OEIS Similars: A008280, A108040, A236935, A239005
↕ Type | ↕ Trait | ↕ Anum | ↕ Sequence |
---|---|---|---|
Std | TriangleT(n, k), 0 ≤ k ≤ n | A008280 | 1 0 1 1 1 0 0 1 2 2 5 5 4 2 0 0 5 10 14 16 16 61 61 56 46 32 16 0 0 61 122 178 224 256 272 272 1385 |
Std | RevT(n, n - k), 0 ≤ k ≤ n | A108040 | 1 1 0 0 1 1 2 2 1 0 0 2 4 5 5 16 16 14 10 5 0 0 16 32 46 56 61 61 272 272 256 224 178 122 61 0 0 |
Std | Accsee docs | missing | 1 0 1 1 2 2 0 1 3 5 5 10 14 16 16 0 5 15 29 45 61 61 122 178 224 256 272 272 0 61 183 361 585 841 |
Std | AccRevsee docs | missing | 1 1 1 0 1 2 2 4 5 5 0 2 6 11 16 16 32 46 56 61 61 0 16 48 94 150 211 272 272 544 800 1024 1202 1324 |
Std | AntiDiagsee docs | missing | 1 0 1 1 0 1 5 1 0 0 5 2 61 5 4 2 0 61 10 2 1385 61 56 14 0 0 1385 122 46 16 50521 1385 1324 178 32 |
Std | Diffx1T(n, k) (k+1) | missing | 1 0 2 1 2 0 0 2 6 8 5 10 12 8 0 0 10 30 56 80 96 61 122 168 184 160 96 0 0 122 366 712 1120 1536 |
Std | RowSum∑ k=0..n T(n, k) | A000111 | 1 1 2 5 16 61 272 1385 7936 50521 353792 2702765 22368256 199360981 1903757312 19391512145 |
Std | EvenSum∑ k=0..n T(n, k) even(k) | missing | 1 0 1 2 9 26 149 618 4277 23122 188457 1257154 11812705 93774138 998765725 9196373210 109530858093 |
Std | OddSum∑ k=0..n T(n, k) odd(k) | missing | 0 1 1 3 7 35 123 767 3659 27399 165335 1445611 10555551 105586843 904991587 10195138935 |
Std | AltSum∑ k=0..n T(n, k) (-1)^k | missing | 1 -1 0 -1 2 -9 26 -149 618 -4277 23122 -188457 1257154 -11812705 93774138 -998765725 9196373210 |
Std | AbsSum∑ k=0..n | T(n, k) | | A000111 | 1 1 2 5 16 61 272 1385 7936 50521 353792 2702765 22368256 199360981 1903757312 19391512145 |
Std | DiagSum∑ k=0..n // 2 T(n - k, k) | missing | 1 0 2 1 6 7 72 73 1516 1569 53456 54733 2807796 2856541 204915576 207558625 19798267276 19994607513 |
Std | AccSum∑ k=0..n ∑ j=0..k T(n, j) | missing | 1 1 5 9 61 155 1385 4529 50521 201939 2702765 12767689 199360981 1086657403 19391512145 |
Std | AccRevSum∑ k=0..n ∑ j=0..k T(n, n - j) | missing | 1 2 3 16 35 272 791 7936 28839 353792 1542739 22368256 113794603 1903757312 11068604847 |
Std | RowLcmLcm k=0..n | T(n, k) | > 1 | missing | 1 1 1 2 20 560 314272 165389056 23981211622400 281812254093464320 122801591138088344632211198464 |
Std | RowGcdGcd k=0..n | T(n, k) | > 1 | A174965 | 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Std | RowMaxMax k=0..n | T(n, k) | | A000111 | 1 1 1 2 5 16 61 272 1385 7936 50521 353792 2702765 22368256 199360981 1903757312 19391512145 |
Std | ColMiddleT(n, n // 2) | missing | 1 0 1 1 4 10 46 178 1024 5296 36976 238816 1965664 15214480 144361456 1301989648 13997185024 |
Std | CentralET(2 n, n) | A000657 | 1 1 4 46 1024 36976 1965664 144361456 13997185024 1731678144256 266182076161024 49763143319190016 |
Std | CentralOT(2 n + 1, n) | A240561 | 0 1 10 178 5296 238816 15214480 1301989648 144118832896 20040052293376 3419989086092800 |
