SEIDEL[0] 1
[1] 0, 1
[2] 0, 1, 1
[3] 0, 1, 2, 2
[4] 0, 2, 4, 5, 5
[5] 0, 5, 10, 14, 16, 16

      OEIS Similars: A008281, A008282, A010094

↕ Type↕ Trait↕ Anum↕ Sequence
StdTriangleT(n, k), 0 ≤ k ≤ nA0082811 0 1 0 1 1 0 1 2 2 0 2 4 5 5 0 5 10 14 16 16 0 16 32 46 56 61 61 0 61 122 178 224 256 272 272 0
StdRevT(n, n - k), 0 ≤ k ≤ nmissing1 1 0 1 1 0 2 2 1 0 5 5 4 2 0 16 16 14 10 5 0 61 61 56 46 32 16 0 272 272 256 224 178 122 61 0 1385
StdAccsee docsmissing1 0 1 0 1 2 0 1 3 5 0 2 6 11 16 0 5 15 29 45 61 0 16 48 94 150 211 272 0 61 183 361 585 841 1113
StdAccRevsee docsA0082821 1 1 1 2 2 2 4 5 5 5 10 14 16 16 16 32 46 56 61 61 61 122 178 224 256 272 272 272 544 800 1024
StdAntiDiagsee docsmissing1 0 0 1 0 1 0 1 1 0 2 2 0 5 4 2 0 16 10 5 0 61 32 14 5 0 272 122 46 16 0 1385 544 178 56 16 0 7936
StdDiffx1T(n, k) (k+1)missing1 0 2 0 2 3 0 2 6 8 0 4 12 20 25 0 10 30 56 80 96 0 32 96 184 280 366 427 0 122 366 712 1120 1536
StdRowSum k=0..n T(n, k)A0001111 1 2 5 16 61 272 1385 7936 50521 353792 2702765 22368256 199360981 1903757312 19391512145
StdEvenSum k=0..n T(n, k) even(k)missing1 0 1 2 9 26 149 618 4277 23122 188457 1257154 11812705 93774138 998765725 9196373210 109530858093
StdOddSum k=0..n T(n, k) odd(k)missing0 1 1 3 7 35 123 767 3659 27399 165335 1445611 10555551 105586843 904991587 10195138935
StdAltSum k=0..n T(n, k) (-1)^kmissing1 -1 0 -1 2 -9 26 -149 618 -4277 23122 -188457 1257154 -11812705 93774138 -998765725 9196373210
StdAbsSum k=0..n | T(n, k) |A0001111 1 2 5 16 61 272 1385 7936 50521 353792 2702765 22368256 199360981 1903757312 19391512145
StdDiagSum k=0..n // 2 T(n - k, k)missing1 0 1 1 2 4 11 31 112 456 2179 11791 71828 485140 3599099 29069251 253828828 2381859192 23897803987
StdAccSum k=0..n j=0..k T(n, j)A0344281 1 3 9 35 155 791 4529 28839 201939 1542739 12767689 113794603 1086657403 11068604847 119790363489
StdAccRevSum k=0..n j=0..k T(n, n - j)A0001111 2 5 16 61 272 1385 7936 50521 353792 2702765 22368256 199360981 1903757312 19391512145
StdRowLcmLcm k=0..n | T(n, k) | > 1missing1 1 1 2 20 560 314272 165389056 23981211622400 281812254093464320 122801591138088344632211198464
StdRowGcdGcd k=0..n | T(n, k) | > 1A1749651 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
StdRowMaxMax k=0..n | T(n, k) |A0001111 1 1 2 5 16 61 272 1385 7936 50521 353792 2702765 22368256 199360981 1903757312 19391512145
StdColMiddleT(n, n // 2)missing1 0 1 1 4 10 46 178 1024 5296 36976 238816 1965664 15214480 144361456 1301989648 13997185024
StdCentralET(2 n, n)A0006571 1 4 46 1024 36976 1965664 144361456 13997185024 1731678144256 266182076161024 49763143319190016
StdCentralOT(2 n + 1, n)A2405610 1 10 178 5296 238816 15214480 1301989648 144118832896 20040052293376 3419989086092800
StdColLeftT(n, 0)A0000071 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
StdColRightT(n, n)A0001111 1 1 2 5 16 61 272 1385 7936 50521 353792 2702765 22368256 199360981 1903757312 19391512145
StdBinConv k=0..n C(n, k) T(n, k)A0015861 1 3 11 57 361 2763 24611 250737 2873041 36581523 512343611 7828053417 129570724921 2309644635483
StdTransNat0 k=0..n T(n, k) kmissing0 1 3 11 45 211 1113 6551 42585 303271 2348973 19665491 176992725 1704396331 17487754833
