77619060 1260722100 22161819240 418880108712 8465984110402 |
Std | InvBinConv∑ k=0..n C(n, k) T(n, n - k) (-1)^k | missing | 1 0 -2 6 -6 -80 930 -7014 38374 -46416 -2993220 65145300 -991049400 12507197352 -125646425086 |
Std | TransNat0∑ k=0..n T(n, k) k | A162973 | 0 0 1 2 12 64 425 3198 27216 258144 2701737 30933770 384675148 5163521856 74417353985 1146203362822 |
Std | TransNat1∑ k=0..n T(n, k) (k + 1) | missing | 1 0 2 4 21 108 690 5052 42049 391640 4036698 45618340 560889989 7454314788 106488455034 |
Std | TransSqrs∑ k=0..n T(n, k) k^2 | missing | 0 0 1 2 18 104 775 6306 57372 575424 6318549 75437570 973440094 13505157288 200514112747 |
Std | PosHalf∑ k=0..n 2^n T(n, k) (1/2)^k | A053871 | 1 0 2 8 60 544 6040 79008 1190672 20314880 387099936 8148296320 187778717632 4702248334848 |
Std | NegHalf∑ k=0..n (-2)^n T(n, k) (-1/2)^k | A055142 | 1 0 -2 8 -36 224 -1880 19872 -251888 3712256 -62286624 1171487360 -24402416192 557542291968 |
Std | DiagRow1T(n + 1, n) | A063524 | 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Std | DiagRow2T(n + 2, n) | missing | 0 2 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Std | DiagRow3T(n + 3, n) | missing | 0 6 20 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Std | DiagCol1T(n + 1, 1) | A000142 | 0 1 2 6 24 120 720 5040 40320 362880 3628800 39916800 479001600 6227020800 87178291200 |
Std | DiagCol2T(n + 2, 2) | A000276 | 0 0 3 20 130 924 7308 64224 623376 6636960 76998240 967524480 13096736640 190060335360 |
Std | DiagCol3T(n + 3, 3) | A000483 | 0 0 0 15 210 2380 26432 303660 3678840 47324376 647536032 9418945536 145410580224 2377609752960 |
Std | Polysee docs | missing | 1 0 1 0 0 1 0 1 0 1 0 2 2 0 1 0 9 4 3 0 1 0 44 24 6 4 0 1 0 265 128 45 8 5 0 1 0 1854 880 252 72 10 |
Std | PolyRow2∑ k=0..2 T(2, k) n^k | A000027 | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 |
Std | PolyRow3∑ k=0..3 T(3, k) n^k | A005843 | 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 |
Std | PolyCol2∑ k=0..n T(n, k) 2^k | A087981 | 1 0 2 4 24 128 880 6816 60032 589312 6384384 75630080 972387328 13483769856 200571078656 |
Std | PolyCol3∑ k=0..n T(n, k) 3^k | A137775 | 1 0 3 6 45 252 1935 16146 153657 1616760 18699579 235498590 3207570597 46968796404 735689606535 |
Std | PolyDiag∑ k=0..n T(n, k) n^k | A295182 | 1 0 2 6 72 620 8640 122346 2156672 41367672 905126400 21646532270 570077595648 16268377195044 |
Alt | TriangleT(n, k), 0 ≤ k ≤ n | A358622 | 1 0 0 0 -1 0 0 -2 0 0 0 -6 3 0 0 0 -24 20 0 0 0 0 -120 130 -15 0 0 0 0 -720 924 -210 0 0 0 0 0 |
Alt | RevT(n, n - k), 0 ≤ k ≤ n | missing | 1 0 0 0 -1 0 0 0 -2 0 0 0 3 -6 0 0 0 0 20 -24 0 0 0 0 -15 130 -120 0 0 0 0 0 -210 924 -720 0 0 0 0 |
