PARTITIONDIST[0] 1
[1] 0, 1
[2] 0, 2, 0
[3] 0, 2, 1, 0
[4] 0, 3, 2, 0, 0
[5] 0, 2, 5, 0, 0, 0

      OEIS Similars: A365676, A116608, A060177

↕ Type↕ Trait↕ Anum↕ Sequence
StdTriangleT(n, k), 0 ≤ k ≤ nA3656761 0 1 0 2 0 0 2 1 0 0 3 2 0 0 0 2 5 0 0 0 0 4 6 1 0 0 0 0 2 11 2 0 0 0 0 0 4 13 5 0 0 0 0 0 0 3 17
StdRevT(n, n - k), 0 ≤ k ≤ nmissing1 1 0 0 2 0 0 1 2 0 0 0 2 3 0 0 0 0 5 2 0 0 0 0 1 6 4 0 0 0 0 0 2 11 2 0 0 0 0 0 0 5 13 4 0 0 0 0 0
StdAccsee docsmissing1 0 1 0 2 2 0 2 3 3 0 3 5 5 5 0 2 7 7 7 7 0 4 10 11 11 11 11 0 2 13 15 15 15 15 15 0 4 17 22 22 22
StdAccRevsee docsmissing1 1 1 0 2 2 0 1 3 3 0 0 2 5 5 0 0 0 5 7 7 0 0 0 1 7 11 11 0 0 0 0 2 13 15 15 0 0 0 0 0 5 18 22 22 0
StdAntiDiagsee docsmissing1 0 0 1 0 2 0 2 0 0 3 1 0 2 2 0 0 4 5 0 0 2 6 0 0 0 4 11 1 0 0 3 13 2 0 0 0 4 17 5 0 0 0 2 22 10 0
StdDiffx1T(n, k) (k+1)missing1 0 2 0 4 0 0 4 3 0 0 6 6 0 0 0 4 15 0 0 0 0 8 18 4 0 0 0 0 4 33 8 0 0 0 0 0 8 39 20 0 0 0 0 0 0 6
StdRowSum k=0..n T(n, k)A0000411 1 2 3 5 7 11 15 22 30 42 56 77 101 135 176 231 297 385 490 627 792 1002 1255 1575 1958 2436 3010
StdEvenSum k=0..n T(n, k) even(k)A0923061 0 0 1 2 5 6 11 13 17 23 29 34 47 64 74 107 136 185 233 308 392 518 637 814 1002 1272 1560 1912
StdOddSum k=0..n T(n, k) odd(k)A0907940 1 2 2 3 2 5 4 9 13 19 27 43 54 71 102 124 161 200 257 319 400 484 618 761 956 1164 1450 1806 2226
StdAltSum k=0..n T(n, k) (-1)^kA1045751 -1 -2 -1 -1 3 1 7 4 4 4 2 -9 -7 -7 -28 -17 -25 -15 -24 -11 -8 34 19 53 46 108 110 106 113 122 108
StdAbsSum k=0..n | T(n, k) |A0000411 1 2 3 5 7 11 15 22 30 42 56 77 101 135 176 231 297 385 490 627 792 1002 1255 1575 1958 2436 3010
StdDiagSum k=0..n // 2 T(n - k, k)missing1 0 1 2 2 4 4 9 8 16 18 26 34 48 57 80 105 126 174 212 277 340 442 535 689 835 1056 1275 1611 1930
StdAccSum k=0..n j=0..k T(n, j)A3656751 1 4 8 18 30 58 90 153 233 365 533 806 1142 1652 2308 3243 4431 6103 8203 11080 14710 19540 25612
StdAccRevSum k=0..n j=0..k T(n, n - j)A0000701 2 4 7 12 19 30 45 67 97 139 195 272 373 508 684 915 1212 1597 2087 2714 3506 4508 5763 7338 9296
StdRowLcmLcm k=0..n | T(n, k) | > 1missing1 1 2 2 6 10 12 22 260 510 660 1350 32190 9620 14740 64020 25740 45430 1829880 5405940 20372796
StdRowGcdGcd k=0..n | T(n, k) | > 1missing1 1 2 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
StdRowMaxMax k=0..n | T(n, k) |missing1 1 2 2 3 5 6 11 13 17 22 27 37 52 67 97 117 154 184 235 277 338 414 535 692 873 1100 1369 1661
StdColMiddleT(n, n // 2)missing1 0 2 2 2 5 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
StdCentralET(2 n, n)A0000071 2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
StdCentralOT(2 n + 1, n)A0000380 2 5 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
StdColLeftT(n, 0)A0000071 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
StdColRightT(n, n)A0195901 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
