OEIS Similars: A358623, A008299, A137375
↕ Type | ↕ Trait | ↕ Anum | ↕ Sequence |
---|---|---|---|
Std | TriangleT(n, k), 0 ≤ k ≤ n | A358623 | 1 0 0 0 1 0 0 1 0 0 0 1 3 0 0 0 1 10 0 0 0 0 1 25 15 0 0 0 0 1 56 105 0 0 0 0 0 1 119 490 105 0 0 0 |
Std | RevT(n, n - k), 0 ≤ k ≤ n | missing | 1 0 0 0 1 0 0 0 1 0 0 0 3 1 0 0 0 0 10 1 0 0 0 0 15 25 1 0 0 0 0 0 105 56 1 0 0 0 0 0 105 490 119 1 |
Std | Accsee docs | missing | 1 0 0 0 1 1 0 1 1 1 0 1 4 4 4 0 1 11 11 11 11 0 1 26 41 41 41 41 0 1 57 162 162 162 162 162 0 1 120 |
Std | AccRevsee docs | missing | 1 0 0 0 1 1 0 0 1 1 0 0 3 4 4 0 0 0 10 11 11 0 0 0 15 40 41 41 0 0 0 0 105 161 162 162 0 0 0 0 105 |
Std | AntiDiagsee docs | missing | 1 0 0 0 0 1 0 1 0 0 1 0 0 1 3 0 0 1 10 0 0 1 25 0 0 0 1 56 15 0 0 1 119 105 0 0 0 1 246 490 0 0 0 1 |
Std | Diffx1T(n, k) (k+1) | missing | 1 0 0 0 2 0 0 2 0 0 0 2 9 0 0 0 2 30 0 0 0 0 2 75 60 0 0 0 0 2 168 420 0 0 0 0 0 2 357 1960 525 0 0 |
Std | RowSum∑ k=0..n T(n, k) | A000296 | 1 0 1 1 4 11 41 162 715 3425 17722 98253 580317 3633280 24011157 166888165 1216070380 9264071767 |
Std | EvenSum∑ k=0..n T(n, k) even(k) | A097763 | 1 0 0 0 3 10 25 56 224 1506 9951 57992 315425 1761552 11022180 78474748 603715831 4771273414 |
Std | OddSum∑ k=0..n T(n, k) odd(k) | A097762 | 0 0 1 1 1 1 16 106 491 1919 7771 40261 264892 1871728 12988977 88413417 612354549 4492798353 |
Std | AltSum∑ k=0..n T(n, k) (-1)^k | A000587 | 1 0 -1 -1 2 9 9 -50 -267 -413 2180 17731 50533 -110176 -1966797 -9938669 -8638718 278475061 |
Std | AbsSum∑ k=0..n | T(n, k) | | A000296 | 1 0 1 1 4 11 41 162 715 3425 17722 98253 580317 3633280 24011157 166888165 1216070380 9264071767 |
Std | DiagSum∑ k=0..n // 2 T(n - k, k) | missing | 1 0 0 1 1 1 4 11 26 72 225 737 2525 9098 34421 136324 563590 2425875 10847031 50288497 241342066 |
Std | AccSum∑ k=0..n ∑ j=0..k T(n, j) | missing | 1 0 2 3 13 45 191 868 4306 22963 130939 793661 5089877 34398884 244145110 1814307615 14079335333 |
Std | AccRevSum∑ k=0..n ∑ j=0..k T(n, n - j) | missing | 1 0 2 2 11 32 137 590 2844 14712 81725 483628 3034561 20100316 140033402 1022791190 7809931507 |
Std | RowLcmLcm k=0..n | T(n, k) | > 1 | missing | 1 1 1 1 3 10 75 840 24990 7077420 20515950 8197427700 37491431739300 658988595064800 |
Std | RowGcdGcd k=0..n | T(n, k) | > 1 | missing | 1 1 1 1 3 10 5 7 7 2 3 11 11 13 13 1 1 34 17 19 19 1 1 23 23 1 5 1 3 29 29 31 31 2 1 1 1 37 37 1 1 |
Std | RowMaxMax k=0..n | T(n, k) | | missing | 1 0 1 1 3 10 25 105 490 1918 9450 56980 302995 1636635 12122110 81431350 510880370 4104160060 |
Std | ColMiddleT(n, n // 2) | A259877 | 1 0 1 1 3 10 15 105 105 1260 945 17325 10395 270270 135135 4729725 2027025 91891800 34459425 |
Std | CentralET(2 n, n) | A001147 | 1 1 3 15 105 945 10395 135135 2027025 34459425 654729075 13749310575 316234143225 7905853580625 |