StdTransNat1 k=0..n T(n, k) (k + 1)A0001111 2 5 16 61 272 1385 7936 50521 353792 2702765 22368256 199360981 1903757312 19391512145
StdTransSqrs k=0..n T(n, k) k^2missing0 1 5 27 143 827 5175 35255 260251 2074623 17780875 163187203 1597600119 16625298739 183309947855
StdPosHalf k=0..n 2^n T(n, k) (1/2)^kmissing1 1 3 10 47 264 1799 14288 130683 1353152 15679675 201167616 2832842599 43455063040 721432281231
StdNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kmissing1 1 -1 2 -5 40 -205 1808 -14921 159424 -1782409 23039744 -320336237 4917449728 -81231509413
StdDiagRow1T(n + 1, n)A0001110 1 2 5 16 61 272 1385 7936 50521 353792 2702765 22368256 199360981 1903757312 19391512145
StdDiagRow2T(n + 2, n)A0062120 1 4 14 56 256 1324 7664 49136 345856 2652244 22014464 196658216 1881389056 19192151164
StdDiagRow3T(n + 3, n)A0062130 2 10 46 224 1202 7120 46366 329984 2551202 21306880 191252686 1836652544 18793429202 204154071040
StdDiagCol1T(n + 1, 1)A0001111 1 1 2 5 16 61 272 1385 7936 50521 353792 2702765 22368256 199360981 1903757312 19391512145
StdDiagCol2T(n + 2, 2)A0012501 2 4 10 32 122 544 2770 15872 101042 707584 5405530 44736512 398721962 3807514624 38783024290
StdDiagCol3T(n + 3, 3)A0062162 5 14 46 178 800 4094 23536 150178 1053440 8057774 66750976 595380178 5688903680 57975175454
StdPolysee docsmissing1 0 1 0 1 1 0 2 2 1 0 5 6 3 1 0 16 26 12 4 1 0 61 140 75 20 5 1 0 272 930 582 164 30 6 1 0 1385
StdPolyRow1 k=0..1 T(1, k) n^kA0000270 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
StdPolyRow2 k=0..2 T(2, k) n^kA0023780 2 6 12 20 30 42 56 72 90 110 132 156 182 210 240 272 306 342 380 420 462 506 552 600 650 702 756
StdPolyRow3 k=0..3 T(3, k) n^kA0483950 5 26 75 164 305 510 791 1160 1629 2210 2915 3756 4745 5894 7215 8720 10421 12330 14459 16820
StdPolyCol2 k=0..n T(n, k) 2^kmissing1 2 6 26 140 930 7280 66034 680544 7865098 100760704 1417772682 21738715648 360815821106
StdPolyCol3 k=0..n T(n, k) 3^kmissing1 3 12 75 582 5667 65406 879591 13483518 232328391 4444489830 93487086147 2144540364774
StdPolyDiag k=0..n T(n, k) n^kmissing1 1 6 75 1672 62025 3404112 260912099 26532106368 3457039470993 561154561362560 111010187189605275
AltTriangleT(n, k), 0 ≤ k ≤ nA0082811 0 -1 0 -1 1 0 -1 2 -2 0 -2 4 -5 5 0 -5 10 -14 16 -16 0 -16 32 -46 56 -61 61 0 -61 122 -178 224
AltRevT(n, n - k), 0 ≤ k ≤ nmissing1 -1 0 1 -1 0 -2 2 -1 0 5 -5 4 -2 0 -16 16 -14 10 -5 0 61 -61 56 -46 32 -16 0 -272 272 -256 224
AltAccsee docsmissing1 0 -1 0 -1 0 0 -1 1 -1 0 -2 2 -3 2 0 -5 5 -9 7 -9 0 -16 16 -30 26 -35 26 0 -61 61 -117 107 -149
AltAccRevsee docsmissing1 -1 -1 1 0 0 -2 0 -1 -1 5 0 4 2 2 -16 0 -14 -4 -9 -9 61 0 56 10 42 26 26 -272 0 -256 -32 -210 -88
AltAntiDiagsee docsmissing1 0 0 -1 0 -1 0 -1 1 0 -2 2 0 -5 4 -2 0 -16 10 -5 0 -61 32 -14 5 0 -272 122 -46 16 0 -1385 544 -178
AltDiffx1T(n, k) (k+1)missing1 0 -2 0 -2 3 0 -2 6 -8 0 -4 12 -20 25 0 -10 30 -56 80 -96 0 -32 96 -184 280 -366 427 0 -122 366
AltRowSum k=0..n T(n, k)missing1 -1 0 -1 2 -9 26 -149 618 -4277 23122 -188457 1257154 -11812705 93774138 -998765725 9196373210
AltEvenSum k=0..n T(n, k) even(k)missing1 0 1 2 9 26 149 618 4277 23122 188457 1257154 11812705 93774138 998765725 9196373210 109530858093
