STIRLINGSET2[0] 1
[1] 0, 0
[2] 0, 1, 0
[3] 0, 1, 0, 0
[4] 0, 1, 3, 0, 0
[5] 0, 1, 10, 0, 0, 0

      OEIS Similars: A358623, A008299, A137375

↕ Type↕ Trait↕ Anum↕ Sequence
StdTriangleT(n, k), 0 ≤ k ≤ nA3586231 0 0 0 1 0 0 1 0 0 0 1 3 0 0 0 1 10 0 0 0 0 1 25 15 0 0 0 0 1 56 105 0 0 0 0 0 1 119 490 105 0 0 0
StdRevT(n, n - k), 0 ≤ k ≤ nmissing1 0 0 0 1 0 0 0 1 0 0 0 3 1 0 0 0 0 10 1 0 0 0 0 15 25 1 0 0 0 0 0 105 56 1 0 0 0 0 0 105 490 119 1
StdAccsee docsmissing1 0 0 0 1 1 0 1 1 1 0 1 4 4 4 0 1 11 11 11 11 0 1 26 41 41 41 41 0 1 57 162 162 162 162 162 0 1 120
StdAccRevsee docsmissing1 0 0 0 1 1 0 0 1 1 0 0 3 4 4 0 0 0 10 11 11 0 0 0 15 40 41 41 0 0 0 0 105 161 162 162 0 0 0 0 105
StdAntiDiagsee docsmissing1 0 0 0 0 1 0 1 0 0 1 0 0 1 3 0 0 1 10 0 0 1 25 0 0 0 1 56 15 0 0 1 119 105 0 0 0 1 246 490 0 0 0 1
StdDiffx1T(n, k) (k+1)missing1 0 0 0 2 0 0 2 0 0 0 2 9 0 0 0 2 30 0 0 0 0 2 75 60 0 0 0 0 2 168 420 0 0 0 0 0 2 357 1960 525 0 0
StdRowSum k=0..n T(n, k)A0002961 0 1 1 4 11 41 162 715 3425 17722 98253 580317 3633280 24011157 166888165 1216070380 9264071767
StdEvenSum k=0..n T(n, k) even(k)A0977631 0 0 0 3 10 25 56 224 1506 9951 57992 315425 1761552 11022180 78474748 603715831 4771273414
StdOddSum k=0..n T(n, k) odd(k)A0977620 0 1 1 1 1 16 106 491 1919 7771 40261 264892 1871728 12988977 88413417 612354549 4492798353
StdAltSum k=0..n T(n, k) (-1)^kA0005871 0 -1 -1 2 9 9 -50 -267 -413 2180 17731 50533 -110176 -1966797 -9938669 -8638718 278475061
StdAbsSum k=0..n | T(n, k) |A0002961 0 1 1 4 11 41 162 715 3425 17722 98253 580317 3633280 24011157 166888165 1216070380 9264071767
StdDiagSum k=0..n // 2 T(n - k, k)missing1 0 0 1 1 1 4 11 26 72 225 737 2525 9098 34421 136324 563590 2425875 10847031 50288497 241342066
StdAccSum k=0..n j=0..k T(n, j)missing1 0 2 3 13 45 191 868 4306 22963 130939 793661 5089877 34398884 244145110 1814307615 14079335333
StdAccRevSum k=0..n j=0..k T(n, n - j)missing1 0 2 2 11 32 137 590 2844 14712 81725 483628 3034561 20100316 140033402 1022791190 7809931507
StdRowLcmLcm k=0..n | T(n, k) | > 1missing1 1 1 1 3 10 75 840 24990 7077420 20515950 8197427700 37491431739300 658988595064800
StdRowGcdGcd k=0..n | T(n, k) | > 1missing1 1 1 1 3 10 5 7 7 2 3 11 11 13 13 1 1 34 17 19 19 1 1 23 23 1 5 1 3 29 29 31 31 2 1 1 1 37 37 1 1
StdRowMaxMax k=0..n | T(n, k) |missing1 0 1 1 3 10 25 105 490 1918 9450 56980 302995 1636635 12122110 81431350 510880370 4104160060
StdColMiddleT(n, n // 2)A2598771 0 1 1 3 10 15 105 105 1260 945 17325 10395 270270 135135 4729725 2027025 91891800 34459425
StdCentralET(2 n, n)A0011471 1 3 15 105 945 10395 135135 2027025 34459425 654729075 13749310575 316234143225 7905853580625
StdCentralOT(2 n + 1, n)A0004570 1 10 105 1260 17325 270270 4729725 91891800 1964187225 45831035250 1159525191825 31623414322500
StdColLeftT(n, 0)A0000071 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
StdColRightT(n, n)A0000071 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
StdBinConv k=0..n C(n, k) T(n, k)missing1 0 2 3 22 105 681 4858 38130 328737 3064195 30647496 327006747 3701035286 44230746938 556023501335
StdInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kmissing1 0 -2 3 14 -95 69 2506 -16766 -6495 949895 -7070624 -7563117 646135854 -5766448338 -4025622145
StdTransNat0 k=0..n T(n, k) kmissing0 0 1 1 7 21 96 428 2129 11287 64003 385375 2454244 16467036 116022245 855903025 6593861127
StdTransNat1 k=0..n T(n, k) (k + 1)missing1 0 2 2 11 32 137 590 2844 14712 81725 483628 3034561 20100316 140033402 1022791190 7809931507
StdTransSqrs k=0..n T(n, k) k^2missing0 0 1 1 13 41 236 1170 6567 38407 238255 1555269 10663500 76572952 574498601 4493360097 36562942537
StdPosHalf k=0..n 2^n T(n, k) (1/2)^kA3370381 0 2 4 20 96 552 3536 25104 194816 1637408 14792768 142761280 1464117760 15886137984 181667507456
StdNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kA3341901 0 -2 4 4 -64 248 -48 -6512 51200 -171296 -830400 17870400 -144684032 441316224 5976726784
StdDiagRow1T(n + 1, n)A0635240 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
StdDiagRow2T(n + 2, n)missing0 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
StdDiagRow3T(n + 3, n)missing0 1 10 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
StdDiagCol1T(n + 1, 1)A0000120 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
StdDiagCol2T(n + 2, 2)A0002470 0 3 10 25 56 119 246 501 1012 2035 4082 8177 16368 32751 65518 131053 262124 524267 1048554
StdDiagCol3T(n + 3, 3)A0004780 0 0 15 105 490 1918 6825 22935 74316 235092 731731 2252341 6879678 20900922 63259533 190957923
StdPolysee docsmissing1 0 1 0 0 1 0 1 0 1 0 1 2 0 1 0 4 2 3 0 1 0 11 14 3 4 0 1 0 41 42 30 4 5 0 1 0 162 222 93 52 5 6 0
StdPolyRow2 k=0..2 T(2, k) n^kA0000270 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
StdPolyRow3 k=0..3 T(3, k) n^kA0000270 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
StdPolyCol2 k=0..n T(n, k) 2^kA1946891 0 2 2 14 42 222 1066 6078 36490 238046 1653610 12214270 95361866 784071966 6764984362 61066919230
StdPolyCol3 k=0..n T(n, k) 3^kA3678901 0 3 3 30 93 633 3342 22809 156063 1183872 9453711 80455125 721576560 6809391111 67332650007
StdPolyDiag k=0..n T(n, k) n^kA3370571 0 2 3 52 255 4146 38766 688584 9685017 195875110 3655101703 84872077500 1955205893680
AltTriangleT(n, k), 0 ≤ k ≤ nA3586231 0 0 0 -1 0 0 -1 0 0 0 -1 3 0 0 0 -1 10 0 0 0 0 -1 25 -15 0 0 0 0 -1 56 -105 0 0 0 0 0 -1 119 -490
AltRevT(n, n - k), 0 ≤ k ≤ nmissing1 0 0 0 -1 0 0 0 -1 0 0 0 3 -1 0 0 0 0 10 -1 0 0 0 0 -15 25 -1 0 0 0 0 0 -105 56 -1 0 0 0 0 0 105
AltAccsee docsmissing1 0 0 0 -1 -1 0 -1 -1 -1 0 -1 2 2 2 0 -1 9 9 9 9 0 -1 24 9 9 9 9 0 -1 55 -50 -50 -50 -50 -50 0 -1
AltAccRevsee docsmissing1 0 0 0 -1 -1 0 0 -1 -1 0 0 3 2 2 0 0 0 10 9 9 0 0 0 -15 10 9 9 0 0 0 0 -105 -49 -50 -50 0 0 0 0
AltAntiDiagsee docsmissing1 0 0 0 0 -1 0 -1 0 0 -1 0 0 -1 3 0 0 -1 10 0 0 -1 25 0 0 0 -1 56 -15 0 0 -1 119 -105 0 0 0 -1 246
AltDiffx1T(n, k) (k+1)missing1 0 0 0 -2 0 0 -2 0 0 0 -2 9 0 0 0 -2 30 0 0 0 0 -2 75 -60 0 0 0 0 -2 168 -420 0 0 0 0 0 -2 357
AltRowSum k=0..n T(n, k)A0005871 0 -1 -1 2 9 9 -50 -267 -413 2180 17731 50533 -110176 -1966797 -9938669 -8638718 278475061
AltEvenSum k=0..n T(n, k) even(k)A0977631 0 0 0 3 10 25 56 224 1506 9951 57992 315425 1761552 11022180 78474748 603715831 4771273414