StdBinConv k=0..n C(n, k) T(n, k)missing1 1 4 9 24 60 134 315 676 1479 3040 6292 12601 24934 48468 92768 175576 326978 604356 1100366
StdInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kmissing1 1 -4 3 0 -40 46 -147 52 255 -640 2002 -3823 4862 -420 1628 26904 -55590 132492 -179740 241161
StdTransNat0 k=0..n T(n, k) kA0000700 1 2 4 7 12 19 30 45 67 97 139 195 272 373 508 684 915 1212 1597 2087 2714 3506 4508 5763 7338
StdTransNat1 k=0..n T(n, k) (k + 1)A0000701 2 4 7 12 19 30 45 67 97 139 195 272 373 508 684 915 1212 1597 2087 2714 3506 4508 5763 7338 9296
StdTransSqrs k=0..n T(n, k) k^2A1353480 1 2 6 11 22 37 64 101 161 243 367 535 778 1103 1558 2160 2981 4056 5493 7355 9804 12948 17026
StdPosHalf k=0..n 2^n T(n, k) (1/2)^kmissing1 1 4 10 32 72 232 512 1504 3584 9664 22528 62208 142336 370688 885760 2240512 5238784 13271040
StdNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kmissing1 1 -4 6 -16 -8 -40 -192 160 -768 1728 -5632 -256 -19456 30720 41984 -12288 110592 -524288 1638400
StdDiagRow1T(n + 1, n)A0069960 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
StdDiagRow2T(n + 2, n)A0920370 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
StdDiagRow3T(n + 3, n)A0000070 3 5 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
StdDiagCol1T(n + 1, 1)A0000051 2 2 3 2 4 2 4 3 4 2 6 2 4 4 5 2 6 2 6 4 4 2 8 3 4 4 6 2 8 2 6 4 4 4 9 2 4 4 8 2 8 2 6 6 4 2 10
StdDiagCol2T(n + 2, 2)A0021330 1 2 5 6 11 13 17 22 27 29 37 44 44 55 59 68 71 81 82 102 97 112 109 136 126 149 141 168 157 188
StdDiagCol3T(n + 3, 3)A0021340 0 0 1 2 5 10 15 25 37 52 67 97 117 154 184 235 277 338 385 469 531 630 698 810 910 1038 1144 1295
StdPolysee docsmissing1 0 1 0 1 1 0 2 2 1 0 3 4 3 1 0 5 8 6 4 1 0 7 14 15 8 5 1 0 11 24 27 24 10 6 1 0 15 40 51 44 35 12
StdPolyRow1 k=0..1 T(1, k) n^kA0000270 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
StdPolyRow2 k=0..2 T(2, k) n^kA0058430 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68
StdPolyRow3 k=0..3 T(3, k) n^kA0055630 3 8 15 24 35 48 63 80 99 120 143 168 195 224 255 288 323 360 399 440 483 528 575 624 675 728 783
StdPolyCol2 k=0..n T(n, k) 2^kA0151281 2 4 8 14 24 40 64 100 154 232 344 504 728 1040 1472 2062 2864 3948 5400 7336 9904 13288 17728
StdPolyCol3 k=0..n T(n, k) 3^kA2646861 3 6 15 27 51 93 159 264 432 696 1086 1683 2553 3837 5700 8367 12147 17505 24972 35361 49728 69402
StdPolyDiag k=0..n T(n, k) n^kA3218801 1 4 15 44 135 456 1239 3424 8694 27240 65846 171864 406133 960848 2615460 5998416 14304089
AltTriangleT(n, k), 0 ≤ k ≤ nA3656761 0 -1 0 -2 0 0 -2 1 0 0 -3 2 0 0 0 -2 5 0 0 0 0 -4 6 -1 0 0 0 0 -2 11 -2 0 0 0 0 0 -4 13 -5 0 0 0
AltRevT(n, n - k), 0 ≤ k ≤ nmissing1 -1 0 0 -2 0 0 1 -2 0 0 0 2 -3 0 0 0 0 5 -2 0 0 0 0 -1 6 -4 0 0 0 0 0 -2 11 -2 0 0 0 0 0 0 -5 13