AltOddSum k=0..n T(n, k) odd(k)missing0 -1 -1 -3 -7 -35 -123 -767 -3659 -27399 -165335 -1445611 -10555551 -105586843 -904991587
AltAltSum k=0..n T(n, k) (-1)^kA0001111 1 2 5 16 61 272 1385 7936 50521 353792 2702765 22368256 199360981 1903757312 19391512145
AltAbsSum k=0..n | T(n, k) |A0001111 1 2 5 16 61 272 1385 7936 50521 353792 2702765 22368256 199360981 1903757312 19391512145
AltDiagSum k=0..n // 2 T(n - k, k)missing1 0 -1 -1 0 0 -3 -11 -38 -180 -979 -5803 -37914 -271920 -2119971 -17850863 -161501642 -1562629860
AltAccSum k=0..n j=0..k T(n, j)missing1 -1 -1 -1 -1 -11 -13 -185 -269 -5363 -9281 -237601 -477593 -14945227 -34235605 -1266693769
AltAccRevSum k=0..n j=0..k T(n, n - j)missing1 -2 1 -4 13 -52 221 -1156 6449 -41684 286745 -2212340 18077749 -162245348 1534621813 -15712323556
AltRowLcmLcm k=0..n | T(n, k) | > 1missing1 1 1 2 20 560 314272 165389056 23981211622400 281812254093464320 122801591138088344632211198464
AltRowGcdGcd k=0..n | T(n, k) | > 1A1749651 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
AltRowMaxMax k=0..n | T(n, k) |A0001111 1 1 2 5 16 61 272 1385 7936 50521 353792 2702765 22368256 199360981 1903757312 19391512145
AltColMiddleT(n, n // 2)missing1 0 -1 -1 4 10 -46 -178 1024 5296 -36976 -238816 1965664 15214480 -144361456 -1301989648
AltCentralET(2 n, n)A0006571 -1 4 -46 1024 -36976 1965664 -144361456 13997185024 -1731678144256 266182076161024
AltCentralOT(2 n + 1, n)A2405610 -1 10 -178 5296 -238816 15214480 -1301989648 144118832896 -20040052293376 3419989086092800
AltColLeftT(n, 0)A0000071 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
AltColRightT(n, n)A0001111 -1 1 -2 5 -16 61 -272 1385 -7936 50521 -353792 2702765 -22368256 199360981 -1903757312
AltInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kA0015861 -1 3 -11 57 -361 2763 -24611 250737 -2873041 36581523 -512343611 7828053417 -129570724921
AltTransNat0 k=0..n T(n, k) kmissing0 -1 1 -3 11 -43 195 -1007 5831 -37407 263623 -2023883 16820595 -150432643 1440847675 -14713557831
AltTransNat1 k=0..n T(n, k) (k + 1)missing1 -2 1 -4 13 -52 221 -1156 6449 -41684 286745 -2212340 18077749 -162245348 1534621813 -15712323556
AltTransSqrs k=0..n T(n, k) k^2missing0 -1 3 -11 49 -235 1265 -7527 49477 -354543 2764285 -23236083 210034121 -2028328931 20874623065
AltPosHalf k=0..n 2^n T(n, k) (1/2)^kmissing1 -1 -1 -2 -5 -40 -205 -1808 -14921 -159424 -1782409 -23039744 -320336237 -4917449728 -81231509413
AltNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kmissing1 -1 3 -10 47 -264 1799 -14288 130683 -1353152 15679675 -201167616 2832842599 -43455063040
AltDiagRow1T(n + 1, n)A0001110 -1 2 -5 16 -61 272 -1385 7936 -50521 353792 -2702765 22368256 -199360981 1903757312 -19391512145
AltDiagRow2T(n + 2, n)A0062120 -1 4 -14 56 -256 1324 -7664 49136 -345856 2652244 -22014464 196658216 -1881389056 19192151164
AltDiagRow3T(n + 3, n)A0062130 -2 10 -46 224 -1202 7120 -46366 329984 -2551202 21306880 -191252686 1836652544 -18793429202
AltDiagCol1T(n + 1, 1)A000111-1 -1 -1 -2 -5 -16 -61 -272 -1385 -7936 -50521 -353792 -2702765 -22368256 -199360981 -1903757312
AltDiagCol2T(n + 2, 2)A0012501 2 4 10 32 122 544 2770 15872 101042 707584 5405530 44736512 398721962 3807514624 38783024290