Std | ColLeftT(n, 0) | A122045 | 1 0 1 0 5 0 61 0 1385 0 50521 0 2702765 0 199360981 0 19391512145 0 2404879675441 0 370371188237525 |
Std | ColRightT(n, n) | A009006 | 1 1 0 2 0 16 0 272 0 7936 0 353792 0 22368256 0 1903757312 0 209865342976 0 29088885112832 0 |
Std | BinConv∑ k=0..n C(n, k) T(n, k) | A001586 | 1 1 3 11 57 361 2763 24611 250737 2873041 36581523 512343611 7828053417 129570724921 2309644635483 |
Std | TransNat0∑ k=0..n T(n, k) k | missing | 0 1 1 11 19 211 519 6551 20903 303271 1188947 19665491 91426347 1704396331 9164847535 190473830831 |
Std | TransNat1∑ k=0..n T(n, k) (k + 1) | missing | 1 2 3 16 35 272 791 7936 28839 353792 1542739 22368256 113794603 1903757312 11068604847 |
Std | TransSqrs∑ k=0..n T(n, k) k^2 | missing | 0 1 1 27 39 827 1611 35255 86795 2074623 6180615 163187203 570803583 16625298739 66789245683 |
Std | PosHalf∑ k=0..n 2^n T(n, k) (1/2)^k | missing | 1 1 6 10 140 264 7280 14288 680544 1353152 100760704 201167616 21738715648 43455063040 |
Std | NegHalf∑ k=0..n (-2)^n T(n, k) (-1/2)^k | missing | 1 1 2 2 52 40 2576 1808 235168 159424 34382720 23039744 7364990464 4917449728 2174275241984 |
Std | DiagRow1T(n + 1, n) | missing | 0 1 2 2 16 16 272 272 7936 7936 353792 353792 22368256 22368256 1903757312 1903757312 209865342976 |
Std | DiagRow2T(n + 2, n) | missing | 1 1 4 14 32 256 544 7664 15872 345856 707584 22014464 44736512 1881389056 3807514624 207961585664 |
Std | DiagRow3T(n + 3, n) | missing | 0 5 10 46 224 800 7120 23536 329984 1053440 21306880 66750976 1836652544 5688903680 204154071040 |
Std | DiagCol1T(n + 1, 1) | A241209 | 1 1 1 5 5 61 61 1385 1385 50521 50521 2702765 2702765 199360981 199360981 19391512145 19391512145 |
Std | DiagCol2T(n + 2, 2) | missing | 0 2 4 10 56 122 1324 2770 49136 101042 2652244 5405530 196658216 398721962 19192151164 38783024290 |
Std | DiagCol3T(n + 3, 3) | missing | 2 2 14 46 178 1202 4094 46366 150178 2551202 8057774 191252686 595380178 18793429202 57975175454 |
Std | Polysee docs | missing | 1 0 1 1 1 1 0 2 2 1 5 5 3 3 1 0 16 26 4 4 1 61 61 47 75 5 5 1 0 272 930 110 164 6 6 1 1385 1385 |
Std | PolyRow1∑ k=0..1 T(1, k) n^k | A000027 | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 |
Std | PolyRow2∑ k=0..2 T(2, k) n^k | A000027 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
Std | PolyRow3∑ k=0..3 T(3, k) n^k | A048395 | 0 5 26 75 164 305 510 791 1160 1629 2210 2915 3756 4745 5894 7215 8720 10421 12330 14459 16820 |
Std | PolyCol2∑ k=0..n T(n, k) 2^k | missing | 1 2 3 26 47 930 1799 66034 130683 7865098 15679675 1417772682 2832842599 360815821106 721432281231 |
Std | PolyCol3∑ k=0..n T(n, k) 3^k | missing | 1 3 4 75 110 5667 8470 879591 1318694 232328391 348467326 93487086147 140229277838 53282993599275 |
Std | PolyDiag∑ k=0..n T(n, k) n^k | missing | 1 1 3 75 217 62025 178267 260912099 744153009 3457039470993 9793388155331 111010187189605275 |