AltAccsee docsmissing1 0 -1 0 -2 -2 0 -2 -1 -1 0 -3 -1 -1 -1 0 -2 3 3 3 3 0 -4 2 1 1 1 1 0 -2 9 7 7 7 7 7 0 -4 9 4 4 4 4
AltAccRevsee docsmissing1 -1 -1 0 -2 -2 0 1 -1 -1 0 0 2 -1 -1 0 0 0 5 3 3 0 0 0 -1 5 1 1 0 0 0 0 -2 9 7 7 0 0 0 0 0 -5 8 4
AltAntiDiagsee docsmissing1 0 0 -1 0 -2 0 -2 0 0 -3 1 0 -2 2 0 0 -4 5 0 0 -2 6 0 0 0 -4 11 -1 0 0 -3 13 -2 0 0 0 -4 17 -5 0 0
AltDiffx1T(n, k) (k+1)missing1 0 -2 0 -4 0 0 -4 3 0 0 -6 6 0 0 0 -4 15 0 0 0 0 -8 18 -4 0 0 0 0 -4 33 -8 0 0 0 0 0 -8 39 -20 0 0
AltRowSum k=0..n T(n, k)A1045751 -1 -2 -1 -1 3 1 7 4 4 4 2 -9 -7 -7 -28 -17 -25 -15 -24 -11 -8 34 19 53 46 108 110 106 113 122 108
AltEvenSum k=0..n T(n, k) even(k)A0923061 0 0 1 2 5 6 11 13 17 23 29 34 47 64 74 107 136 185 233 308 392 518 637 814 1002 1272 1560 1912
AltOddSum k=0..n T(n, k) odd(k)A0907940 -1 -2 -2 -3 -2 -5 -4 -9 -13 -19 -27 -43 -54 -71 -102 -124 -161 -200 -257 -319 -400 -484 -618 -761
AltAltSum k=0..n T(n, k) (-1)^kA0000411 1 2 3 5 7 11 15 22 30 42 56 77 101 135 176 231 297 385 490 627 792 1002 1255 1575 1958 2436 3010
AltAbsSum k=0..n | T(n, k) |A0000411 1 2 3 5 7 11 15 22 30 42 56 77 101 135 176 231 297 385 490 627 792 1002 1255 1575 1958 2436 3010
AltDiagSum k=0..n // 2 T(n - k, k)missing1 0 -1 -2 -2 -2 0 1 4 6 8 8 10 6 3 -2 -7 -18 -24 -34 -37 -44 -46 -47 -31 -23 -4 15 49 78 124 150
AltAccSum k=0..n j=0..k T(n, j)missing1 -1 -4 -4 -6 10 2 42 29 39 45 39 -78 -54 -68 -356 -241 -387 -281 -463 -284 -274 544 236 984 874
AltAccRevSum k=0..n j=0..k T(n, n - j)missing1 -2 -4 -1 0 11 6 21 11 5 3 -13 -48 -51 -44 -120 -65 -88 -19 -41 42 90 272 239 394 368 588 614 472
AltRowLcmLcm k=0..n | T(n, k) | > 1missing1 1 2 2 6 10 12 22 260 510 660 1350 32190 9620 14740 64020 25740 45430 1829880 5405940 20372796
AltRowGcdGcd k=0..n | T(n, k) | > 1missing1 1 2 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
AltRowMaxMax k=0..n | T(n, k) |missing1 1 2 2 3 5 6 11 13 17 22 27 37 52 67 97 117 154 184 235 277 338 414 535 692 873 1100 1369 1661
AltColMiddleT(n, n // 2)A0487931 0 -2 -2 2 5 -1 -2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
AltCentralOT(2 n + 1, n)A0000380 -2 5 -2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
AltColLeftT(n, 0)A0000071 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
AltBinConv k=0..n C(n, k) T(n, k)missing1 -1 -4 -3 0 40 46 147 52 -255 -640 -2002 -3823 -4862 -420 -1628 26904 55590 132492 179740 241161
AltInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kmissing1 -1 4 -9 24 -60 134 -315 676 -1479 3040 -6292 12601 -24934 48468 -92768 175576 -326978 604356
AltTransNat0 k=0..n T(n, k) kmissing0 -1 -2 0 1 8 5 14 7 1 -1 -15 -39 -44 -37 -92 -48 -63 -4 -17 53 98 238 220 341 322 480 504 366 360
AltTransNat1 k=0..n T(n, k) (k + 1)missing1 -2 -4 -1 0 11 6 21 11 5 3 -13 -48 -51 -44 -120 -65 -88 -19 -41 42 90 272 239 394 368 588 614 472
