OEIS Similars: A008281, A008282, A010094
↕ Type | ↕ Trait | ↕ Anum | ↕ Sequence |
---|---|---|---|
Std | TriangleT(n, k), 0 ≤ k ≤ n | A008281 | 1 0 1 0 1 1 0 1 2 2 0 2 4 5 5 0 5 10 14 16 16 0 16 32 46 56 61 61 0 61 122 178 224 256 272 272 0 |
Std | RevT(n, n - k), 0 ≤ k ≤ n | missing | 1 1 0 1 1 0 2 2 1 0 5 5 4 2 0 16 16 14 10 5 0 61 61 56 46 32 16 0 272 272 256 224 178 122 61 0 1385 |
Std | Accsee docs | missing | 1 0 1 0 1 2 0 1 3 5 0 2 6 11 16 0 5 15 29 45 61 0 16 48 94 150 211 272 0 61 183 361 585 841 1113 |
Std | AccRevsee docs | A008282 | 1 1 1 1 2 2 2 4 5 5 5 10 14 16 16 16 32 46 56 61 61 61 122 178 224 256 272 272 272 544 800 1024 |
Std | AntiDiagsee docs | missing | 1 0 0 1 0 1 0 1 1 0 2 2 0 5 4 2 0 16 10 5 0 61 32 14 5 0 272 122 46 16 0 1385 544 178 56 16 0 7936 |
Std | Diffx1T(n, k) (k+1) | missing | 1 0 2 0 2 3 0 2 6 8 0 4 12 20 25 0 10 30 56 80 96 0 32 96 184 280 366 427 0 122 366 712 1120 1536 |
Std | RowSum∑ k=0..n T(n, k) | A000111 | 1 1 2 5 16 61 272 1385 7936 50521 353792 2702765 22368256 199360981 1903757312 19391512145 |
Std | EvenSum∑ k=0..n T(n, k) even(k) | missing | 1 0 1 2 9 26 149 618 4277 23122 188457 1257154 11812705 93774138 998765725 9196373210 109530858093 |
Std | OddSum∑ k=0..n T(n, k) odd(k) | missing | 0 1 1 3 7 35 123 767 3659 27399 165335 1445611 10555551 105586843 904991587 10195138935 |
Std | AltSum∑ k=0..n T(n, k) (-1)^k | missing | 1 -1 0 -1 2 -9 26 -149 618 -4277 23122 -188457 1257154 -11812705 93774138 -998765725 9196373210 |
Std | AbsSum∑ k=0..n | T(n, k) | | A000111 | 1 1 2 5 16 61 272 1385 7936 50521 353792 2702765 22368256 199360981 1903757312 19391512145 |
Std | DiagSum∑ k=0..n // 2 T(n - k, k) | missing | 1 0 1 1 2 4 11 31 112 456 2179 11791 71828 485140 3599099 29069251 253828828 2381859192 23897803987 |
Std | AccSum∑ k=0..n ∑ j=0..k T(n, j) | A034428 | 1 1 3 9 35 155 791 4529 28839 201939 1542739 12767689 113794603 1086657403 11068604847 119790363489 |
Std | AccRevSum∑ k=0..n ∑ j=0..k T(n, n - j) | A000111 | 1 2 5 16 61 272 1385 7936 50521 353792 2702765 22368256 199360981 1903757312 19391512145 |
Std | RowLcmLcm k=0..n | T(n, k) | > 1 | missing | 1 1 1 2 20 560 314272 165389056 23981211622400 281812254093464320 122801591138088344632211198464 |
Std | RowGcdGcd k=0..n | T(n, k) | > 1 | A174965 | 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Std | RowMaxMax k=0..n | T(n, k) | | A000111 | 1 1 1 2 5 16 61 272 1385 7936 50521 353792 2702765 22368256 199360981 1903757312 19391512145 |
Std | ColMiddleT(n, n // 2) | missing | 1 0 1 1 4 10 46 178 1024 5296 36976 238816 1965664 15214480 144361456 1301989648 13997185024 |
Std | CentralET(2 n, n) | A000657 | 1 1 4 46 1024 36976 1965664 144361456 13997185024 1731678144256 266182076161024 49763143319190016 |
Std | CentralOT(2 n + 1, n) | A240561 | 0 1 10 178 5296 238816 15214480 1301989648 144118832896 20040052293376 3419989086092800 |