Std | CentralOT(2 n + 1, n) | A000457 | 0 1 10 105 1260 17325 270270 4729725 91891800 1964187225 45831035250 1159525191825 31623414322500 |
Std | ColLeftT(n, 0) | A000007 | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Std | ColRightT(n, n) | A000007 | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Std | BinConv∑ k=0..n C(n, k) T(n, k) | missing | 1 0 2 3 22 105 681 4858 38130 328737 3064195 30647496 327006747 3701035286 44230746938 556023501335 |
Std | InvBinConv∑ k=0..n C(n, k) T(n, n - k) (-1)^k | missing | 1 0 -2 3 14 -95 69 2506 -16766 -6495 949895 -7070624 -7563117 646135854 -5766448338 -4025622145 |
Std | TransNat0∑ k=0..n T(n, k) k | missing | 0 0 1 1 7 21 96 428 2129 11287 64003 385375 2454244 16467036 116022245 855903025 6593861127 |
Std | TransNat1∑ k=0..n T(n, k) (k + 1) | missing | 1 0 2 2 11 32 137 590 2844 14712 81725 483628 3034561 20100316 140033402 1022791190 7809931507 |
Std | TransSqrs∑ k=0..n T(n, k) k^2 | missing | 0 0 1 1 13 41 236 1170 6567 38407 238255 1555269 10663500 76572952 574498601 4493360097 36562942537 |
Std | PosHalf∑ k=0..n 2^n T(n, k) (1/2)^k | A337038 | 1 0 2 4 20 96 552 3536 25104 194816 1637408 14792768 142761280 1464117760 15886137984 181667507456 |
Std | NegHalf∑ k=0..n (-2)^n T(n, k) (-1/2)^k | A334190 | 1 0 -2 4 4 -64 248 -48 -6512 51200 -171296 -830400 17870400 -144684032 441316224 5976726784 |
Std | DiagRow1T(n + 1, n) | A063524 | 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Std | DiagRow2T(n + 2, n) | missing | 0 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Std | DiagRow3T(n + 3, n) | missing | 0 1 10 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Std | DiagCol1T(n + 1, 1) | A000012 | 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Std | DiagCol2T(n + 2, 2) | A000247 | 0 0 3 10 25 56 119 246 501 1012 2035 4082 8177 16368 32751 65518 131053 262124 524267 1048554 |
Std | DiagCol3T(n + 3, 3) | A000478 | 0 0 0 15 105 490 1918 6825 22935 74316 235092 731731 2252341 6879678 20900922 63259533 190957923 |
Std | Polysee docs | missing | 1 0 1 0 0 1 0 1 0 1 0 1 2 0 1 0 4 2 3 0 1 0 11 14 3 4 0 1 0 41 42 30 4 5 0 1 0 162 222 93 52 5 6 0 |
Std | PolyRow2∑ k=0..2 T(2, k) n^k | A000027 | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 |
Std | PolyRow3∑ k=0..3 T(3, k) n^k | A000027 | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 |
Std | PolyCol2∑ k=0..n T(n, k) 2^k | A194689 | 1 0 2 2 14 42 222 1066 6078 36490 238046 1653610 12214270 95361866 784071966 6764984362 61066919230 |
Std | PolyCol3∑ k=0..n T(n, k) 3^k | A367890 | 1 0 3 3 30 93 633 3342 22809 156063 1183872 9453711 80455125 721576560 6809391111 67332650007 |
Std | PolyDiag∑ k=0..n T(n, k) n^k | A337057 | 1 0 2 3 52 255 4146 38766 688584 9685017 195875110 3655101703 84872077500 1955205893680 |