Alt | TriangleT(n, k), 0 ≤ k ≤ n | A008280 | 1 0 -1 1 -1 0 0 -1 2 -2 5 -5 4 -2 0 0 -5 10 -14 16 -16 61 -61 56 -46 32 -16 0 0 -61 122 -178 224 |
Alt | RevT(n, n - k), 0 ≤ k ≤ n | A108040 | 1 -1 0 0 -1 1 -2 2 -1 0 0 -2 4 -5 5 -16 16 -14 10 -5 0 0 -16 32 -46 56 -61 61 -272 272 -256 224 |
Alt | Accsee docs | missing | 1 0 -1 1 0 0 0 -1 1 -1 5 0 4 2 2 0 -5 5 -9 7 -9 61 0 56 10 42 26 26 0 -61 61 -117 107 -149 123 -149 |
Alt | AccRevsee docs | missing | 1 -1 -1 0 -1 0 -2 0 -1 -1 0 -2 2 -3 2 -16 0 -14 -4 -9 -9 0 -16 16 -30 26 -35 26 -272 0 -256 -32 |
Alt | AntiDiagsee docs | missing | 1 0 1 -1 0 -1 5 -1 0 0 -5 2 61 -5 4 -2 0 -61 10 -2 1385 -61 56 -14 0 0 -1385 122 -46 16 50521 -1385 |
Alt | Diffx1T(n, k) (k+1) | missing | 1 0 -2 1 -2 0 0 -2 6 -8 5 -10 12 -8 0 0 -10 30 -56 80 -96 61 -122 168 -184 160 -96 0 0 -122 366 |
Alt | RowSum∑ k=0..n T(n, k) | missing | 1 -1 0 -1 2 -9 26 -149 618 -4277 23122 -188457 1257154 -11812705 93774138 -998765725 9196373210 |
Alt | EvenSum∑ k=0..n T(n, k) even(k) | missing | 1 0 1 2 9 26 149 618 4277 23122 188457 1257154 11812705 93774138 998765725 9196373210 109530858093 |
Alt | OddSum∑ k=0..n T(n, k) odd(k) | missing | 0 -1 -1 -3 -7 -35 -123 -767 -3659 -27399 -165335 -1445611 -10555551 -105586843 -904991587 |
Alt | AltSum∑ k=0..n T(n, k) (-1)^k | A000111 | 1 1 2 5 16 61 272 1385 7936 50521 353792 2702765 22368256 199360981 1903757312 19391512145 |
Alt | AbsSum∑ k=0..n | T(n, k) | | A000111 | 1 1 2 5 16 61 272 1385 7936 50521 353792 2702765 22368256 199360981 1903757312 19391512145 |
Alt | DiagSum∑ k=0..n // 2 T(n - k, k) | missing | 1 0 0 -1 4 -3 58 -53 1366 -1293 50298 -48745 2698054 -2643321 199196506 -196340237 19382936806 |
Alt | AccSum∑ k=0..n ∑ j=0..k T(n, j) | missing | 1 -1 1 -1 13 -11 221 -185 6449 -5363 286745 -237601 18077749 -14945227 1534621813 -1266693769 |
Alt | AccRevSum∑ k=0..n ∑ j=0..k T(n, n - j) | missing | 1 -2 -1 -4 -1 -52 -13 -1156 -269 -41684 -9281 -2212340 -477593 -162245348 -34235605 -15712323556 |
Alt | RowLcmLcm k=0..n | T(n, k) | > 1 | missing | 1 1 1 2 20 560 314272 165389056 23981211622400 281812254093464320 122801591138088344632211198464 |
Alt | RowGcdGcd k=0..n | T(n, k) | > 1 | A174965 | 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Alt | RowMaxMax k=0..n | T(n, k) | | A000111 | 1 1 1 2 5 16 61 272 1385 7936 50521 353792 2702765 22368256 199360981 1903757312 19391512145 |
Alt | ColMiddleT(n, n // 2) | missing | 1 0 -1 -1 4 10 -46 -178 1024 5296 -36976 -238816 1965664 15214480 -144361456 -1301989648 |
Alt | CentralET(2 n, n) | A000657 | 1 -1 4 -46 1024 -36976 1965664 -144361456 13997185024 -1731678144256 266182076161024 |
Alt | CentralOT(2 n + 1, n) | A240561 | 0 -1 10 -178 5296 -238816 15214480 -1301989648 144118832896 -20040052293376 3419989086092800 |
Alt | ColLeftT(n, 0) | A122045 | 1 0 1 0 5 0 61 0 1385 0 50521 0 2702765 0 199360981 0 19391512145 0 2404879675441 0 370371188237525 |