Std | ColLeftT(n, 0) | A000007 | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Std | ColRightT(n, n) | A000111 | 1 1 1 2 5 16 61 272 1385 7936 50521 353792 2702765 22368256 199360981 1903757312 19391512145 |
Std | BinConv∑ k=0..n C(n, k) T(n, k) | A001586 | 1 1 3 11 57 361 2763 24611 250737 2873041 36581523 512343611 7828053417 129570724921 2309644635483 |
Std | TransNat0∑ k=0..n T(n, k) k | missing | 0 1 3 11 45 211 1113 6551 42585 303271 2348973 19665491 176992725 1704396331 17487754833 |
Std | TransNat1∑ k=0..n T(n, k) (k + 1) | A000111 | 1 2 5 16 61 272 1385 7936 50521 353792 2702765 22368256 199360981 1903757312 19391512145 |
Std | TransSqrs∑ k=0..n T(n, k) k^2 | missing | 0 1 5 27 143 827 5175 35255 260251 2074623 17780875 163187203 1597600119 16625298739 183309947855 |
Std | PosHalf∑ k=0..n 2^n T(n, k) (1/2)^k | missing | 1 1 3 10 47 264 1799 14288 130683 1353152 15679675 201167616 2832842599 43455063040 721432281231 |
Std | NegHalf∑ k=0..n (-2)^n T(n, k) (-1/2)^k | missing | 1 1 -1 2 -5 40 -205 1808 -14921 159424 -1782409 23039744 -320336237 4917449728 -81231509413 |
Std | DiagRow1T(n + 1, n) | A000111 | 0 1 2 5 16 61 272 1385 7936 50521 353792 2702765 22368256 199360981 1903757312 19391512145 |
Std | DiagRow2T(n + 2, n) | A006212 | 0 1 4 14 56 256 1324 7664 49136 345856 2652244 22014464 196658216 1881389056 19192151164 |
Std | DiagRow3T(n + 3, n) | A006213 | 0 2 10 46 224 1202 7120 46366 329984 2551202 21306880 191252686 1836652544 18793429202 204154071040 |
Std | DiagCol1T(n + 1, 1) | A000111 | 1 1 1 2 5 16 61 272 1385 7936 50521 353792 2702765 22368256 199360981 1903757312 19391512145 |
Std | DiagCol2T(n + 2, 2) | A001250 | 1 2 4 10 32 122 544 2770 15872 101042 707584 5405530 44736512 398721962 3807514624 38783024290 |
Std | DiagCol3T(n + 3, 3) | A006216 | 2 5 14 46 178 800 4094 23536 150178 1053440 8057774 66750976 595380178 5688903680 57975175454 |
Std | Polysee docs | missing | 1 0 1 0 1 1 0 2 2 1 0 5 6 3 1 0 16 26 12 4 1 0 61 140 75 20 5 1 0 272 930 582 164 30 6 1 0 1385 |
Std | PolyRow1∑ k=0..1 T(1, k) n^k | A000027 | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 |
Std | PolyRow2∑ k=0..2 T(2, k) n^k | A002378 | 0 2 6 12 20 30 42 56 72 90 110 132 156 182 210 240 272 306 342 380 420 462 506 552 600 650 702 756 |
Std | PolyRow3∑ k=0..3 T(3, k) n^k | A048395 | 0 5 26 75 164 305 510 791 1160 1629 2210 2915 3756 4745 5894 7215 8720 10421 12330 14459 16820 |
Std | PolyCol2∑ k=0..n T(n, k) 2^k | missing | 1 2 6 26 140 930 7280 66034 680544 7865098 100760704 1417772682 21738715648 360815821106 |
Std | PolyCol3∑ k=0..n T(n, k) 3^k | missing | 1 3 12 75 582 5667 65406 879591 13483518 232328391 4444489830 93487086147 2144540364774 |
Std | PolyDiag∑ k=0..n T(n, k) n^k | missing | 1 1 6 75 1672 62025 3404112 260912099 26532106368 3457039470993 561154561362560 111010187189605275 |