AltTransSqrs k=0..n T(n, k) k^2missing0 -1 -2 2 5 18 11 24 3 -25 -35 -87 -143 -162 -111 -246 -56 -45 232 259 557 812 1260 1230 1543 1376
AltPosHalf k=0..n 2^n T(n, k) (1/2)^kmissing1 -1 -4 -6 -16 8 -40 192 160 768 1728 5632 -256 19456 30720 -41984 -12288 -110592 -524288 -1638400
AltNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kmissing1 -1 4 -10 32 -72 232 -512 1504 -3584 9664 -22528 62208 -142336 370688 -885760 2240512 -5238784
AltDiagRow1T(n + 1, n)A0069960 -2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
AltDiagRow3T(n + 3, n)A0000070 -3 5 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
AltDiagCol1T(n + 1, 1)A000005-1 -2 -2 -3 -2 -4 -2 -4 -3 -4 -2 -6 -2 -4 -4 -5 -2 -6 -2 -6 -4 -4 -2 -8 -3 -4 -4 -6 -2 -8 -2 -6 -4
AltDiagCol2T(n + 2, 2)A0021330 1 2 5 6 11 13 17 22 27 29 37 44 44 55 59 68 71 81 82 102 97 112 109 136 126 149 141 168 157 188
AltDiagCol3T(n + 3, 3)A0021340 0 0 -1 -2 -5 -10 -15 -25 -37 -52 -67 -97 -117 -154 -184 -235 -277 -338 -385 -469 -531 -630 -698
AltPolysee docsmissing1 0 1 0 -1 1 0 -2 -2 1 0 -1 -4 -3 1 0 -1 0 -6 -4 1 0 3 2 3 -8 -5 1 0 1 16 9 8 -10 -6 1 0 7 8 39 20
AltPolyRow1 k=0..1 T(1, k) n^kA0000270 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25 -26
AltPolyRow2 k=0..2 T(2, k) n^kA0058430 -2 -4 -6 -8 -10 -12 -14 -16 -18 -20 -22 -24 -26 -28 -30 -32 -34 -36 -38 -40 -42 -44 -46 -48 -50
AltPolyRow3 k=0..3 T(3, k) n^kA0055630 -1 0 3 8 15 24 35 48 63 80 99 120 143 168 195 224 255 288 323 360 399 440 483 528 575 624 675 728
AltPolyCol2 k=0..n T(n, k) 2^kmissing1 -2 -4 0 2 16 8 24 4 -18 -24 -64 -112 -112 -48 -160 42 72 340 352 576 768 1032 808 792 302 72 -272
AltPolyCol3 k=0..n T(n, k) 3^kmissing1 -3 -6 3 9 39 15 39 -30 -126 -138 -276 -351 -267 195 -48 1047 1389 2673 2550 2871 3264 2418 -537
AltPolyDiag k=0..n T(n, k) n^kmissing1 -1 -4 3 20 115 -24 -161 -1760 -5940 -2840 -748 43848 177593 593040 441840 845488 -1407753
RevTriangleT(n, k), 0 ≤ k ≤ nmissing1 1 0 0 2 0 0 1 2 0 0 0 2 3 0 0 0 0 5 2 0 0 0 0 1 6 4 0 0 0 0 0 2 11 2 0 0 0 0 0 0 5 13 4 0 0 0 0 0
RevAccsee docsmissing1 1 1 0 2 2 0 1 3 3 0 0 2 5 5 0 0 0 5 7 7 0 0 0 1 7 11 11 0 0 0 0 2 13 15 15 0 0 0 0 0 5 18 22 22 0
RevAccRevsee docsmissing1 0 1 0 2 2 0 2 3 3 0 3 5 5 5 0 2 7 7 7 7 0 4 10 11 11 11 11 0 2 13 15 15 15 15 15 0 4 17 22 22 22
RevAntiDiagsee docsmissing1 1 0 0 0 2 0 1 0 0 0 2 0 0 2 0 0 0 0 3 0 0 0 5 0 0 0 0 1 2 0 0 0 0 6 0 0 0 0 0 2 4 0 0 0 0 0 11 0
RevDiffx1T(n, k) (k+1)missing1 1 0 0 4 0 0 2 6 0 0 0 6 12 0 0 0 0 20 10 0 0 0 0 4 30 24 0 0 0 0 0 10 66 14 0 0 0 0 0 0 30 91 32
RevRowSum k=0..n T(n, k)A0000411 1 2 3 5 7 11 15 22 30 42 56 77 101 135 176 231 297 385 490 627 792 1002 1255 1575 1958 2436 3010
RevEvenSum k=0..n T(n, k) even(k)missing1 1 0 2 2 2 6 4 13 13 23 27 34 54 64 102 107 161 185 257 308 400 518 618 814 956 1272 1450 1912