Alt | Accsee docs | missing | 1 0 0 0 -1 -1 0 -2 -2 -2 0 -6 -3 -3 -3 0 -24 -4 -4 -4 -4 0 -120 10 -5 -5 -5 -5 0 -720 204 -6 -6 -6 |
Alt | AccRevsee docs | missing | 1 0 0 0 -1 -1 0 0 -2 -2 0 0 3 -3 -3 0 0 0 20 -4 -4 0 0 0 -15 115 -5 -5 0 0 0 0 -210 714 -6 -6 0 0 0 |
Alt | AntiDiagsee docs | missing | 1 0 0 0 0 -1 0 -2 0 0 -6 0 0 -24 3 0 0 -120 20 0 0 -720 130 0 0 0 -5040 924 -15 0 0 -40320 7308 |
Alt | Diffx1T(n, k) (k+1) | missing | 1 0 0 0 -2 0 0 -4 0 0 0 -12 9 0 0 0 -48 60 0 0 0 0 -240 390 -60 0 0 0 0 -1440 2772 -840 0 0 0 0 0 |
Alt | RowSum∑ k=0..n T(n, k) | A000027 | 1 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25 -26 |
Alt | EvenSum∑ k=0..n T(n, k) even(k) | A216778 | 1 0 0 0 3 20 130 924 7413 66744 667476 7342280 88107415 1145396460 16035550518 240533257860 |
Alt | OddSum∑ k=0..n T(n, k) odd(k) | A216779 | 0 0 -1 -2 -6 -24 -135 -930 -7420 -66752 -667485 -7342290 -88107426 -1145396472 -16035550531 |
Alt | AltSum∑ k=0..n T(n, k) (-1)^k | A000166 | 1 0 1 2 9 44 265 1854 14833 133496 1334961 14684570 176214841 2290792932 32071101049 481066515734 |
Alt | AbsSum∑ k=0..n | T(n, k) | | A000166 | 1 0 1 2 9 44 265 1854 14833 133496 1334961 14684570 176214841 2290792932 32071101049 481066515734 |
Alt | DiagSum∑ k=0..n // 2 T(n - k, k) | missing | 1 0 0 -1 -2 -6 -21 -100 -590 -4131 -33222 -301036 -3031751 -33580980 -405638100 -5306116321 |
Alt | AccSum∑ k=0..n ∑ j=0..k T(n, j) | missing | 1 0 -2 -6 -15 -40 -130 -546 -2919 -18992 -144666 -1256750 -12232935 -131714232 -1553256874 |
Alt | AccRevSum∑ k=0..n ∑ j=0..k T(n, n - j) | missing | 1 0 -2 -4 -3 12 90 492 2849 18904 144558 1256620 12232781 131714052 1553256666 19901596764 |
Alt | RowLcmLcm k=0..n | T(n, k) | > 1 | missing | 1 1 1 2 6 120 1560 55440 2484720 530490240 1472289436800 3558122838547200 2088986264872103520000 |
Alt | RowGcdGcd k=0..n | T(n, k) | > 1 | A000027 | 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 |
Alt | RowMaxMax k=0..n | T(n, k) | | missing | 1 0 1 2 6 24 130 924 7308 64224 623376 6636960 76998240 967524480 13096736640 190060335360 |
Alt | ColMiddleT(n, n // 2) | missing | 1 0 -1 -2 3 20 -15 -210 105 2520 -945 -34650 10395 540540 -135135 -9459450 2027025 183783600 |
Alt | CentralET(2 n, n) | A001147 | 1 -1 3 -15 105 -945 10395 -135135 2027025 -34459425 654729075 -13749310575 316234143225 |
Alt | CentralOT(2 n + 1, n) | A000906 | 0 -2 20 -210 2520 -34650 540540 -9459450 183783600 -3928374450 91662070500 -2319050383650 |
Alt | ColLeftT(n, 0) | A000007 | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Alt | ColRightT(n, n) | A000007 | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Alt | BinConv∑ k=0..n C(n, k) T(n, k) | missing | 1 0 -2 -6 -6 80 930 7014 38374 46416 -2993220 -65145300 -991049400 -12507197352 -125646425086 |