AltDiagCol3T(n + 3, 3)A006216-2 -5 -14 -46 -178 -800 -4094 -23536 -150178 -1053440 -8057774 -66750976 -595380178 -5688903680
AltPolysee docsmissing1 0 1 0 -1 1 0 0 -2 1 0 -1 2 -3 1 0 2 -10 6 -4 1 0 -9 52 -39 12 -5 1 0 26 -338 300 -100 20 -6 1 0
AltPolyRow1 k=0..1 T(1, k) n^kA0000270 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25 -26
AltPolyRow2 k=0..2 T(2, k) n^kA0023780 0 2 6 12 20 30 42 56 72 90 110 132 156 182 210 240 272 306 342 380 420 462 506 552 600 650 702
AltPolyRow3 k=0..3 T(3, k) n^kA0597220 -1 -10 -39 -100 -205 -366 -595 -904 -1305 -1810 -2431 -3180 -4069 -5110 -6315 -7696 -9265 -11034
AltPolyCol2 k=0..n T(n, k) 2^kmissing1 -2 2 -10 52 -338 2576 -23074 235168 -2698874 34382720 -481855738 7364990464 -121946944610
AltPolyCol3 k=0..n T(n, k) 3^kmissing1 -3 6 -39 300 -2895 33180 -444531 6796524 -116903427 2233586364 -46939144863 1076013642108
AltPolyDiag k=0..n T(n, k) n^kmissing1 -1 2 -39 1016 -41525 2435376 -195823439 20643397504 -2766164252589 459177798931840
RevTriangleT(n, k), 0 ≤ k ≤ nmissing1 1 0 1 1 0 2 2 1 0 5 5 4 2 0 16 16 14 10 5 0 61 61 56 46 32 16 0 272 272 256 224 178 122 61 0 1385
RevAccsee docsA0082821 1 1 1 2 2 2 4 5 5 5 10 14 16 16 16 32 46 56 61 61 61 122 178 224 256 272 272 272 544 800 1024
RevAccRevsee docsmissing1 0 1 0 1 2 0 1 3 5 0 2 6 11 16 0 5 15 29 45 61 0 16 48 94 150 211 272 0 61 183 361 585 841 1113
RevAntiDiagsee docsmissing1 1 1 0 2 1 5 2 0 16 5 1 61 16 4 0 272 61 14 2 1385 272 56 10 0 7936 1385 256 46 5 50521 7936 1324
RevDiffx1T(n, k) (k+1)missing1 1 0 1 2 0 2 4 3 0 5 10 12 8 0 16 32 42 40 25 0 61 122 168 184 160 96 0 272 544 768 896 890 732
RevRowSum k=0..n T(n, k)A0001111 1 2 5 16 61 272 1385 7936 50521 353792 2702765 22368256 199360981 1903757312 19391512145
RevEvenSum k=0..n T(n, k) even(k)missing1 1 1 3 9 35 149 767 4277 27399 188457 1445611 11812705 105586843 998765725 10195138935
RevOddSum k=0..n T(n, k) odd(k)missing0 0 1 2 7 26 123 618 3659 23122 165335 1257154 10555551 93774138 904991587 9196373210 100334484883
RevAltSum k=0..n T(n, k) (-1)^kmissing1 1 0 1 2 9 26 149 618 4277 23122 188457 1257154 11812705 93774138 998765725 9196373210
RevAbsSum k=0..n | T(n, k) |A0001111 1 2 5 16 61 272 1385 7936 50521 353792 2702765 22368256 199360981 1903757312 19391512145
RevDiagSum k=0..n // 2 T(n - k, k)missing1 1 1 3 7 22 81 349 1723 9628 60037 413373 3113959 25470424 224759577 2128031749 21515944795
RevAccSum k=0..n j=0..k T(n, j)A0001111 2 5 16 61 272 1385 7936 50521 353792 2702765 22368256 199360981 1903757312 19391512145
RevAccRevSum k=0..n j=0..k T(n, n - j)A0344281 1 3 9 35 155 791 4529 28839 201939 1542739 12767689 113794603 1086657403 11068604847 119790363489
RevRowLcmLcm k=0..n | T(n, k) | > 1missing1 1 1 2 20 560 314272 165389056 23981211622400 281812254093464320 122801591138088344632211198464
RevRowGcdGcd k=0..n | T(n, k) | > 1A1749651 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
RevRowMaxMax k=0..n | T(n, k) |A0001111 1 1 2 5 16 61 272 1385 7936 50521 353792 2702765 22368256 199360981 1903757312 19391512145
RevColMiddleT(n, n // 2)A0054371 1 1 2 4 14 46 224 1024 6320 36976 275792 1965664 17180144 144361456 1446351104 13997185024