AltOddSum k=0..n T(n, k) odd(k)A0977620 0 -1 -1 -1 -1 -16 -106 -491 -1919 -7771 -40261 -264892 -1871728 -12988977 -88413417 -612354549
AltAltSum k=0..n T(n, k) (-1)^kA0002961 0 1 1 4 11 41 162 715 3425 17722 98253 580317 3633280 24011157 166888165 1216070380 9264071767
AltAbsSum k=0..n | T(n, k) |A0002961 0 1 1 4 11 41 162 715 3425 17722 98253 580317 3633280 24011157 166888165 1216070380 9264071767
AltDiagSum k=0..n // 2 T(n - k, k)missing1 0 0 -1 -1 -1 2 9 24 40 13 -245 -1313 -4554 -11451 -14200 58754 581261 3069077 12284919 36677520
AltAccSum k=0..n j=0..k T(n, j)missing1 0 -2 -3 5 35 59 -196 -1590 -3907 10379 138259 554333 -232596 -18020822 -120878031 -266314563
AltAccRevSum k=0..n j=0..k T(n, n - j)missing1 0 -2 -2 7 28 13 -254 -1080 -636 15781 92244 153129 -1420044 -13447930 -48079342 110817639
AltRowLcmLcm k=0..n | T(n, k) | > 1missing1 1 1 1 3 10 75 840 24990 7077420 20515950 8197427700 37491431739300 658988595064800
AltRowGcdGcd k=0..n | T(n, k) | > 1missing1 1 1 1 3 10 5 7 7 2 3 11 11 13 13 1 1 34 17 19 19 1 1 23 23 1 5 1 3 29 29 31 31 2 1 1 1 37 37 1 1
AltRowMaxMax k=0..n | T(n, k) |missing1 0 1 1 3 10 25 105 490 1918 9450 56980 302995 1636635 12122110 81431350 510880370 4104160060
AltColMiddleT(n, n // 2)A2598771 0 -1 -1 3 10 -15 -105 105 1260 -945 -17325 10395 270270 -135135 -4729725 2027025 91891800
AltCentralET(2 n, n)A0011471 -1 3 -15 105 -945 10395 -135135 2027025 -34459425 654729075 -13749310575 316234143225
AltCentralOT(2 n + 1, n)A0004570 -1 10 -105 1260 -17325 270270 -4729725 91891800 -1964187225 45831035250 -1159525191825
AltColLeftT(n, 0)A0000071 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
AltColRightT(n, n)A0000071 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
AltBinConv k=0..n C(n, k) T(n, k)missing1 0 -2 -3 14 95 69 -2506 -16766 6495 949895 7070624 -7563117 -646135854 -5766448338 4025622145
AltInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kmissing1 0 2 -3 22 -105 681 -4858 38130 -328737 3064195 -30647496 327006747 -3701035286 44230746938
AltTransNat0 k=0..n T(n, k) kmissing0 0 -1 -1 5 19 4 -204 -813 -223 13601 74513 102596 -1309868 -11481133 -38140673 119456357
AltTransNat1 k=0..n T(n, k) (k + 1)missing1 0 -2 -2 7 28 13 -254 -1080 -636 15781 92244 153129 -1420044 -13447930 -48079342 110817639
AltTransSqrs k=0..n T(n, k) k^2missing0 0 -1 -1 11 39 -36 -722 -2255 3881 68153 276187 -202940 -9490456 -58021289 -82262593 1624828831
AltPosHalf k=0..n 2^n T(n, k) (1/2)^kA3341901 0 -2 -4 4 64 248 48 -6512 -51200 -171296 830400 17870400 144684032 441316224 -5976726784
AltNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kA3370381 0 2 -4 20 -96 552 -3536 25104 -194816 1637408 -14792768 142761280 -1464117760 15886137984
AltDiagRow1T(n + 1, n)A0635240 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
AltDiagRow2T(n + 2, n)missing0 -1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
AltDiagRow3T(n + 3, n)missing0 -1 10 -15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
AltDiagCol1T(n + 1, 1)A0000120 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
