OEIS Similars: A047999, A090971, A114700, A143200, A166282
↕ Type | ↕ Trait | ↕ Anum | ↕ Sequence |
---|---|---|---|
Std | TriangleT(n, k), 0 ≤ k ≤ n | A047999 | 1 1 1 1 0 1 1 1 1 1 1 0 0 0 1 1 1 0 0 1 1 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 0 0 0 |
Std | RevT(n, n - k), 0 ≤ k ≤ n | A047999 | 1 1 1 1 0 1 1 1 1 1 1 0 0 0 1 1 1 0 0 1 1 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 0 0 0 |
Std | InvT-1(n, k), 0 ≤ k ≤ n | A047999 | 1 -1 1 -1 0 1 1 -1 -1 1 -1 0 0 0 1 1 -1 0 0 -1 1 1 0 -1 0 -1 0 1 -1 1 1 -1 1 -1 -1 1 -1 0 0 0 0 0 0 |
Std | RevInvT-1(n, n - k), 0 ≤ k ≤ n | A047999 | 1 1 -1 1 0 -1 1 -1 -1 1 1 0 0 0 -1 1 -1 0 0 -1 1 1 0 -1 0 -1 0 1 1 -1 -1 1 -1 1 1 -1 1 0 0 0 0 0 0 |
Std | InvRev(T(n, n - k))-1, 0 ≤ k ≤ n | A047999 | 1 -1 1 -1 0 1 1 -1 -1 1 -1 0 0 0 1 1 -1 0 0 -1 1 1 0 -1 0 -1 0 1 -1 1 1 -1 1 -1 -1 1 -1 0 0 0 0 0 0 |
Std | Accsee docs | A261363 | 1 1 2 1 1 2 1 2 3 4 1 1 1 1 2 1 2 2 2 3 4 1 1 2 2 3 3 4 1 2 3 4 5 6 7 8 1 1 1 1 1 1 1 1 2 1 2 2 2 2 |
Std | AccRevsee docs | A261363 | 1 1 2 1 1 2 1 2 3 4 1 1 1 1 2 1 2 2 2 3 4 1 1 2 2 3 3 4 1 2 3 4 5 6 7 8 1 1 1 1 1 1 1 1 2 1 2 2 2 2 |
Std | AntiDiagsee docs | missing | 1 1 1 1 1 0 1 1 1 1 0 1 1 1 0 1 1 0 0 0 1 1 1 0 1 1 0 1 0 1 1 1 0 1 1 1 1 0 0 0 1 0 1 1 1 0 0 1 1 1 |
Std | Diffx1T(n, k) (k+1) | missing | 1 1 2 1 0 3 1 2 3 4 1 0 0 0 5 1 2 0 0 5 6 1 0 3 0 5 0 7 1 2 3 4 5 6 7 8 1 0 0 0 0 0 0 0 9 1 2 0 0 0 |
Std | RowSum∑ k=0..n T(n, k) | A001316 | 1 2 2 4 2 4 4 8 2 4 4 8 4 8 8 16 2 4 4 8 4 8 8 16 4 8 8 16 8 16 16 32 2 4 4 8 4 8 8 16 4 8 8 16 8 |
Std | EvenSum∑ k=0..n T(n, k) even(k) | A060632 | 1 1 2 2 2 2 4 4 2 2 4 4 4 4 8 8 2 2 4 4 4 4 8 8 4 4 8 8 8 8 16 16 2 2 4 4 4 4 8 8 4 4 8 8 8 8 16 16 |
Std | OddSum∑ k=0..n T(n, k) odd(k) | A001316 | 0 1 0 2 0 2 0 4 0 2 0 4 0 4 0 8 0 2 0 4 0 4 0 8 0 4 0 8 0 8 0 16 0 2 0 4 0 4 0 8 0 4 0 8 0 8 0 16 |
Std | AltSum∑ k=0..n T(n, k) (-1)^k | A001316 | 1 0 2 0 2 0 4 0 2 0 4 0 4 0 8 0 2 0 4 0 4 0 8 0 4 0 8 0 8 0 16 0 2 0 4 0 4 0 8 0 4 0 8 0 8 0 16 0 |
Std | AbsSum∑ k=0..n | T(n, k) | | A001316 | 1 2 2 4 2 4 4 8 2 4 4 8 4 8 8 16 2 4 4 8 4 8 8 16 4 8 8 16 8 16 16 32 2 4 4 8 4 8 8 16 4 8 8 16 8 |
Std | DiagSum∑ k=0..n // 2 T(n - k, k) | A002487 | 1 1 2 1 3 2 3 1 4 3 5 2 5 3 4 1 5 4 7 3 8 5 7 2 7 5 8 3 7 4 5 1 6 5 9 4 11 7 10 3 11 8 13 5 12 7 9 |
Std | AccSum∑ k=0..n ∑ j=0..k T(n, j) | missing | 1 3 4 10 6 14 16 36 10 22 24 52 28 60 64 136 18 38 40 84 44 92 96 200 52 108 112 232 120 248 256 |
Std | AccRevSum∑ k=0..n ∑ j=0..k T(n, n - j) | missing | 1 3 4 10 6 14 16 36 10 22 24 52 28 60 64 136 18 38 40 84 44 92 96 200 52 108 112 232 120 248 256 |