Alt | TriangleT(n, k), 0 ≤ k ≤ n | A008281 | 1 0 -1 0 -1 1 0 -1 2 -2 0 -2 4 -5 5 0 -5 10 -14 16 -16 0 -16 32 -46 56 -61 61 0 -61 122 -178 224 |
Alt | RevT(n, n - k), 0 ≤ k ≤ n | missing | 1 -1 0 1 -1 0 -2 2 -1 0 5 -5 4 -2 0 -16 16 -14 10 -5 0 61 -61 56 -46 32 -16 0 -272 272 -256 224 |
Alt | Accsee docs | missing | 1 0 -1 0 -1 0 0 -1 1 -1 0 -2 2 -3 2 0 -5 5 -9 7 -9 0 -16 16 -30 26 -35 26 0 -61 61 -117 107 -149 |
Alt | AccRevsee docs | missing | 1 -1 -1 1 0 0 -2 0 -1 -1 5 0 4 2 2 -16 0 -14 -4 -9 -9 61 0 56 10 42 26 26 -272 0 -256 -32 -210 -88 |
Alt | AntiDiagsee docs | missing | 1 0 0 -1 0 -1 0 -1 1 0 -2 2 0 -5 4 -2 0 -16 10 -5 0 -61 32 -14 5 0 -272 122 -46 16 0 -1385 544 -178 |
Alt | Diffx1T(n, k) (k+1) | missing | 1 0 -2 0 -2 3 0 -2 6 -8 0 -4 12 -20 25 0 -10 30 -56 80 -96 0 -32 96 -184 280 -366 427 0 -122 366 |
Alt | RowSum∑ k=0..n T(n, k) | missing | 1 -1 0 -1 2 -9 26 -149 618 -4277 23122 -188457 1257154 -11812705 93774138 -998765725 9196373210 |
Alt | EvenSum∑ k=0..n T(n, k) even(k) | missing | 1 0 1 2 9 26 149 618 4277 23122 188457 1257154 11812705 93774138 998765725 9196373210 109530858093 |
Alt | OddSum∑ k=0..n T(n, k) odd(k) | missing | 0 -1 -1 -3 -7 -35 -123 -767 -3659 -27399 -165335 -1445611 -10555551 -105586843 -904991587 |
Alt | AltSum∑ k=0..n T(n, k) (-1)^k | A000111 | 1 1 2 5 16 61 272 1385 7936 50521 353792 2702765 22368256 199360981 1903757312 19391512145 |
Alt | AbsSum∑ k=0..n | T(n, k) | | A000111 | 1 1 2 5 16 61 272 1385 7936 50521 353792 2702765 22368256 199360981 1903757312 19391512145 |
Alt | DiagSum∑ k=0..n // 2 T(n - k, k) | missing | 1 0 -1 -1 0 0 -3 -11 -38 -180 -979 -5803 -37914 -271920 -2119971 -17850863 -161501642 -1562629860 |
Alt | AccSum∑ k=0..n ∑ j=0..k T(n, j) | missing | 1 -1 -1 -1 -1 -11 -13 -185 -269 -5363 -9281 -237601 -477593 -14945227 -34235605 -1266693769 |
Alt | AccRevSum∑ k=0..n ∑ j=0..k T(n, n - j) | missing | 1 -2 1 -4 13 -52 221 -1156 6449 -41684 286745 -2212340 18077749 -162245348 1534621813 -15712323556 |
Alt | RowLcmLcm k=0..n | T(n, k) | > 1 | missing | 1 1 1 2 20 560 314272 165389056 23981211622400 281812254093464320 122801591138088344632211198464 |
Alt | RowGcdGcd k=0..n | T(n, k) | > 1 | A174965 | 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Alt | RowMaxMax k=0..n | T(n, k) | | A000111 | 1 1 1 2 5 16 61 272 1385 7936 50521 353792 2702765 22368256 199360981 1903757312 19391512145 |
Alt | ColMiddleT(n, n // 2) | missing | 1 0 -1 -1 4 10 -46 -178 1024 5296 -36976 -238816 1965664 15214480 -144361456 -1301989648 |
Alt | CentralET(2 n, n) | A000657 | 1 -1 4 -46 1024 -36976 1965664 -144361456 13997185024 -1731678144256 266182076161024 |
Alt | CentralOT(2 n + 1, n) | A240561 | 0 -1 10 -178 5296 -238816 15214480 -1301989648 144118832896 -20040052293376 3419989086092800 |