Alt | ColRightT(n, n) | A009006 | 1 -1 0 -2 0 -16 0 -272 0 -7936 0 -353792 0 -22368256 0 -1903757312 0 -209865342976 0 |
Alt | InvBinConv∑ k=0..n C(n, k) T(n, n - k) (-1)^k | A001586 | 1 -1 3 -11 57 -361 2763 -24611 250737 -2873041 36581523 -512343611 7828053417 -129570724921 |
Alt | TransNat0∑ k=0..n T(n, k) k | missing | 0 -1 -1 -3 -3 -43 -39 -1007 -887 -37407 -32403 -2023883 -1734747 -150432643 -128009743 -14713557831 |
Alt | TransNat1∑ k=0..n T(n, k) (k + 1) | missing | 1 -2 -1 -4 -1 -52 -13 -1156 -269 -41684 -9281 -2212340 -477593 -162245348 -34235605 -15712323556 |
Alt | TransSqrs∑ k=0..n T(n, k) k^2 | missing | 0 -1 -1 -11 -7 -235 -139 -7527 -4267 -354543 -195975 -23236083 -12629983 -2028328931 -1089380787 |
Alt | PosHalf∑ k=0..n 2^n T(n, k) (1/2)^k | missing | 1 -1 2 -2 52 -40 2576 -1808 235168 -159424 34382720 -23039744 7364990464 -4917449728 2174275241984 |
Alt | NegHalf∑ k=0..n (-2)^n T(n, k) (-1/2)^k | missing | 1 -1 6 -10 140 -264 7280 -14288 680544 -1353152 100760704 -201167616 21738715648 -43455063040 |
Alt | DiagRow1T(n + 1, n) | missing | 0 -1 2 -2 16 -16 272 -272 7936 -7936 353792 -353792 22368256 -22368256 1903757312 -1903757312 |
Alt | DiagRow2T(n + 2, n) | missing | 1 -1 4 -14 32 -256 544 -7664 15872 -345856 707584 -22014464 44736512 -1881389056 3807514624 |
Alt | DiagRow3T(n + 3, n) | missing | 0 -5 10 -46 224 -800 7120 -23536 329984 -1053440 21306880 -66750976 1836652544 -5688903680 |
Alt | DiagCol1T(n + 1, 1) | A241209 | -1 -1 -1 -5 -5 -61 -61 -1385 -1385 -50521 -50521 -2702765 -2702765 -199360981 -199360981 |
Alt | DiagCol2T(n + 2, 2) | missing | 0 2 4 10 56 122 1324 2770 49136 101042 2652244 5405530 196658216 398721962 19192151164 38783024290 |
Alt | DiagCol3T(n + 3, 3) | missing | -2 -2 -14 -46 -178 -1202 -4094 -46366 -150178 -2551202 -8057774 -191252686 -595380178 -18793429202 |
Alt | Polysee docs | missing | 1 0 1 1 -1 1 0 0 -2 1 5 -1 -1 -3 1 0 2 -10 -2 -4 1 61 -9 -5 -39 -3 -5 1 0 26 -338 -28 -100 -4 -6 1 |
Alt | PolyRow1∑ k=0..1 T(1, k) n^k | A000027 | 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25 -26 |
Alt | PolyRow2∑ k=0..2 T(2, k) n^k | A000027 | 1 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25 -26 |
Alt | PolyRow3∑ k=0..3 T(3, k) n^k | A059722 | 0 -1 -10 -39 -100 -205 -366 -595 -904 -1305 -1810 -2431 -3180 -4069 -5110 -6315 -7696 -9265 -11034 |
Alt | PolyCol2∑ k=0..n T(n, k) 2^k | missing | 1 -2 -1 -10 -5 -338 -205 -23074 -14921 -2698874 -1782409 -481855738 -320336237 -121946944610 |
Alt | PolyCol3∑ k=0..n T(n, k) 3^k | missing | 1 -3 -2 -39 -28 -2895 -2156 -444531 -333052 -116903427 -87664940 -46939144863 -35203682956 |
Alt | PolyDiag∑ k=0..n T(n, k) n^k | missing | 1 -1 -1 -39 -79 -41525 -91169 -195823439 -450379487 -2766164252589 -6556820787089 |
Rev | TriangleT(n, k), 0 ≤ k ≤ n | A108040 | 1 1 0 0 1 1 2 2 1 0 0 2 4 5 5 16 16 14 10 5 0 0 16 32 46 56 61 61 272 272 256 224 178 122 61 0 0 |