Std | RowLcmLcm k=0..n | T(n, k) | > 1 | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Std | RowGcdGcd k=0..n | T(n, k) | > 1 | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Std | RowMaxMax k=0..n | T(n, k) | | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Std | ColMiddleT(n, n // 2) | A209229 | 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Std | CentralET(2 n, n) | A000007 | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Std | CentralOT(2 n + 1, n) | A209229 | 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 |
Std | ColLeftT(n, 0) | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Std | ColRightT(n, n) | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Std | BinConv∑ k=0..n C(n, k) T(n, k) | A088560 | 1 2 2 8 2 12 32 128 2 20 92 464 992 4032 8192 32768 2 36 308 2320 9692 52712 164320 781312 1470944 |
Std | InvBinConv∑ k=0..n C(n, k) T(n, n - k) (-1)^k | missing | 1 0 2 0 2 0 32 0 2 0 92 0 992 0 8192 0 2 0 308 0 9692 0 164320 0 1470944 0 13748672 0 67100672 0 |
Std | TransNat0∑ k=0..n T(n, k) k | A335063 | 0 1 2 6 4 10 12 28 8 18 20 44 24 52 56 120 16 34 36 76 40 84 88 184 48 100 104 216 112 232 240 496 |
Std | TransNat1∑ k=0..n T(n, k) (k + 1) | missing | 1 3 4 10 6 14 16 36 10 22 24 52 28 60 64 136 18 38 40 84 44 92 96 200 52 108 112 232 120 248 256 |
Std | TransSqrs∑ k=0..n T(n, k) k^2 | missing | 0 1 4 14 16 42 56 140 64 146 168 380 224 500 560 1240 256 546 584 1244 672 1428 1520 3224 896 1892 |
Std | PosHalf∑ k=0..n 2^n T(n, k) (1/2)^k | A001317 | 1 3 5 15 17 51 85 255 257 771 1285 3855 4369 13107 21845 65535 65537 196611 327685 983055 1114129 |
Std | DiagRow1T(n + 1, n) | A000035 | 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 |
Std | DiagRow2T(n + 2, n) | A133872 | 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 |
Std | DiagRow3T(n + 3, n) | A121262 | 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 |
Std | DiagCol1T(n + 1, 1) | A000035 | 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 |
Std | DiagCol2T(n + 2, 2) | A133872 | 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 |
Std | DiagCol3T(n + 3, 3) | A121262 | 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 |
Std | Polysee docs | missing | 1 1 1 1 2 1 1 2 3 1 1 4 5 4 1 1 2 15 10 5 1 1 4 17 40 17 6 1 1 4 51 82 85 26 7 1 1 8 85 328 257 156 |
Std | PolyRow1∑ k=0..1 T(1, k) n^k | A000027 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
Std | PolyRow2∑ k=0..2 T(2, k) n^k | A002522 | 1 2 5 10 17 26 37 50 65 82 101 122 145 170 197 226 257 290 325 362 401 442 485 530 577 626 677 730 |
Std | PolyRow3∑ k=0..3 T(3, k) n^k | A053698 | 1 4 15 40 85 156 259 400 585 820 1111 1464 1885 2380 2955 3616 4369 5220 6175 7240 8421 9724 11155 |
Std | PolyCol2∑ k=0..n T(n, k) 2^k | A001317 | 1 3 5 15 17 51 85 255 257 771 1285 3855 4369 13107 21845 65535 65537 196611 327685 983055 1114129 |