Alt | ColLeftT(n, 0) | A000007 | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Alt | ColRightT(n, n) | A000111 | 1 -1 1 -2 5 -16 61 -272 1385 -7936 50521 -353792 2702765 -22368256 199360981 -1903757312 |
Alt | InvBinConv∑ k=0..n C(n, k) T(n, n - k) (-1)^k | A001586 | 1 -1 3 -11 57 -361 2763 -24611 250737 -2873041 36581523 -512343611 7828053417 -129570724921 |
Alt | TransNat0∑ k=0..n T(n, k) k | missing | 0 -1 1 -3 11 -43 195 -1007 5831 -37407 263623 -2023883 16820595 -150432643 1440847675 -14713557831 |
Alt | TransNat1∑ k=0..n T(n, k) (k + 1) | missing | 1 -2 1 -4 13 -52 221 -1156 6449 -41684 286745 -2212340 18077749 -162245348 1534621813 -15712323556 |
Alt | TransSqrs∑ k=0..n T(n, k) k^2 | missing | 0 -1 3 -11 49 -235 1265 -7527 49477 -354543 2764285 -23236083 210034121 -2028328931 20874623065 |
Alt | PosHalf∑ k=0..n 2^n T(n, k) (1/2)^k | missing | 1 -1 -1 -2 -5 -40 -205 -1808 -14921 -159424 -1782409 -23039744 -320336237 -4917449728 -81231509413 |
Alt | NegHalf∑ k=0..n (-2)^n T(n, k) (-1/2)^k | missing | 1 -1 3 -10 47 -264 1799 -14288 130683 -1353152 15679675 -201167616 2832842599 -43455063040 |
Alt | DiagRow1T(n + 1, n) | A000111 | 0 -1 2 -5 16 -61 272 -1385 7936 -50521 353792 -2702765 22368256 -199360981 1903757312 -19391512145 |
Alt | DiagRow2T(n + 2, n) | A006212 | 0 -1 4 -14 56 -256 1324 -7664 49136 -345856 2652244 -22014464 196658216 -1881389056 19192151164 |
Alt | DiagRow3T(n + 3, n) | A006213 | 0 -2 10 -46 224 -1202 7120 -46366 329984 -2551202 21306880 -191252686 1836652544 -18793429202 |
Alt | DiagCol1T(n + 1, 1) | A000111 | -1 -1 -1 -2 -5 -16 -61 -272 -1385 -7936 -50521 -353792 -2702765 -22368256 -199360981 -1903757312 |
Alt | DiagCol2T(n + 2, 2) | A001250 | 1 2 4 10 32 122 544 2770 15872 101042 707584 5405530 44736512 398721962 3807514624 38783024290 |
Alt | DiagCol3T(n + 3, 3) | A006216 | -2 -5 -14 -46 -178 -800 -4094 -23536 -150178 -1053440 -8057774 -66750976 -595380178 -5688903680 |
Alt | Polysee docs | missing | 1 0 1 0 -1 1 0 0 -2 1 0 -1 2 -3 1 0 2 -10 6 -4 1 0 -9 52 -39 12 -5 1 0 26 -338 300 -100 20 -6 1 0 |
Alt | PolyRow1∑ k=0..1 T(1, k) n^k | A000027 | 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25 -26 |
Alt | PolyRow2∑ k=0..2 T(2, k) n^k | A002378 | 0 0 2 6 12 20 30 42 56 72 90 110 132 156 182 210 240 272 306 342 380 420 462 506 552 600 650 702 |
Alt | PolyRow3∑ k=0..3 T(3, k) n^k | A059722 | 0 -1 -10 -39 -100 -205 -366 -595 -904 -1305 -1810 -2431 -3180 -4069 -5110 -6315 -7696 -9265 -11034 |
Alt | PolyCol2∑ k=0..n T(n, k) 2^k | missing | 1 -2 2 -10 52 -338 2576 -23074 235168 -2698874 34382720 -481855738 7364990464 -121946944610 |
Alt | PolyCol3∑ k=0..n T(n, k) 3^k | missing | 1 -3 6 -39 300 -2895 33180 -444531 6796524 -116903427 2233586364 -46939144863 1076013642108 |
Alt | PolyDiag∑ k=0..n T(n, k) n^k | missing | 1 -1 2 -39 1016 -41525 2435376 -195823439 20643397504 -2766164252589 459177798931840 |