Alt | InvBinConv∑ k=0..n C(n, k) T(n, n - k) (-1)^k | missing | 1 0 2 -6 42 -320 2970 -31794 385574 -5212752 77619060 -1260722100 22161819240 -418880108712 |
Alt | TransNat0∑ k=0..n T(n, k) k | missing | 0 0 -1 -2 0 16 95 498 2856 18912 144567 1256630 12232792 131714064 1553256679 19901596778 |
Alt | TransNat1∑ k=0..n T(n, k) (k + 1) | missing | 1 0 -2 -4 -3 12 90 492 2849 18904 144558 1256620 12232781 131714052 1553256666 19901596764 |
Alt | TransSqrs∑ k=0..n T(n, k) k^2 | missing | 0 0 -1 -2 6 56 265 1086 4452 19008 79659 228350 -1544774 -51436488 -966644731 -16500909026 |
Alt | PosHalf∑ k=0..n 2^n T(n, k) (1/2)^k | A055142 | 1 0 -2 -8 -36 -224 -1880 -19872 -251888 -3712256 -62286624 -1171487360 -24402416192 -557542291968 |
Alt | NegHalf∑ k=0..n (-2)^n T(n, k) (-1/2)^k | A053871 | 1 0 2 -8 60 -544 6040 -79008 1190672 -20314880 387099936 -8148296320 187778717632 -4702248334848 |
Alt | DiagRow1T(n + 1, n) | A063524 | 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Alt | DiagRow2T(n + 2, n) | missing | 0 -2 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Alt | DiagRow3T(n + 3, n) | missing | 0 -6 20 -15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Alt | DiagCol1T(n + 1, 1) | A000142 | 0 -1 -2 -6 -24 -120 -720 -5040 -40320 -362880 -3628800 -39916800 -479001600 -6227020800 |
Alt | DiagCol2T(n + 2, 2) | A000276 | 0 0 3 20 130 924 7308 64224 623376 6636960 76998240 967524480 13096736640 190060335360 |
Alt | DiagCol3T(n + 3, 3) | A000483 | 0 0 0 -15 -210 -2380 -26432 -303660 -3678840 -47324376 -647536032 -9418945536 -145410580224 |
Alt | Polysee docs | missing | 1 0 1 0 0 1 0 -1 0 1 0 -2 -2 0 1 0 -3 -4 -3 0 1 0 -4 0 -6 -4 0 1 0 -5 32 9 -8 -5 0 1 0 -6 160 108 |
Alt | PolyRow2∑ k=0..2 T(2, k) n^k | A000027 | 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25 -26 |
Alt | PolyRow3∑ k=0..3 T(3, k) n^k | A005843 | 0 -2 -4 -6 -8 -10 -12 -14 -16 -18 -20 -22 -24 -26 -28 -30 -32 -34 -36 -38 -40 -42 -44 -46 -48 -50 |
Alt | PolyCol2∑ k=0..n T(n, k) 2^k | missing | 1 0 -2 -4 0 32 160 576 1792 5120 13824 35840 90112 221184 532480 1261568 2949120 6815744 15597568 |
Alt | PolyCol3∑ k=0..n T(n, k) 3^k | missing | 1 0 -3 -6 9 108 405 486 -5103 -52488 -334611 -1771470 -8444007 -37555164 -158900859 -647295138 |
Alt | PolyDiag∑ k=0..n T(n, k) n^k | A277423 | 1 0 -2 -6 24 380 720 -31794 -361088 2104056 101548800 612792290 -25534891008 -593660731404 |
Rev | TriangleT(n, k), 0 ≤ k ≤ n | missing | 1 0 0 0 1 0 0 0 2 0 0 0 3 6 0 0 0 0 20 24 0 0 0 0 15 130 120 0 0 0 0 0 210 924 720 0 0 0 0 0 105 |
Rev | Accsee docs | missing | 1 0 0 0 1 1 0 0 2 2 0 0 3 9 9 0 0 0 20 44 44 0 0 0 15 145 265 265 0 0 0 0 210 1134 1854 1854 0 0 0 |