AltDiagCol2T(n + 2, 2)A0002470 0 3 10 25 56 119 246 501 1012 2035 4082 8177 16368 32751 65518 131053 262124 524267 1048554
AltDiagCol3T(n + 3, 3)A0004780 0 0 -15 -105 -490 -1918 -6825 -22935 -74316 -235092 -731731 -2252341 -6879678 -20900922 -63259533
AltPolysee docsmissing1 0 1 0 0 1 0 -1 0 1 0 -1 -2 0 1 0 2 -2 -3 0 1 0 9 10 -3 -4 0 1 0 9 38 24 -4 -5 0 1 0 -50 -22 87 44
AltPolyRow2 k=0..2 T(2, k) n^kA0000270 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25 -26
AltPolyRow3 k=0..3 T(3, k) n^kA0000270 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25 -26
AltPolyCol2 k=0..n T(n, k) 2^kmissing1 0 -2 -2 10 38 -22 -618 -1766 5798 68362 177846 -1171590 -13144250 -38045334 306530902 4044308698
AltPolyCol3 k=0..n T(n, k) 3^kmissing1 0 -3 -3 24 87 -183 -2334 -3657 52485 356046 -204735 -16177395 -86523024 287451681 6947570337
AltPolyDiag k=0..n T(n, k) n^kA3342431 0 -2 -3 44 245 -2346 -33278 186808 6888555 -6774910 -1986368439 -10227075420 738830661296
RevTriangleT(n, k), 0 ≤ k ≤ nmissing1 0 0 0 1 0 0 0 1 0 0 0 3 1 0 0 0 0 10 1 0 0 0 0 15 25 1 0 0 0 0 0 105 56 1 0 0 0 0 0 105 490 119 1
RevAccsee docsmissing1 0 0 0 1 1 0 0 1 1 0 0 3 4 4 0 0 0 10 11 11 0 0 0 15 40 41 41 0 0 0 0 105 161 162 162 0 0 0 0 105
RevAccRevsee docsmissing1 0 0 0 1 1 0 1 1 1 0 1 4 4 4 0 1 11 11 11 11 0 1 26 41 41 41 41 0 1 57 162 162 162 162 162 0 1 120
RevAntiDiagsee docsmissing1 0 0 0 0 1 0 0 0 0 0 1 0 0 3 0 0 0 0 1 0 0 0 10 0 0 0 0 15 1 0 0 0 0 25 0 0 0 0 0 105 1 0 0 0 0
RevDiffx1T(n, k) (k+1)missing1 0 0 0 2 0 0 0 3 0 0 0 9 4 0 0 0 0 40 5 0 0 0 0 60 125 6 0 0 0 0 0 525 336 7 0 0 0 0 0 525 2940
RevRowSum k=0..n T(n, k)A0002961 0 1 1 4 11 41 162 715 3425 17722 98253 580317 3633280 24011157 166888165 1216070380 9264071767
RevEvenSum k=0..n T(n, k) even(k)missing1 0 0 1 3 1 25 106 224 1919 9951 40261 315425 1871728 11022180 88413417 603715831 4492798353
RevOddSum k=0..n T(n, k) odd(k)missing0 0 1 0 1 10 16 56 491 1506 7771 57992 264892 1761552 12988977 78474748 612354549 4771273414
RevAltSum k=0..n T(n, k) (-1)^kA0005871 0 -1 1 2 -9 9 50 -267 413 2180 -17731 50533 110176 -1966797 9938669 -8638718 -278475061
RevAbsSum k=0..n | T(n, k) |A0002961 0 1 1 4 11 41 162 715 3425 17722 98253 580317 3633280 24011157 166888165 1216070380 9264071767
RevDiagSum k=0..n // 2 T(n - k, k)missing1 0 0 1 0 1 3 1 10 16 25 106 161 491 1379 2864 9696 24151 67876 213511 574277 1846087 5588330
RevAccSum k=0..n j=0..k T(n, j)missing1 0 2 2 11 32 137 590 2844 14712 81725 483628 3034561 20100316 140033402 1022791190 7809931507
RevAccRevSum k=0..n j=0..k T(n, n - j)missing1 0 2 3 13 45 191 868 4306 22963 130939 793661 5089877 34398884 244145110 1814307615 14079335333
RevRowLcmLcm k=0..n | T(n, k) | > 1missing1 1 1 1 3 10 75 840 24990 7077420 20515950 8197427700 37491431739300 658988595064800
RevRowGcdGcd k=0..n | T(n, k) | > 1missing1 1 1 1 3 10 5 7 7 2 3 11 11 13 13 1 1 34 17 19 19 1 1 23 23 1 5 1 3 29 29 31 31 2 1 1 1 37 37 1 1
RevRowMaxMax k=0..n | T(n, k) |missing1 0 1 1 3 10 25 105 490 1918 9450 56980 302995 1636635 12122110 81431350 510880370 4104160060