Rev | TriangleT(n, k), 0 ≤ k ≤ n | missing | 1 1 0 1 1 0 2 2 1 0 5 5 4 2 0 16 16 14 10 5 0 61 61 56 46 32 16 0 272 272 256 224 178 122 61 0 1385 |
Rev | Accsee docs | A008282 | 1 1 1 1 2 2 2 4 5 5 5 10 14 16 16 16 32 46 56 61 61 61 122 178 224 256 272 272 272 544 800 1024 |
Rev | AccRevsee docs | missing | 1 0 1 0 1 2 0 1 3 5 0 2 6 11 16 0 5 15 29 45 61 0 16 48 94 150 211 272 0 61 183 361 585 841 1113 |
Rev | AntiDiagsee docs | missing | 1 1 1 0 2 1 5 2 0 16 5 1 61 16 4 0 272 61 14 2 1385 272 56 10 0 7936 1385 256 46 5 50521 7936 1324 |
Rev | Diffx1T(n, k) (k+1) | missing | 1 1 0 1 2 0 2 4 3 0 5 10 12 8 0 16 32 42 40 25 0 61 122 168 184 160 96 0 272 544 768 896 890 732 |
Rev | RowSum∑ k=0..n T(n, k) | A000111 | 1 1 2 5 16 61 272 1385 7936 50521 353792 2702765 22368256 199360981 1903757312 19391512145 |
Rev | EvenSum∑ k=0..n T(n, k) even(k) | missing | 1 1 1 3 9 35 149 767 4277 27399 188457 1445611 11812705 105586843 998765725 10195138935 |
Rev | OddSum∑ k=0..n T(n, k) odd(k) | missing | 0 0 1 2 7 26 123 618 3659 23122 165335 1257154 10555551 93774138 904991587 9196373210 100334484883 |
Rev | AltSum∑ k=0..n T(n, k) (-1)^k | missing | 1 1 0 1 2 9 26 149 618 4277 23122 188457 1257154 11812705 93774138 998765725 9196373210 |
Rev | AbsSum∑ k=0..n | T(n, k) | | A000111 | 1 1 2 5 16 61 272 1385 7936 50521 353792 2702765 22368256 199360981 1903757312 19391512145 |
Rev | DiagSum∑ k=0..n // 2 T(n - k, k) | missing | 1 1 1 3 7 22 81 349 1723 9628 60037 413373 3113959 25470424 224759577 2128031749 21515944795 |
Rev | AccSum∑ k=0..n ∑ j=0..k T(n, j) | A000111 | 1 2 5 16 61 272 1385 7936 50521 353792 2702765 22368256 199360981 1903757312 19391512145 |
Rev | AccRevSum∑ k=0..n ∑ j=0..k T(n, n - j) | A034428 | 1 1 3 9 35 155 791 4529 28839 201939 1542739 12767689 113794603 1086657403 11068604847 119790363489 |
Rev | RowLcmLcm k=0..n | T(n, k) | > 1 | missing | 1 1 1 2 20 560 314272 165389056 23981211622400 281812254093464320 122801591138088344632211198464 |
Rev | RowGcdGcd k=0..n | T(n, k) | > 1 | A174965 | 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Rev | RowMaxMax k=0..n | T(n, k) | | A000111 | 1 1 1 2 5 16 61 272 1385 7936 50521 353792 2702765 22368256 199360981 1903757312 19391512145 |
Rev | ColMiddleT(n, n // 2) | A005437 | 1 1 1 2 4 14 46 224 1024 6320 36976 275792 1965664 17180144 144361456 1446351104 13997185024 |
Rev | CentralET(2 n, n) | A000657 | 1 1 4 46 1024 36976 1965664 144361456 13997185024 1731678144256 266182076161024 49763143319190016 |
Rev | CentralOT(2 n + 1, n) | missing | 1 2 14 224 6320 275792 17180144 1446351104 158116017920 21771730437632 3686171162253824 |
Rev | ColLeftT(n, 0) | A000111 | 1 1 1 2 5 16 61 272 1385 7936 50521 353792 2702765 22368256 199360981 1903757312 19391512145 |
Rev | ColRightT(n, n) | A000007 | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Rev | BinConv∑ k=0..n C(n, k) T(n, k) | A001586 | 1 1 3 11 57 361 2763 24611 250737 2873041 36581523 512343611 7828053417 129570724921 2309644635483 |