Rev | AccRevsee docs | missing | 1 0 0 0 1 1 0 2 2 2 0 6 9 9 9 0 24 44 44 44 44 0 120 250 265 265 265 265 0 720 1644 1854 1854 1854 |
Rev | AntiDiagsee docs | missing | 1 0 0 0 0 1 0 0 0 0 0 2 0 0 3 0 0 0 0 6 0 0 0 20 0 0 0 0 15 24 0 0 0 0 130 0 0 0 0 0 210 120 0 0 0 |
Rev | Diffx1T(n, k) (k+1) | missing | 1 0 0 0 2 0 0 0 6 0 0 0 9 24 0 0 0 0 80 120 0 0 0 0 60 650 720 0 0 0 0 0 1050 5544 5040 0 0 0 0 0 |
Rev | RowSum∑ k=0..n T(n, k) | A000166 | 1 0 1 2 9 44 265 1854 14833 133496 1334961 14684570 176214841 2290792932 32071101049 481066515734 |
Rev | EvenSum∑ k=0..n T(n, k) even(k) | A003221 | 1 0 0 2 3 24 130 930 7413 66752 667476 7342290 88107415 1145396472 16035550518 240533257874 |
Rev | OddSum∑ k=0..n T(n, k) odd(k) | A000387 | 0 0 1 0 6 20 135 924 7420 66744 667485 7342280 88107426 1145396460 16035550531 240533257860 |
Rev | AltSum∑ k=0..n T(n, k) (-1)^k | A000027 | 1 0 -1 2 -3 4 -5 6 -7 8 -9 10 -11 12 -13 14 -15 16 -17 18 -19 20 -21 22 -23 24 -25 26 -27 28 -29 30 |
Rev | AbsSum∑ k=0..n | T(n, k) | | A000166 | 1 0 1 2 9 44 265 1854 14833 133496 1334961 14684570 176214841 2290792932 32071101049 481066515734 |
Rev | DiagSum∑ k=0..n // 2 T(n - k, k) | missing | 1 0 0 1 0 2 3 6 20 39 130 330 1029 3100 9828 32417 108324 378630 1339091 4907970 18276280 69947151 |
Rev | AccSum∑ k=0..n ∑ j=0..k T(n, j) | missing | 1 0 2 4 21 108 690 5052 42049 391640 4036698 45618340 560889989 7454314788 106488455034 |
Rev | AccRevSum∑ k=0..n ∑ j=0..k T(n, n - j) | missing | 1 0 2 6 33 200 1430 11634 106281 1076816 11982834 145281070 1906117785 26907579192 406649161750 |
Rev | RowLcmLcm k=0..n | T(n, k) | > 1 | missing | 1 1 1 2 6 120 1560 55440 2484720 530490240 1472289436800 3558122838547200 2088986264872103520000 |
Rev | RowGcdGcd k=0..n | T(n, k) | > 1 | A000027 | 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 |
Rev | RowMaxMax k=0..n | T(n, k) | | missing | 1 0 1 2 6 24 130 924 7308 64224 623376 6636960 76998240 967524480 13096736640 190060335360 |
Rev | ColMiddleT(n, n // 2) | A123023 | 1 0 1 0 3 0 15 0 105 0 945 0 10395 0 135135 0 2027025 0 34459425 0 654729075 0 13749310575 0 |
Rev | CentralET(2 n, n) | A001147 | 1 1 3 15 105 945 10395 135135 2027025 34459425 654729075 13749310575 316234143225 7905853580625 |
Rev | ColLeftT(n, 0) | A000007 | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Rev | ColRightT(n, n) | A000007 | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Rev | BinConv∑ k=0..n C(n, k) T(n, k) | missing | 1 0 2 6 42 320 2970 31794 385574 5212752 77619060 1260722100 22161819240 418880108712 8465984110402 |
Rev | InvBinConv∑ k=0..n C(n, k) T(n, n - k) (-1)^k | missing | 1 0 -2 -6 -6 80 930 7014 38374 46416 -2993220 -65145300 -991049400 -12507197352 -125646425086 |