Std | PolyCol3∑ k=0..n T(n, k) 3^k | A100307 | 1 4 10 40 82 328 820 3280 6562 26248 65620 262480 538084 2152336 5380840 21523360 43046722 |
Std | PolyDiag∑ k=0..n T(n, k) n^k | missing | 1 2 5 40 257 3756 47989 960800 16777217 430467220 10100000101 313821403248 8916530450689 |
Alt | TriangleT(n, k), 0 ≤ k ≤ n | A047999 | 1 1 -1 1 0 1 1 -1 1 -1 1 0 0 0 1 1 -1 0 0 1 -1 1 0 1 0 1 0 1 1 -1 1 -1 1 -1 1 -1 1 0 0 0 0 0 0 0 1 |
Alt | RevT(n, n - k), 0 ≤ k ≤ n | A047999 | 1 -1 1 1 0 1 -1 1 -1 1 1 0 0 0 1 -1 1 0 0 -1 1 1 0 1 0 1 0 1 -1 1 -1 1 -1 1 -1 1 1 0 0 0 0 0 0 0 1 |
Alt | InvT-1(n, k), 0 ≤ k ≤ n | missing | 1 -1 1 -1 0 1 -1 1 -1 1 -1 0 0 0 1 -1 1 0 0 -1 1 1 0 -1 0 -1 0 1 -3 3 -1 1 -1 1 -1 1 -1 0 0 0 0 0 0 |
Alt | RevInvT-1(n, n - k), 0 ≤ k ≤ n | missing | 1 1 -1 1 0 -1 1 -1 1 -1 1 0 0 0 -1 1 -1 0 0 1 -1 1 0 -1 0 -1 0 1 1 -1 1 -1 1 -1 3 -3 1 0 0 0 0 0 0 |
Alt | InvRev(T(n, n - k))-1, 0 ≤ k ≤ n | A047999 | 1 1 1 -1 0 1 -1 -1 1 1 -1 0 0 0 1 -1 -1 0 0 1 1 1 0 -1 0 -1 0 1 1 1 -1 -1 -1 -1 1 1 -1 0 0 0 0 0 0 |
Alt | Accsee docs | missing | 1 1 0 1 1 2 1 0 1 0 1 1 1 1 2 1 0 0 0 1 0 1 1 2 2 3 3 4 1 0 1 0 1 0 1 0 1 1 1 1 1 1 1 1 2 1 0 0 0 0 |
Alt | AccRevsee docs | missing | 1 -1 0 1 1 2 -1 0 -1 0 1 1 1 1 2 -1 0 0 0 -1 0 1 1 2 2 3 3 4 -1 0 -1 0 -1 0 -1 0 1 1 1 1 1 1 1 1 2 |
Alt | AntiDiagsee docs | missing | 1 1 1 -1 1 0 1 -1 1 1 0 1 1 -1 0 -1 1 0 0 0 1 -1 1 0 1 1 0 1 0 1 1 -1 0 -1 1 -1 1 0 0 0 1 0 1 -1 1 |
Alt | Diffx1T(n, k) (k+1) | missing | 1 1 -2 1 0 3 1 -2 3 -4 1 0 0 0 5 1 -2 0 0 5 -6 1 0 3 0 5 0 7 1 -2 3 -4 5 -6 7 -8 1 0 0 0 0 0 0 0 9 |
Alt | RowSum∑ k=0..n T(n, k) | A001316 | 1 0 2 0 2 0 4 0 2 0 4 0 4 0 8 0 2 0 4 0 4 0 8 0 4 0 8 0 8 0 16 0 2 0 4 0 4 0 8 0 4 0 8 0 8 0 16 0 |
Alt | EvenSum∑ k=0..n T(n, k) even(k) | A060632 | 1 1 2 2 2 2 4 4 2 2 4 4 4 4 8 8 2 2 4 4 4 4 8 8 4 4 8 8 8 8 16 16 2 2 4 4 4 4 8 8 4 4 8 8 8 8 16 16 |
Alt | OddSum∑ k=0..n T(n, k) odd(k) | A001316 | 0 -1 0 -2 0 -2 0 -4 0 -2 0 -4 0 -4 0 -8 0 -2 0 -4 0 -4 0 -8 0 -4 0 -8 0 -8 0 -16 0 -2 0 -4 0 -4 0 |
Alt | AltSum∑ k=0..n T(n, k) (-1)^k | A001316 | 1 2 2 4 2 4 4 8 2 4 4 8 4 8 8 16 2 4 4 8 4 8 8 16 4 8 8 16 8 16 16 32 2 4 4 8 4 8 8 16 4 8 8 16 8 |
Alt | AbsSum∑ k=0..n | T(n, k) | | A001316 | 1 2 2 4 2 4 4 8 2 4 4 8 4 8 8 16 2 4 4 8 4 8 8 16 4 8 8 16 8 16 16 32 2 4 4 8 4 8 8 16 4 8 8 16 8 |
Alt | DiagSum∑ k=0..n // 2 T(n - k, k) | missing | 1 1 0 1 1 2 -1 1 2 3 -1 2 1 3 -2 1 3 4 -1 3 2 5 -3 2 3 5 -2 3 1 4 -3 1 4 5 -1 4 3 7 -4 3 5 8 -3 5 2 |
Alt | AccSum∑ k=0..n ∑ j=0..k T(n, j) | missing | 1 1 4 2 6 2 16 4 10 2 24 4 28 4 64 8 18 2 40 4 44 4 96 8 52 4 112 8 120 8 256 16 34 2 72 4 76 4 160 |
Alt | AccRevSum∑ k=0..n ∑ j=0..k T(n, n - j) | missing | 1 -1 4 -2 6 -2 16 -4 10 -2 24 -4 28 -4 64 -8 18 -2 40 -4 44 -4 96 -8 52 -4 112 -8 120 -8 256 -16 34 |