Alt | TriangleT(n, k), 0 ≤ k ≤ n | A358623 | 1 0 0 0 -1 0 0 -1 0 0 0 -1 3 0 0 0 -1 10 0 0 0 0 -1 25 -15 0 0 0 0 -1 56 -105 0 0 0 0 0 -1 119 -490 |
Alt | RevT(n, n - k), 0 ≤ k ≤ n | missing | 1 0 0 0 -1 0 0 0 -1 0 0 0 3 -1 0 0 0 0 10 -1 0 0 0 0 -15 25 -1 0 0 0 0 0 -105 56 -1 0 0 0 0 0 105 |
Alt | Accsee docs | missing | 1 0 0 0 -1 -1 0 -1 -1 -1 0 -1 2 2 2 0 -1 9 9 9 9 0 -1 24 9 9 9 9 0 -1 55 -50 -50 -50 -50 -50 0 -1 |
Alt | AccRevsee docs | missing | 1 0 0 0 -1 -1 0 0 -1 -1 0 0 3 2 2 0 0 0 10 9 9 0 0 0 -15 10 9 9 0 0 0 0 -105 -49 -50 -50 0 0 0 0 |
Alt | AntiDiagsee docs | missing | 1 0 0 0 0 -1 0 -1 0 0 -1 0 0 -1 3 0 0 -1 10 0 0 -1 25 0 0 0 -1 56 -15 0 0 -1 119 -105 0 0 0 -1 246 |
Alt | Diffx1T(n, k) (k+1) | missing | 1 0 0 0 -2 0 0 -2 0 0 0 -2 9 0 0 0 -2 30 0 0 0 0 -2 75 -60 0 0 0 0 -2 168 -420 0 0 0 0 0 -2 357 |
Alt | RowSum∑ k=0..n T(n, k) | A000587 | 1 0 -1 -1 2 9 9 -50 -267 -413 2180 17731 50533 -110176 -1966797 -9938669 -8638718 278475061 |
Alt | EvenSum∑ k=0..n T(n, k) even(k) | A097763 | 1 0 0 0 3 10 25 56 224 1506 9951 57992 315425 1761552 11022180 78474748 603715831 4771273414 |
Alt | OddSum∑ k=0..n T(n, k) odd(k) | A097762 | 0 0 -1 -1 -1 -1 -16 -106 -491 -1919 -7771 -40261 -264892 -1871728 -12988977 -88413417 -612354549 |
Alt | AltSum∑ k=0..n T(n, k) (-1)^k | A000296 | 1 0 1 1 4 11 41 162 715 3425 17722 98253 580317 3633280 24011157 166888165 1216070380 9264071767 |
Alt | AbsSum∑ k=0..n | T(n, k) | | A000296 | 1 0 1 1 4 11 41 162 715 3425 17722 98253 580317 3633280 24011157 166888165 1216070380 9264071767 |
Alt | DiagSum∑ k=0..n // 2 T(n - k, k) | missing | 1 0 0 -1 -1 -1 2 9 24 40 13 -245 -1313 -4554 -11451 -14200 58754 581261 3069077 12284919 36677520 |
Alt | AccSum∑ k=0..n ∑ j=0..k T(n, j) | missing | 1 0 -2 -3 5 35 59 -196 -1590 -3907 10379 138259 554333 -232596 -18020822 -120878031 -266314563 |
Alt | AccRevSum∑ k=0..n ∑ j=0..k T(n, n - j) | missing | 1 0 -2 -2 7 28 13 -254 -1080 -636 15781 92244 153129 -1420044 -13447930 -48079342 110817639 |
Alt | RowLcmLcm k=0..n | T(n, k) | > 1 | missing | 1 1 1 1 3 10 75 840 24990 7077420 20515950 8197427700 37491431739300 658988595064800 |
Alt | RowGcdGcd k=0..n | T(n, k) | > 1 | missing | 1 1 1 1 3 10 5 7 7 2 3 11 11 13 13 1 1 34 17 19 19 1 1 23 23 1 5 1 3 29 29 31 31 2 1 1 1 37 37 1 1 |
Alt | RowMaxMax k=0..n | T(n, k) | | missing | 1 0 1 1 3 10 25 105 490 1918 9450 56980 302995 1636635 12122110 81431350 510880370 4104160060 |
Alt | ColMiddleT(n, n // 2) | A259877 | 1 0 -1 -1 3 10 -15 -105 105 1260 -945 -17325 10395 270270 -135135 -4729725 2027025 91891800 |
Alt | CentralET(2 n, n) | A001147 | 1 -1 3 -15 105 -945 10395 -135135 2027025 -34459425 654729075 -13749310575 316234143225 |
Alt | CentralOT(2 n + 1, n) | A000457 | 0 -1 10 -105 1260 -17325 270270 -4729725 91891800 -1964187225 45831035250 -1159525191825 |