Rev | TransNat0∑ k=0..n T(n, k) k | missing | 0 0 1 4 24 156 1165 9780 91448 943320 10647873 130596500 1729902944 24616786260 374578060701 |
Rev | TransNat1∑ k=0..n T(n, k) (k + 1) | missing | 1 0 2 6 33 200 1430 11634 106281 1076816 11982834 145281070 1906117785 26907579192 406649161750 |
Rev | TransSqrs∑ k=0..n T(n, k) k^2 | missing | 0 0 1 8 66 564 5215 52380 571228 6742008 85779909 1171727600 17116173646 266397594540 4402764006771 |
Rev | PosHalf∑ k=0..n 2^n T(n, k) (1/2)^k | A087981 | 1 0 2 4 24 128 880 6816 60032 589312 6384384 75630080 972387328 13483769856 200571078656 |
Rev | NegHalf∑ k=0..n (-2)^n T(n, k) (-1/2)^k | missing | 1 0 -2 -4 0 32 160 576 1792 5120 13824 35840 90112 221184 532480 1261568 2949120 6815744 15597568 |
Rev | DiagRow1T(n + 1, n) | A000142 | 0 1 2 6 24 120 720 5040 40320 362880 3628800 39916800 479001600 6227020800 87178291200 |
Rev | DiagRow2T(n + 2, n) | A000276 | 0 0 3 20 130 924 7308 64224 623376 6636960 76998240 967524480 13096736640 190060335360 |
Rev | DiagRow3T(n + 3, n) | A000483 | 0 0 0 15 210 2380 26432 303660 3678840 47324376 647536032 9418945536 145410580224 2377609752960 |
Rev | DiagCol1T(n + 1, 1) | A063524 | 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Rev | DiagCol2T(n + 2, 2) | missing | 0 2 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Rev | DiagCol3T(n + 3, 3) | missing | 0 6 20 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Rev | Polysee docs | missing | 1 0 1 0 0 1 0 1 0 1 0 2 2 0 1 0 9 8 3 0 1 0 44 60 18 4 0 1 0 265 544 189 32 5 0 1 0 1854 6040 2484 |
Rev | PolyRow2∑ k=0..2 T(2, k) n^k | A000027 | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 |
Rev | PolyRow3∑ k=0..3 T(3, k) n^k | A001105 | 0 2 8 18 32 50 72 98 128 162 200 242 288 338 392 450 512 578 648 722 800 882 968 1058 1152 1250 |
Rev | PolyCol2∑ k=0..n T(n, k) 2^k | A053871 | 1 0 2 8 60 544 6040 79008 1190672 20314880 387099936 8148296320 187778717632 4702248334848 |
Rev | PolyCol3∑ k=0..n T(n, k) 3^k | A033030 | 1 0 3 18 189 2484 40095 766422 16936857 424878696 11929019931 370616958810 12624017298453 |
Rev | PolyDiag∑ k=0..n T(n, k) n^k | missing | 1 0 2 18 432 17500 1104840 100741158 12563812352 2057021043768 428298394500000 110573729001184570 |
<< | Table | Source | Similars | Index | >> |
Note: The A-numbers are based on a finite number of numerical comparisons. They ignore the sign and the OEIS-offset. Sometimes they differ in the first few values. In such cases, we consider our version to be the better one because it has a common formula as a root. Since the offset of all triangles is 0 also the offset of all sequences is 0.