RevCentralET(2 n, n)A0006571 1 4 46 1024 36976 1965664 144361456 13997185024 1731678144256 266182076161024 49763143319190016
RevCentralOT(2 n + 1, n)missing1 2 14 224 6320 275792 17180144 1446351104 158116017920 21771730437632 3686171162253824
RevColLeftT(n, 0)A0001111 1 1 2 5 16 61 272 1385 7936 50521 353792 2702765 22368256 199360981 1903757312 19391512145
RevColRightT(n, n)A0000071 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RevBinConv k=0..n C(n, k) T(n, k)A0015861 1 3 11 57 361 2763 24611 250737 2873041 36581523 512343611 7828053417 129570724921 2309644635483
RevTransNat0 k=0..n T(n, k) kA2786780 0 1 4 19 94 519 3144 20903 151418 1188947 10064924 91426347 887296422 9164847535 100398851344
RevTransNat1 k=0..n T(n, k) (k + 1)A0344281 1 3 9 35 155 791 4529 28839 201939 1542739 12767689 113794603 1086657403 11068604847 119790363489
RevTransSqrs k=0..n T(n, k) k^2missing0 0 1 6 39 242 1611 11406 86795 707946 6180615 57580966 570803583 6002999922 66789245683
RevPosHalf k=0..n 2^n T(n, k) (1/2)^kmissing1 2 6 26 140 930 7280 66034 680544 7865098 100760704 1417772682 21738715648 360815821106
RevNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kmissing1 -2 2 -10 52 -338 2576 -23074 235168 -2698874 34382720 -481855738 7364990464 -121946944610
RevDiagRow1T(n + 1, n)A0001111 1 1 2 5 16 61 272 1385 7936 50521 353792 2702765 22368256 199360981 1903757312 19391512145
RevDiagRow2T(n + 2, n)A0012501 2 4 10 32 122 544 2770 15872 101042 707584 5405530 44736512 398721962 3807514624 38783024290
RevDiagRow3T(n + 3, n)A0062162 5 14 46 178 800 4094 23536 150178 1053440 8057774 66750976 595380178 5688903680 57975175454
RevDiagCol1T(n + 1, 1)A0001110 1 2 5 16 61 272 1385 7936 50521 353792 2702765 22368256 199360981 1903757312 19391512145
RevDiagCol2T(n + 2, 2)A0062120 1 4 14 56 256 1324 7664 49136 345856 2652244 22014464 196658216 1881389056 19192151164
RevDiagCol3T(n + 3, 3)A0062130 2 10 46 224 1202 7120 46366 329984 2551202 21306880 191252686 1836652544 18793429202 204154071040
RevPolysee docsmissing1 1 1 1 1 1 2 2 1 1 5 5 3 1 1 16 16 10 4 1 1 61 61 47 17 5 1 1 272 272 264 110 26 6 1 1 1385 1385
RevPolyRow1 k=0..1 T(1, k) n^kA0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
RevPolyRow2 k=0..2 T(2, k) n^kA0000271 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
RevPolyRow3 k=0..3 T(3, k) n^kA0025222 5 10 17 26 37 50 65 82 101 122 145 170 197 226 257 290 325 362 401 442 485 530 577 626 677 730
RevPolyCol2 k=0..n T(n, k) 2^kmissing1 1 3 10 47 264 1799 14288 130683 1353152 15679675 201167616 2832842599 43455063040 721432281231
RevPolyCol3 k=0..n T(n, k) 3^kmissing1 1 4 17 110 865 8470 97973 1318694 20221309 348467326 6666557849 140229277838 3216799363033
RevPolyDiag k=0..n T(n, k) n^kmissing1 1 3 17 217 4821 178267 9745973 744153009 75404331817 9793388155331 1585130919126105
 << TableSourceSimilarsIndex >> 

Note: The A-numbers are based on a finite number of numerical comparisons. They ignore the sign and the OEIS-offset. Sometimes they differ in the first few values. In such cases, we consider our version to be the better one because it has a common formula as a root. Since the offset of all triangles is 0 also the offset of all sequences is 0.