Rev | Accsee docs | missing | 1 1 1 0 1 2 2 4 5 5 0 2 6 11 16 16 32 46 56 61 61 0 16 48 94 150 211 272 272 544 800 1024 1202 1324 |
Rev | AccRevsee docs | missing | 1 0 1 1 2 2 0 1 3 5 5 10 14 16 16 0 5 15 29 45 61 61 122 178 224 256 272 272 0 61 183 361 585 841 |
Rev | AntiDiagsee docs | missing | 1 1 0 0 2 1 0 2 1 16 2 1 0 16 4 0 272 16 14 5 0 272 32 10 5 7936 272 256 46 5 0 7936 544 224 56 0 |
Rev | Diffx1T(n, k) (k+1) | missing | 1 1 0 0 2 3 2 4 3 0 0 4 12 20 25 16 32 42 40 25 0 0 32 96 184 280 366 427 272 544 768 896 890 732 |
Rev | RowSum∑ k=0..n T(n, k) | A000111 | 1 1 2 5 16 61 272 1385 7936 50521 353792 2702765 22368256 199360981 1903757312 19391512145 |
Rev | EvenSum∑ k=0..n T(n, k) even(k) | missing | 1 1 1 3 9 35 149 767 4277 27399 188457 1445611 11812705 105586843 998765725 10195138935 |
Rev | OddSum∑ k=0..n T(n, k) odd(k) | missing | 0 0 1 2 7 26 123 618 3659 23122 165335 1257154 10555551 93774138 904991587 9196373210 100334484883 |
Rev | AltSum∑ k=0..n T(n, k) (-1)^k | missing | 1 1 0 1 2 9 26 149 618 4277 23122 188457 1257154 11812705 93774138 998765725 9196373210 |
Rev | AbsSum∑ k=0..n | T(n, k) | | A000111 | 1 1 2 5 16 61 272 1385 7936 50521 353792 2702765 22368256 199360981 1903757312 19391512145 |
Rev | DiagSum∑ k=0..n // 2 T(n - k, k) | missing | 1 1 0 3 3 19 20 307 319 8515 8760 370431 377991 23099023 23443100 1949542375 1971506347 |
Rev | AccSum∑ k=0..n ∑ j=0..k T(n, j) | missing | 1 2 3 16 35 272 791 7936 28839 353792 1542739 22368256 113794603 1903757312 11068604847 |
Rev | AccRevSum∑ k=0..n ∑ j=0..k T(n, n - j) | missing | 1 1 5 9 61 155 1385 4529 50521 201939 2702765 12767689 199360981 1086657403 19391512145 |
Rev | RowLcmLcm k=0..n | T(n, k) | > 1 | missing | 1 1 1 2 20 560 314272 165389056 23981211622400 281812254093464320 122801591138088344632211198464 |
Rev | RowGcdGcd k=0..n | T(n, k) | > 1 | A174965 | 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Rev | RowMaxMax k=0..n | T(n, k) | | A000111 | 1 1 1 2 5 16 61 272 1385 7936 50521 353792 2702765 22368256 199360981 1903757312 19391512145 |
Rev | ColMiddleT(n, n // 2) | A005437 | 1 1 1 2 4 14 46 224 1024 6320 36976 275792 1965664 17180144 144361456 1446351104 13997185024 |
Rev | CentralET(2 n, n) | A000657 | 1 1 4 46 1024 36976 1965664 144361456 13997185024 1731678144256 266182076161024 49763143319190016 |
Rev | CentralOT(2 n + 1, n) | missing | 1 2 14 224 6320 275792 17180144 1446351104 158116017920 21771730437632 3686171162253824 |
Rev | ColLeftT(n, 0) | A009006 | 1 1 0 2 0 16 0 272 0 7936 0 353792 0 22368256 0 1903757312 0 209865342976 0 29088885112832 0 |
Rev | ColRightT(n, n) | A122045 | 1 0 1 0 5 0 61 0 1385 0 50521 0 2702765 0 199360981 0 19391512145 0 2404879675441 0 370371188237525 |
Rev | BinConv∑ k=0..n C(n, k) T(n, k) | A001586 | 1 1 3 11 57 361 2763 24611 250737 2873041 36581523 512343611 7828053417 129570724921 2309644635483 |