Alt | ColLeftT(n, 0) | A000007 | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Alt | ColRightT(n, n) | A000007 | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Alt | BinConv∑ k=0..n C(n, k) T(n, k) | missing | 1 0 -2 -3 14 95 69 -2506 -16766 6495 949895 7070624 -7563117 -646135854 -5766448338 4025622145 |
Alt | InvBinConv∑ k=0..n C(n, k) T(n, n - k) (-1)^k | missing | 1 0 2 -3 22 -105 681 -4858 38130 -328737 3064195 -30647496 327006747 -3701035286 44230746938 |
Alt | TransNat0∑ k=0..n T(n, k) k | missing | 0 0 -1 -1 5 19 4 -204 -813 -223 13601 74513 102596 -1309868 -11481133 -38140673 119456357 |
Alt | TransNat1∑ k=0..n T(n, k) (k + 1) | missing | 1 0 -2 -2 7 28 13 -254 -1080 -636 15781 92244 153129 -1420044 -13447930 -48079342 110817639 |
Alt | TransSqrs∑ k=0..n T(n, k) k^2 | missing | 0 0 -1 -1 11 39 -36 -722 -2255 3881 68153 276187 -202940 -9490456 -58021289 -82262593 1624828831 |
Alt | PosHalf∑ k=0..n 2^n T(n, k) (1/2)^k | A334190 | 1 0 -2 -4 4 64 248 48 -6512 -51200 -171296 830400 17870400 144684032 441316224 -5976726784 |
Alt | NegHalf∑ k=0..n (-2)^n T(n, k) (-1/2)^k | A337038 | 1 0 2 -4 20 -96 552 -3536 25104 -194816 1637408 -14792768 142761280 -1464117760 15886137984 |
Alt | DiagRow1T(n + 1, n) | A063524 | 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Alt | DiagRow2T(n + 2, n) | missing | 0 -1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Alt | DiagRow3T(n + 3, n) | missing | 0 -1 10 -15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Alt | DiagCol1T(n + 1, 1) | A000012 | 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 |
Alt | DiagCol2T(n + 2, 2) | A000247 | 0 0 3 10 25 56 119 246 501 1012 2035 4082 8177 16368 32751 65518 131053 262124 524267 1048554 |
Alt | DiagCol3T(n + 3, 3) | A000478 | 0 0 0 -15 -105 -490 -1918 -6825 -22935 -74316 -235092 -731731 -2252341 -6879678 -20900922 -63259533 |
Alt | Polysee docs | missing | 1 0 1 0 0 1 0 -1 0 1 0 -1 -2 0 1 0 2 -2 -3 0 1 0 9 10 -3 -4 0 1 0 9 38 24 -4 -5 0 1 0 -50 -22 87 44 |
Alt | PolyRow2∑ k=0..2 T(2, k) n^k | A000027 | 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25 -26 |
Alt | PolyRow3∑ k=0..3 T(3, k) n^k | A000027 | 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25 -26 |
Alt | PolyCol2∑ k=0..n T(n, k) 2^k | missing | 1 0 -2 -2 10 38 -22 -618 -1766 5798 68362 177846 -1171590 -13144250 -38045334 306530902 4044308698 |
Alt | PolyCol3∑ k=0..n T(n, k) 3^k | missing | 1 0 -3 -3 24 87 -183 -2334 -3657 52485 356046 -204735 -16177395 -86523024 287451681 6947570337 |
Alt | PolyDiag∑ k=0..n T(n, k) n^k | A334243 | 1 0 -2 -3 44 245 -2346 -33278 186808 6888555 -6774910 -1986368439 -10227075420 738830661296 |
Rev | TriangleT(n, k), 0 ≤ k ≤ n | missing | 1 0 0 0 1 0 0 0 1 0 0 0 3 1 0 0 0 0 10 1 0 0 0 0 15 25 1 0 0 0 0 0 105 56 1 0 0 0 0 0 105 490 119 1 |