Alt | RowLcmLcm k=0..n | T(n, k) | > 1 | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Alt | RowGcdGcd k=0..n | T(n, k) | > 1 | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Alt | RowMaxMax k=0..n | T(n, k) | | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Alt | ColMiddleT(n, n // 2) | A209229 | 1 1 0 -1 0 0 0 -1 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Alt | CentralET(2 n, n) | A000007 | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Alt | CentralOT(2 n + 1, n) | A209229 | 1 -1 0 -1 0 0 0 -1 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 |
Alt | ColLeftT(n, 0) | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Alt | BinConv∑ k=0..n C(n, k) T(n, k) | missing | 1 0 2 0 2 0 32 0 2 0 92 0 992 0 8192 0 2 0 308 0 9692 0 164320 0 1470944 0 13748672 0 67100672 0 |
Alt | InvBinConv∑ k=0..n C(n, k) T(n, n - k) (-1)^k | A088560 | 1 -2 2 -8 2 -12 32 -128 2 -20 92 -464 992 -4032 8192 -32768 2 -36 308 -2320 9692 -52712 164320 |
Alt | TransNat0∑ k=0..n T(n, k) k | missing | 0 -1 2 -2 4 -2 12 -4 8 -2 20 -4 24 -4 56 -8 16 -2 36 -4 40 -4 88 -8 48 -4 104 -8 112 -8 240 -16 32 |
Alt | TransNat1∑ k=0..n T(n, k) (k + 1) | missing | 1 -1 4 -2 6 -2 16 -4 10 -2 24 -4 28 -4 64 -8 18 -2 40 -4 44 -4 96 -8 52 -4 112 -8 120 -8 256 -16 34 |
Alt | TransSqrs∑ k=0..n T(n, k) k^2 | missing | 0 -1 4 -6 16 -10 56 -28 64 -18 168 -44 224 -52 560 -120 256 -34 584 -76 672 -84 1520 -184 896 -100 |
Alt | PosHalf∑ k=0..n 2^n T(n, k) (1/2)^k | missing | 1 1 5 5 17 17 85 85 257 257 1285 1285 4369 4369 21845 21845 65537 65537 327685 327685 1114129 |
Alt | NegHalf∑ k=0..n (-2)^n T(n, k) (-1/2)^k | A001317 | 1 -3 5 -15 17 -51 85 -255 257 -771 1285 -3855 4369 -13107 21845 -65535 65537 -196611 327685 -983055 |
Alt | DiagRow1T(n + 1, n) | A000035 | 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 |
Alt | DiagRow3T(n + 3, n) | A121262 | 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 |
Alt | DiagCol1T(n + 1, 1) | A000035 | -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 |
Alt | DiagCol2T(n + 2, 2) | A133872 | 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 |
Alt | DiagCol3T(n + 3, 3) | A121262 | -1 0 0 0 -1 0 0 0 -1 0 0 0 -1 0 0 0 -1 0 0 0 -1 0 0 0 -1 0 0 0 -1 0 0 0 -1 0 0 0 -1 0 0 0 -1 0 0 0 |
Alt | Polysee docs | missing | 1 1 1 1 0 1 1 2 -1 1 1 0 5 -2 1 1 2 -5 10 -3 1 1 0 17 -20 17 -4 1 1 4 -17 82 -51 26 -5 1 1 0 85 |
Alt | PolyRow1∑ k=0..1 T(1, k) n^k | A000027 | 1 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25 -26 |
Alt | PolyRow2∑ k=0..2 T(2, k) n^k | A002522 | 1 2 5 10 17 26 37 50 65 82 101 122 145 170 197 226 257 290 325 362 401 442 485 530 577 626 677 730 |
Alt | PolyRow3∑ k=0..3 T(3, k) n^k | A062158 | 1 0 -5 -20 -51 -104 -185 -300 -455 -656 -909 -1220 -1595 -2040 -2561 -3164 -3855 -4640 -5525 -6516 |