Rev | TransNat0∑ k=0..n T(n, k) k | missing | 0 0 3 4 45 94 1113 3144 42585 151418 2348973 10064924 176992725 887296422 17487754833 100398851344 |
Rev | TransNat1∑ k=0..n T(n, k) (k + 1) | missing | 1 1 5 9 61 155 1385 4529 50521 201939 2702765 12767689 199360981 1086657403 19391512145 |
Rev | TransSqrs∑ k=0..n T(n, k) k^2 | missing | 0 0 5 6 143 242 5175 11406 260251 707946 17780875 57580966 1597600119 6002999922 183309947855 |
Rev | PosHalf∑ k=0..n 2^n T(n, k) (1/2)^k | missing | 1 2 3 26 47 930 1799 66034 130683 7865098 15679675 1417772682 2832842599 360815821106 721432281231 |
Rev | NegHalf∑ k=0..n (-2)^n T(n, k) (-1/2)^k | missing | 1 -2 -1 -10 -5 -338 -205 -23074 -14921 -2698874 -1782409 -481855738 -320336237 -121946944610 |
Rev | DiagRow1T(n + 1, n) | A241209 | 1 1 1 5 5 61 61 1385 1385 50521 50521 2702765 2702765 199360981 199360981 19391512145 19391512145 |
Rev | DiagRow2T(n + 2, n) | missing | 0 2 4 10 56 122 1324 2770 49136 101042 2652244 5405530 196658216 398721962 19192151164 38783024290 |
Rev | DiagRow3T(n + 3, n) | missing | 2 2 14 46 178 1202 4094 46366 150178 2551202 8057774 191252686 595380178 18793429202 57975175454 |
Rev | DiagCol1T(n + 1, 1) | missing | 0 1 2 2 16 16 272 272 7936 7936 353792 353792 22368256 22368256 1903757312 1903757312 209865342976 |
Rev | DiagCol2T(n + 2, 2) | missing | 1 1 4 14 32 256 544 7664 15872 345856 707584 22014464 44736512 1881389056 3807514624 207961585664 |
Rev | DiagCol3T(n + 3, 3) | missing | 0 5 10 46 224 800 7120 23536 329984 1053440 21306880 66750976 1836652544 5688903680 204154071040 |
Rev | Polysee docs | missing | 1 1 1 0 1 1 2 2 1 1 0 5 6 1 1 16 16 10 12 1 1 0 61 140 17 20 1 1 272 272 264 582 26 30 1 1 0 1385 |
Rev | PolyRow1∑ k=0..1 T(1, k) n^k | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Rev | PolyRow2∑ k=0..2 T(2, k) n^k | A002378 | 0 2 6 12 20 30 42 56 72 90 110 132 156 182 210 240 272 306 342 380 420 462 506 552 600 650 702 756 |
Rev | PolyRow3∑ k=0..3 T(3, k) n^k | A002522 | 2 5 10 17 26 37 50 65 82 101 122 145 170 197 226 257 290 325 362 401 442 485 530 577 626 677 730 |
Rev | PolyCol2∑ k=0..n T(n, k) 2^k | missing | 1 1 6 10 140 264 7280 14288 680544 1353152 100760704 201167616 21738715648 43455063040 |
Rev | PolyCol3∑ k=0..n T(n, k) 3^k | missing | 1 1 12 17 582 865 65406 97973 13483518 20221309 4444489830 6666557849 2144540364774 3216799363033 |
Rev | PolyDiag∑ k=0..n T(n, k) n^k | missing | 1 1 6 17 1672 4821 3404112 9745973 26532106368 75404331817 561154561362560 1585130919126105 |
<< | Table | Source | Similars | Index | >> |
Note: The A-numbers are based on a finite number of numerical comparisons. They ignore the sign and the OEIS-offset. Sometimes they differ in the first few values. In such cases, we consider our version to be the better one because it has a common formula as a root. Since the offset of all triangles is 0 also the offset of all sequences is 0.