Rev | Accsee docs | missing | 1 0 0 0 1 1 0 0 1 1 0 0 3 4 4 0 0 0 10 11 11 0 0 0 15 40 41 41 0 0 0 0 105 161 162 162 0 0 0 0 105 |
Rev | AccRevsee docs | missing | 1 0 0 0 1 1 0 1 1 1 0 1 4 4 4 0 1 11 11 11 11 0 1 26 41 41 41 41 0 1 57 162 162 162 162 162 0 1 120 |
Rev | AntiDiagsee docs | missing | 1 0 0 0 0 1 0 0 0 0 0 1 0 0 3 0 0 0 0 1 0 0 0 10 0 0 0 0 15 1 0 0 0 0 25 0 0 0 0 0 105 1 0 0 0 0 |
Rev | Diffx1T(n, k) (k+1) | missing | 1 0 0 0 2 0 0 0 3 0 0 0 9 4 0 0 0 0 40 5 0 0 0 0 60 125 6 0 0 0 0 0 525 336 7 0 0 0 0 0 525 2940 |
Rev | RowSum∑ k=0..n T(n, k) | A000296 | 1 0 1 1 4 11 41 162 715 3425 17722 98253 580317 3633280 24011157 166888165 1216070380 9264071767 |
Rev | EvenSum∑ k=0..n T(n, k) even(k) | missing | 1 0 0 1 3 1 25 106 224 1919 9951 40261 315425 1871728 11022180 88413417 603715831 4492798353 |
Rev | OddSum∑ k=0..n T(n, k) odd(k) | missing | 0 0 1 0 1 10 16 56 491 1506 7771 57992 264892 1761552 12988977 78474748 612354549 4771273414 |
Rev | AltSum∑ k=0..n T(n, k) (-1)^k | A000587 | 1 0 -1 1 2 -9 9 50 -267 413 2180 -17731 50533 110176 -1966797 9938669 -8638718 -278475061 |
Rev | AbsSum∑ k=0..n | T(n, k) | | A000296 | 1 0 1 1 4 11 41 162 715 3425 17722 98253 580317 3633280 24011157 166888165 1216070380 9264071767 |
Rev | DiagSum∑ k=0..n // 2 T(n - k, k) | missing | 1 0 0 1 0 1 3 1 10 16 25 106 161 491 1379 2864 9696 24151 67876 213511 574277 1846087 5588330 |
Rev | AccSum∑ k=0..n ∑ j=0..k T(n, j) | missing | 1 0 2 2 11 32 137 590 2844 14712 81725 483628 3034561 20100316 140033402 1022791190 7809931507 |
Rev | AccRevSum∑ k=0..n ∑ j=0..k T(n, n - j) | missing | 1 0 2 3 13 45 191 868 4306 22963 130939 793661 5089877 34398884 244145110 1814307615 14079335333 |
Rev | RowLcmLcm k=0..n | T(n, k) | > 1 | missing | 1 1 1 1 3 10 75 840 24990 7077420 20515950 8197427700 37491431739300 658988595064800 |
Rev | RowGcdGcd k=0..n | T(n, k) | > 1 | missing | 1 1 1 1 3 10 5 7 7 2 3 11 11 13 13 1 1 34 17 19 19 1 1 23 23 1 5 1 3 29 29 31 31 2 1 1 1 37 37 1 1 |
Rev | RowMaxMax k=0..n | T(n, k) | | missing | 1 0 1 1 3 10 25 105 490 1918 9450 56980 302995 1636635 12122110 81431350 510880370 4104160060 |
Rev | ColMiddleT(n, n // 2) | A123023 | 1 0 1 0 3 0 15 0 105 0 945 0 10395 0 135135 0 2027025 0 34459425 0 654729075 0 13749310575 0 |
Rev | CentralET(2 n, n) | A001147 | 1 1 3 15 105 945 10395 135135 2027025 34459425 654729075 13749310575 316234143225 7905853580625 |
Rev | ColLeftT(n, 0) | A000007 | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Rev | ColRightT(n, n) | A000007 | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Rev | BinConv∑ k=0..n C(n, k) T(n, k) | missing | 1 0 2 3 22 105 681 4858 38130 328737 3064195 30647496 327006747 3701035286 44230746938 556023501335 |