Alt | PolyCol3∑ k=0..n T(n, k) 3^k | missing | 1 -2 10 -20 82 -164 820 -1640 6562 -13124 65620 -131240 538084 -1076168 5380840 -10761680 43046722 |
Alt | PolyDiag∑ k=0..n T(n, k) n^k | missing | 1 0 5 -20 257 -2504 47989 -720600 16777217 -344373776 10100000101 -261517836040 8916530450689 |
Inv | TriangleT(n, k), 0 ≤ k ≤ n | A047999 | 1 -1 1 -1 0 1 1 -1 -1 1 -1 0 0 0 1 1 -1 0 0 -1 1 1 0 -1 0 -1 0 1 -1 1 1 -1 1 -1 -1 1 -1 0 0 0 0 0 0 |
Inv | RevT(n, n - k), 0 ≤ k ≤ n | A047999 | 1 1 -1 1 0 -1 1 -1 -1 1 1 0 0 0 -1 1 -1 0 0 -1 1 1 0 -1 0 -1 0 1 1 -1 -1 1 -1 1 1 -1 1 0 0 0 0 0 0 |
Inv | RevInvT-1(n, n - k), 0 ≤ k ≤ n | A047999 | 1 1 1 1 0 1 1 1 1 1 1 0 0 0 1 1 1 0 0 1 1 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 0 0 0 |
Inv | InvRev(T(n, n - k))-1, 0 ≤ k ≤ n | missing | 1 -1 1 -1 0 1 -3 1 1 1 -1 0 0 0 1 -3 1 0 0 1 1 -3 0 1 0 1 0 1 5 -1 -1 -1 -1 -1 -1 1 -1 0 0 0 0 0 0 |
Inv | Accsee docs | A290452 | 1 -1 0 -1 -1 0 1 0 -1 0 -1 -1 -1 -1 0 1 0 0 0 -1 0 1 1 0 0 -1 -1 0 -1 0 1 0 1 0 -1 0 -1 -1 -1 -1 -1 |
Inv | AccRevsee docs | A290452 | 1 1 0 1 1 0 1 0 -1 0 1 1 1 1 0 1 0 0 0 -1 0 1 1 0 0 -1 -1 0 1 0 -1 0 -1 0 1 0 1 1 1 1 1 1 1 1 0 1 0 |
Inv | Diffx1T(n, k) (k+1) | missing | 1 -1 2 -1 0 3 1 -2 -3 4 -1 0 0 0 5 1 -2 0 0 -5 6 1 0 -3 0 -5 0 7 -1 2 3 -4 5 -6 -7 8 -1 0 0 0 0 0 0 |
Inv | RowSum∑ k=0..n T(n, k) | A000007 | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Inv | OddSum∑ k=0..n T(n, k) odd(k) | A063524 | 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Inv | AltSum∑ k=0..n T(n, k) (-1)^k | A130706 | 1 -2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Inv | AbsSum∑ k=0..n | T(n, k) | | A001316 | 1 2 2 4 2 4 4 8 2 4 4 8 4 8 8 16 2 4 4 8 4 8 8 16 4 8 8 16 8 16 16 32 2 4 4 8 4 8 8 16 4 8 8 16 8 |
Inv | AccSum∑ k=0..n ∑ j=0..k T(n, j) | A048298 | 1 -1 -2 0 -4 0 0 0 -8 0 0 0 0 0 0 0 -16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -32 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Inv | AccRevSum∑ k=0..n ∑ j=0..k T(n, n - j) | A048298 | 1 1 2 0 4 0 0 0 8 0 0 0 0 0 0 0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Inv | RowLcmLcm k=0..n | T(n, k) | > 1 | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Inv | RowGcdGcd k=0..n | T(n, k) | > 1 | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Inv | RowMaxMax k=0..n | T(n, k) | | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Inv | ColMiddleT(n, n // 2) | A209229 | 1 -1 0 -1 0 0 0 -1 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Inv | CentralET(2 n, n) | A000007 | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Inv | CentralOT(2 n + 1, n) | A209229 | -1 -1 0 -1 0 0 0 -1 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 |
Inv | ColRightT(n, n) | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Inv | BinConv∑ k=0..n C(n, k) T(n, k) | missing | 1 0 0 -4 0 -8 -28 0 0 -16 -88 0 -988 0 0 1088 0 -32 -304 0 -9688 0 0 -235840 -1470940 0 0 -4264624 |