Rev | TransNat0∑ k=0..n T(n, k) k | A278678 | 0 0 1 4 19 94 519 3144 20903 151418 1188947 10064924 91426347 887296422 9164847535 100398851344 |
Rev | TransNat1∑ k=0..n T(n, k) (k + 1) | A034428 | 1 1 3 9 35 155 791 4529 28839 201939 1542739 12767689 113794603 1086657403 11068604847 119790363489 |
Rev | TransSqrs∑ k=0..n T(n, k) k^2 | missing | 0 0 1 6 39 242 1611 11406 86795 707946 6180615 57580966 570803583 6002999922 66789245683 |
Rev | PosHalf∑ k=0..n 2^n T(n, k) (1/2)^k | missing | 1 2 6 26 140 930 7280 66034 680544 7865098 100760704 1417772682 21738715648 360815821106 |
Rev | NegHalf∑ k=0..n (-2)^n T(n, k) (-1/2)^k | missing | 1 -2 2 -10 52 -338 2576 -23074 235168 -2698874 34382720 -481855738 7364990464 -121946944610 |
Rev | DiagRow1T(n + 1, n) | A000111 | 1 1 1 2 5 16 61 272 1385 7936 50521 353792 2702765 22368256 199360981 1903757312 19391512145 |
Rev | DiagRow2T(n + 2, n) | A001250 | 1 2 4 10 32 122 544 2770 15872 101042 707584 5405530 44736512 398721962 3807514624 38783024290 |
Rev | DiagRow3T(n + 3, n) | A006216 | 2 5 14 46 178 800 4094 23536 150178 1053440 8057774 66750976 595380178 5688903680 57975175454 |
Rev | DiagCol1T(n + 1, 1) | A000111 | 0 1 2 5 16 61 272 1385 7936 50521 353792 2702765 22368256 199360981 1903757312 19391512145 |
Rev | DiagCol2T(n + 2, 2) | A006212 | 0 1 4 14 56 256 1324 7664 49136 345856 2652244 22014464 196658216 1881389056 19192151164 |
Rev | DiagCol3T(n + 3, 3) | A006213 | 0 2 10 46 224 1202 7120 46366 329984 2551202 21306880 191252686 1836652544 18793429202 204154071040 |
Rev | Polysee docs | missing | 1 1 1 1 1 1 2 2 1 1 5 5 3 1 1 16 16 10 4 1 1 61 61 47 17 5 1 1 272 272 264 110 26 6 1 1 1385 1385 |
Rev | PolyRow1∑ k=0..1 T(1, k) n^k | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Rev | PolyRow2∑ k=0..2 T(2, k) n^k | A000027 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
Rev | PolyRow3∑ k=0..3 T(3, k) n^k | A002522 | 2 5 10 17 26 37 50 65 82 101 122 145 170 197 226 257 290 325 362 401 442 485 530 577 626 677 730 |
Rev | PolyCol2∑ k=0..n T(n, k) 2^k | missing | 1 1 3 10 47 264 1799 14288 130683 1353152 15679675 201167616 2832842599 43455063040 721432281231 |
Rev | PolyCol3∑ k=0..n T(n, k) 3^k | missing | 1 1 4 17 110 865 8470 97973 1318694 20221309 348467326 6666557849 140229277838 3216799363033 |
Rev | PolyDiag∑ k=0..n T(n, k) n^k | missing | 1 1 3 17 217 4821 178267 9745973 744153009 75404331817 9793388155331 1585130919126105 |
<< | Table | Source | Similars | Index | >> |
Note: The A-numbers are based on a finite number of numerical comparisons. They ignore the sign and the OEIS-offset. Sometimes they differ in the first few values. In such cases, we consider our version to be the better one because it has a common formula as a root. Since the offset of all triangles is 0 also the offset of all sequences is 0.