RevColMiddleT(n, n // 2)A1230231 0 1 0 3 0 15 0 105 0 945 0 10395 0 135135 0 2027025 0 34459425 0 654729075 0 13749310575 0
RevCentralET(2 n, n)A0011471 1 3 15 105 945 10395 135135 2027025 34459425 654729075 13749310575 316234143225 7905853580625
RevColLeftT(n, 0)A0000071 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RevColRightT(n, n)A0000071 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RevBinConv k=0..n C(n, k) T(n, k)missing1 0 2 3 22 105 681 4858 38130 328737 3064195 30647496 327006747 3701035286 44230746938 556023501335
RevInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kmissing1 0 -2 -3 14 95 69 -2506 -16766 6495 949895 7070624 -7563117 -646135854 -5766448338 4025622145
RevTransNat0 k=0..n T(n, k) kmissing0 0 1 2 9 34 150 706 3591 19538 113217 695408 4509560 30765604 220133953 1647419450 12863264953
RevTransNat1 k=0..n T(n, k) (k + 1)missing1 0 2 3 13 45 191 868 4306 22963 130939 793661 5089877 34398884 244145110 1814307615 14079335333
RevTransSqrs k=0..n T(n, k) k^2missing0 0 1 4 21 106 560 3116 18263 112666 730395 4965632 35327292 262454336 2032062513 16366106472
RevPosHalf k=0..n 2^n T(n, k) (1/2)^kA1946891 0 2 2 14 42 222 1066 6078 36490 238046 1653610 12214270 95361866 784071966 6764984362 61066919230
RevNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kmissing1 0 -2 -2 10 38 -22 -618 -1766 5798 68362 177846 -1171590 -13144250 -38045334 306530902 4044308698
RevDiagRow1T(n + 1, n)A0000120 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
RevDiagRow2T(n + 2, n)A0002470 0 3 10 25 56 119 246 501 1012 2035 4082 8177 16368 32751 65518 131053 262124 524267 1048554
RevDiagRow3T(n + 3, n)A0004780 0 0 15 105 490 1918 6825 22935 74316 235092 731731 2252341 6879678 20900922 63259533 190957923
RevDiagCol1T(n + 1, 1)A0635240 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RevDiagCol2T(n + 2, 2)missing0 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RevDiagCol3T(n + 3, 3)missing0 1 10 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RevPolysee docsmissing1 0 1 0 0 1 0 1 0 1 0 1 2 0 1 0 4 4 3 0 1 0 11 20 9 4 0 1 0 41 96 54 16 5 0 1 0 162 552 351 112 25
RevPolyRow2 k=0..2 T(2, k) n^kA0000270 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
RevPolyRow3 k=0..3 T(3, k) n^kA0002900 1 4 9 16 25 36 49 64 81 100 121 144 169 196 225 256 289 324 361 400 441 484 529 576 625 676 729
RevPolyCol2 k=0..n T(n, k) 2^kA3370381 0 2 4 20 96 552 3536 25104 194816 1637408 14792768 142761280 1464117760 15886137984 181667507456
RevPolyCol3 k=0..n T(n, k) 3^kA3370391 0 3 9 54 351 2673 22842 216513 2248965 25351704 307699965 3995419365 55207193328 808078734999
RevPolyDiag k=0..n T(n, k) n^kA3370431 0 2 9 112 1875 43416 1310946 49778688 2313362673 128894500000 8469572721533 647341071298560
 << TableSourceSimilarsIndex >> 

Note: The A-numbers are based on a finite number of numerical comparisons. They ignore the sign and the OEIS-offset. Sometimes they differ in the first few values. In such cases, we consider our version to be the better one because it has a common formula as a root. Since the offset of all triangles is 0 also the offset of all sequences is 0.