Inv | InvBinConv∑ k=0..n C(n, k) T(n, n - k) (-1)^k | missing | 1 2 0 0 0 0 -28 -96 0 0 -88 -416 -988 -3976 0 0 0 0 -304 -2240 -9688 -52624 0 0 -1470940 -6249048 0 |
Inv | TransNat0∑ k=0..n T(n, k) k | A048298 | 0 1 2 0 4 0 0 0 8 0 0 0 0 0 0 0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Inv | TransNat1∑ k=0..n T(n, k) (k + 1) | A048298 | 1 1 2 0 4 0 0 0 8 0 0 0 0 0 0 0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Inv | TransSqrs∑ k=0..n T(n, k) k^2 | missing | 0 1 4 4 16 8 16 0 64 16 32 0 64 0 0 0 256 32 64 0 128 0 0 0 256 0 0 0 0 0 0 0 1024 64 128 0 256 0 0 |
Inv | NegHalf∑ k=0..n (-2)^n T(n, k) (-1/2)^k | A100744 | 1 3 -3 -9 -15 -45 45 135 -255 -765 765 2295 3825 11475 -11475 -34425 -65535 -196605 196605 589815 |
Inv | DiagRow1T(n + 1, n) | A000035 | -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 |
Inv | DiagRow2T(n + 2, n) | A133872 | -1 -1 0 0 -1 -1 0 0 -1 -1 0 0 -1 -1 0 0 -1 -1 0 0 -1 -1 0 0 -1 -1 0 0 -1 -1 0 0 -1 -1 0 0 -1 -1 0 0 |
Inv | DiagRow3T(n + 3, n) | A121262 | 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 |
Inv | DiagCol3T(n + 3, 3) | A121262 | 1 0 0 0 -1 0 0 0 -1 0 0 0 1 0 0 0 -1 0 0 0 1 0 0 0 1 0 0 0 -1 0 0 0 -1 0 0 0 1 0 0 0 1 0 0 0 -1 0 0 |
Inv | Polysee docs | missing | 1 -1 1 -1 0 1 1 0 1 1 -1 0 3 2 1 1 0 3 8 3 1 1 0 15 16 15 4 1 -1 0 15 80 45 24 5 1 -1 0 45 160 255 |
Inv | PolyRow1∑ k=0..1 T(1, k) n^k | A000027 | -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 |
Inv | PolyRow2∑ k=0..2 T(2, k) n^k | A005563 | -1 0 3 8 15 24 35 48 63 80 99 120 143 168 195 224 255 288 323 360 399 440 483 528 575 624 675 728 |
Inv | PolyRow3∑ k=0..3 T(3, k) n^k | A152618 | 1 0 3 16 45 96 175 288 441 640 891 1200 1573 2016 2535 3136 3825 4608 5491 6480 7581 8800 10143 |
Inv | PolyCol2∑ k=0..n T(n, k) 2^k | A100735 | 1 1 3 3 15 15 45 45 255 255 765 765 3825 3825 11475 11475 65535 65535 196605 196605 983025 983025 |
Inv | PolyCol3∑ k=0..n T(n, k) 3^k | A100736 | 1 2 8 16 80 160 640 1280 6560 13120 52480 104960 524800 1049600 4198400 8396800 43046720 86093440 |
Inv | PolyDiag∑ k=0..n T(n, k) n^k | missing | 1 0 3 16 255 2496 45325 691200 16777215 344373760 9899999901 257230656000 8915670445825 |
Inv:Rev | TriangleT(n, k), 0 ≤ k ≤ n | A047999 | 1 1 -1 1 0 -1 1 -1 -1 1 1 0 0 0 -1 1 -1 0 0 -1 1 1 0 -1 0 -1 0 1 1 -1 -1 1 -1 1 1 -1 1 0 0 0 0 0 0 |
Inv:Rev | RevT(n, n - k), 0 ≤ k ≤ n | A047999 | 1 -1 1 -1 0 1 1 -1 -1 1 -1 0 0 0 1 1 -1 0 0 -1 1 1 0 -1 0 -1 0 1 -1 1 1 -1 1 -1 -1 1 -1 0 0 0 0 0 0 |
Inv:Rev | InvT-1(n, k), 0 ≤ k ≤ n | missing | 1 -1 1 -1 0 1 -3 1 1 1 -1 0 0 0 1 -3 1 0 0 1 1 -3 0 1 0 1 0 1 5 -1 -1 -1 -1 -1 -1 1 -1 0 0 0 0 0 0 |