Rev | InvBinConv∑ k=0..n C(n, k) T(n, n - k) (-1)^k | missing | 1 0 -2 -3 14 95 69 -2506 -16766 6495 949895 7070624 -7563117 -646135854 -5766448338 4025622145 |
Rev | TransNat0∑ k=0..n T(n, k) k | missing | 0 0 1 2 9 34 150 706 3591 19538 113217 695408 4509560 30765604 220133953 1647419450 12863264953 |
Rev | TransNat1∑ k=0..n T(n, k) (k + 1) | missing | 1 0 2 3 13 45 191 868 4306 22963 130939 793661 5089877 34398884 244145110 1814307615 14079335333 |
Rev | TransSqrs∑ k=0..n T(n, k) k^2 | missing | 0 0 1 4 21 106 560 3116 18263 112666 730395 4965632 35327292 262454336 2032062513 16366106472 |
Rev | PosHalf∑ k=0..n 2^n T(n, k) (1/2)^k | A194689 | 1 0 2 2 14 42 222 1066 6078 36490 238046 1653610 12214270 95361866 784071966 6764984362 61066919230 |
Rev | NegHalf∑ k=0..n (-2)^n T(n, k) (-1/2)^k | missing | 1 0 -2 -2 10 38 -22 -618 -1766 5798 68362 177846 -1171590 -13144250 -38045334 306530902 4044308698 |
Rev | DiagRow1T(n + 1, n) | A000012 | 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Rev | DiagRow2T(n + 2, n) | A000247 | 0 0 3 10 25 56 119 246 501 1012 2035 4082 8177 16368 32751 65518 131053 262124 524267 1048554 |
Rev | DiagRow3T(n + 3, n) | A000478 | 0 0 0 15 105 490 1918 6825 22935 74316 235092 731731 2252341 6879678 20900922 63259533 190957923 |
Rev | DiagCol1T(n + 1, 1) | A063524 | 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Rev | DiagCol2T(n + 2, 2) | missing | 0 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Rev | DiagCol3T(n + 3, 3) | missing | 0 1 10 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Rev | Polysee docs | missing | 1 0 1 0 0 1 0 1 0 1 0 1 2 0 1 0 4 4 3 0 1 0 11 20 9 4 0 1 0 41 96 54 16 5 0 1 0 162 552 351 112 25 |
Rev | PolyRow2∑ k=0..2 T(2, k) n^k | A000027 | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 |
Rev | PolyRow3∑ k=0..3 T(3, k) n^k | A000290 | 0 1 4 9 16 25 36 49 64 81 100 121 144 169 196 225 256 289 324 361 400 441 484 529 576 625 676 729 |
Rev | PolyCol2∑ k=0..n T(n, k) 2^k | A337038 | 1 0 2 4 20 96 552 3536 25104 194816 1637408 14792768 142761280 1464117760 15886137984 181667507456 |
Rev | PolyCol3∑ k=0..n T(n, k) 3^k | A337039 | 1 0 3 9 54 351 2673 22842 216513 2248965 25351704 307699965 3995419365 55207193328 808078734999 |
Rev | PolyDiag∑ k=0..n T(n, k) n^k | A337043 | 1 0 2 9 112 1875 43416 1310946 49778688 2313362673 128894500000 8469572721533 647341071298560 |
<< | Table | Source | Similars | Index | >> |
Note: The A-numbers are based on a finite number of numerical comparisons. They ignore the sign and the OEIS-offset. Sometimes they differ in the first few values. In such cases, we consider our version to be the better one because it has a common formula as a root. Since the offset of all triangles is 0 also the offset of all sequences is 0.