Inv:Rev | RevInvT-1(n, n - k), 0 ≤ k ≤ n | missing | 1 1 -1 1 0 -1 1 1 1 -3 1 0 0 0 -1 1 1 0 0 1 -3 1 0 1 0 1 0 -3 1 -1 -1 -1 -1 -1 -1 5 1 0 0 0 0 0 0 0 |
Inv:Rev | InvRev(T(n, n - k))-1, 0 ≤ k ≤ n | A047999 | 1 1 1 1 0 1 1 1 1 1 1 0 0 0 1 1 1 0 0 1 1 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 0 0 0 |
Inv:Rev | Accsee docs | A290452 | 1 1 0 1 1 0 1 0 -1 0 1 1 1 1 0 1 0 0 0 -1 0 1 1 0 0 -1 -1 0 1 0 -1 0 -1 0 1 0 1 1 1 1 1 1 1 1 0 1 0 |
Inv:Rev | AccRevsee docs | A290452 | 1 -1 0 -1 -1 0 1 0 -1 0 -1 -1 -1 -1 0 1 0 0 0 -1 0 1 1 0 0 -1 -1 0 -1 0 1 0 1 0 -1 0 -1 -1 -1 -1 -1 |
Inv:Rev | AntiDiagsee docs | missing | 1 1 1 -1 1 0 1 -1 -1 1 0 -1 1 -1 0 1 1 0 0 0 1 -1 -1 0 -1 1 0 -1 0 -1 1 -1 0 1 -1 1 1 0 0 0 -1 0 1 |
Inv:Rev | Diffx1T(n, k) (k+1) | missing | 1 1 -2 1 0 -3 1 -2 -3 4 1 0 0 0 -5 1 -2 0 0 -5 6 1 0 -3 0 -5 0 7 1 -2 -3 4 -5 6 7 -8 1 0 0 0 0 0 0 |
Inv:Rev | RowSum∑ k=0..n T(n, k) | A000007 | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Inv:Rev | EvenSum∑ k=0..n T(n, k) even(k) | A019590 | 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Inv:Rev | OddSum∑ k=0..n T(n, k) odd(k) | A063524 | 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Inv:Rev | AltSum∑ k=0..n T(n, k) (-1)^k | A130706 | 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Inv:Rev | AbsSum∑ k=0..n | T(n, k) | | A001316 | 1 2 2 4 2 4 4 8 2 4 4 8 4 8 8 16 2 4 4 8 4 8 8 16 4 8 8 16 8 16 16 32 2 4 4 8 4 8 8 16 4 8 8 16 8 |
Inv:Rev | DiagSum∑ k=0..n // 2 T(n - k, k) | A005590 | 1 1 0 1 -1 0 1 1 -2 -1 1 0 1 1 0 1 -3 -2 1 -1 2 1 -1 0 1 1 0 1 -1 0 1 1 -4 -3 1 -2 3 1 -2 -1 3 2 -1 |
Inv:Rev | AccSum∑ k=0..n ∑ j=0..k T(n, j) | A048298 | 1 1 2 0 4 0 0 0 8 0 0 0 0 0 0 0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Inv:Rev | AccRevSum∑ k=0..n ∑ j=0..k T(n, n - j) | A048298 | 1 -1 -2 0 -4 0 0 0 -8 0 0 0 0 0 0 0 -16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -32 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Inv:Rev | RowLcmLcm k=0..n | T(n, k) | > 1 | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Inv:Rev | RowGcdGcd k=0..n | T(n, k) | > 1 | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Inv:Rev | RowMaxMax k=0..n | T(n, k) | | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Inv:Rev | ColMiddleT(n, n // 2) | A209229 | 1 1 0 -1 0 0 0 1 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Inv:Rev | CentralET(2 n, n) | A000007 | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Inv:Rev | CentralOT(2 n + 1, n) | A209229 | 1 -1 0 1 0 0 0 -1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 |
Inv:Rev | ColLeftT(n, 0) | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Inv:Rev | BinConv∑ k=0..n C(n, k) T(n, k) | missing | 1 0 0 -4 0 -8 -28 0 0 -16 -88 0 -988 0 0 1088 0 -32 -304 0 -9688 0 0 -235840 -1470940 0 0 -4264624 |
Inv:Rev | InvBinConv∑ k=0..n C(n, k) T(n, n - k) (-1)^k | missing | 1 -2 0 0 0 0 -28 96 0 0 -88 416 -988 3976 0 0 0 0 -304 2240 -9688 52624 0 0 -1470940 6249048 0 0 0 |
Inv:Rev | TransNat0∑ k=0..n T(n, k) k | A048298 | 0 -1 -2 0 -4 0 0 0 -8 0 0 0 0 0 0 0 -16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -32 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Inv:Rev | TransNat1∑ k=0..n T(n, k) (k + 1) | A048298 | 1 -1 -2 0 -4 0 0 0 -8 0 0 0 0 0 0 0 -16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -32 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Inv:Rev | TransSqrs∑ k=0..n T(n, k) k^2 | missing | 0 -1 -4 4 -16 8 16 0 -64 16 32 0 64 0 0 0 -256 32 64 0 128 0 0 0 256 0 0 0 0 0 0 0 -1024 64 128 0 |
Inv:Rev | PosHalf∑ k=0..n 2^n T(n, k) (1/2)^k | A100735 | 1 1 3 3 15 15 45 45 255 255 765 765 3825 3825 11475 11475 65535 65535 196605 196605 983025 983025 |
Inv:Rev | NegHalf∑ k=0..n (-2)^n T(n, k) (-1/2)^k | A100744 | 1 -3 3 -9 15 -45 45 -135 255 -765 765 -2295 3825 -11475 11475 -34425 65535 -196605 196605 -589815 |
Inv:Rev | DiagRow3T(n + 3, n) | A121262 | 1 0 0 0 -1 0 0 0 -1 0 0 0 1 0 0 0 -1 0 0 0 1 0 0 0 1 0 0 0 -1 0 0 0 -1 0 0 0 1 0 0 0 1 0 0 0 -1 0 0 |
Inv:Rev | DiagCol1T(n + 1, 1) | A000035 | -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 |
Inv:Rev | DiagCol2T(n + 2, 2) | A133872 | -1 -1 0 0 -1 -1 0 0 -1 -1 0 0 -1 -1 0 0 -1 -1 0 0 -1 -1 0 0 -1 -1 0 0 -1 -1 0 0 -1 -1 0 0 -1 -1 0 0 |
Inv:Rev | DiagCol3T(n + 3, 3) | A121262 | 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 |
Inv:Rev | Polysee docs | missing | 1 1 1 1 0 1 1 0 -1 1 1 0 -3 -2 1 1 0 3 -8 -3 1 1 0 -15 16 -15 -4 1 1 0 15 -80 45 -24 -5 1 1 0 45 |
Inv:Rev | PolyRow1∑ k=0..1 T(1, k) n^k | A000027 | 1 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25 -26 |
Inv:Rev | PolyRow2∑ k=0..2 T(2, k) n^k | A005563 | 1 0 -3 -8 -15 -24 -35 -48 -63 -80 -99 -120 -143 -168 -195 -224 -255 -288 -323 -360 -399 -440 -483 |
Inv:Rev | PolyRow3∑ k=0..3 T(3, k) n^k | A152618 | 1 0 3 16 45 96 175 288 441 640 891 1200 1573 2016 2535 3136 3825 4608 5491 6480 7581 8800 10143 |
Inv:Rev | PolyCol3∑ k=0..n T(n, k) 3^k | A100736 | 1 -2 -8 16 -80 160 640 -1280 -6560 13120 52480 -104960 524800 -1049600 -4198400 8396800 -43046720 |
Inv:Rev | PolyDiag∑ k=0..n T(n, k) n^k | missing | 1 0 -3 16 -255 2496 45325 -691200 -16777215 344373760 9899999901 -257230656000 8915670445825 |
<< | Table | Source | Similars | Index | >> |
Note: The A-numbers are based on a finite number of numerical comparisons. They ignore the sign and the OEIS-offset. Sometimes they differ in the first few values. In such cases, we consider our version to be the better one because it has a common formula as a root. Since the offset of all triangles is 0 also the offset of all sequences is 0.