RevOddSum k=0..n T(n, k) odd(k)missing0 0 2 1 3 5 5 11 9 17 19 29 43 47 71 74 124 136 200 233 319 392 484 637 761 1002 1164 1560 1806
RevAltSum k=0..n T(n, k) (-1)^kA1045751 1 -2 1 -1 -3 1 -7 4 -4 4 -2 -9 7 -7 28 -17 25 -15 24 -11 8 34 -19 53 -46 108 -110 106 -113 122
RevAbsSum k=0..n | T(n, k) |A0000411 1 2 3 5 7 11 15 22 30 42 56 77 101 135 176 231 297 385 490 627 792 1002 1255 1575 1958 2436 3010
RevDiagSum k=0..n // 2 T(n - k, k)missing1 1 0 2 1 2 2 3 5 3 6 6 11 7 13 14 18 18 24 29 32 39 39 58 57 70 74 103 96 126 132 169 176 206 230
RevAccSum k=0..n j=0..k T(n, j)A0000701 2 4 7 12 19 30 45 67 97 139 195 272 373 508 684 915 1212 1597 2087 2714 3506 4508 5763 7338 9296
RevAccRevSum k=0..n j=0..k T(n, n - j)A3656751 1 4 8 18 30 58 90 153 233 365 533 806 1142 1652 2308 3243 4431 6103 8203 11080 14710 19540 25612
RevRowLcmLcm k=0..n | T(n, k) | > 1missing1 1 2 2 6 10 12 22 260 510 660 1350 32190 9620 14740 64020 25740 45430 1829880 5405940 20372796
RevRowGcdGcd k=0..n | T(n, k) | > 1missing1 1 2 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
RevRowMaxMax k=0..n | T(n, k) |missing1 1 2 2 3 5 6 11 13 17 22 27 37 52 67 97 117 154 184 235 277 338 414 535 692 873 1100 1369 1661
RevColMiddleT(n, n // 2)missing1 1 2 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RevCentralET(2 n, n)A0000071 2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RevCentralOT(2 n + 1, n)A0195901 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RevColLeftT(n, 0)A0195901 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RevColRightT(n, n)A0000071 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RevBinConv k=0..n C(n, k) T(n, k)missing1 1 4 9 24 60 134 315 676 1479 3040 6292 12601 24934 48468 92768 175576 326978 604356 1100366
RevInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kmissing1 -1 -4 -3 0 40 46 147 52 -255 -640 -2002 -3823 -4862 -420 -1628 26904 55590 132492 179740 241161
RevTransNat0 k=0..n T(n, k) kA1945520 0 2 5 13 23 47 75 131 203 323 477 729 1041 1517 2132 3012 4134 5718 7713 10453 13918 18538 24357
RevTransNat1 k=0..n T(n, k) (k + 1)A3656751 1 4 8 18 30 58 90 153 233 365 533 806 1142 1652 2308 3243 4431 6103 8203 11080 14710 19540 25612
RevTransSqrs k=0..n T(n, k) k^2missing0 0 2 9 35 77 205 379 789 1385 2503 4085 6943 10775 17119 25918 39408 57704 85164 121697 174675
RevPosHalf k=0..n 2^n T(n, k) (1/2)^kA0151281 2 4 8 14 24 40 64 100 154 232 344 504 728 1040 1472 2062 2864 3948 5400 7336 9904 13288 17728
RevNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kmissing1 -2 -4 0 2 16 8 24 4 -18 -24 -64 -112 -112 -48 -160 42 72 340 352 576 768 1032 808 792 302 72 -272
RevDiagRow1T(n + 1, n)A0000051 2 2 3 2 4 2 4 3 4 2 6 2 4 4 5 2 6 2 6 4 4 2 8 3 4 4 6 2 8 2 6 4 4 4 9 2 4 4 8 2 8 2 6 6 4 2 10
RevDiagRow2T(n + 2, n)A0021330 1 2 5 6 11 13 17 22 27 29 37 44 44 55 59 68 71 81 82 102 97 112 109 136 126 149 141 168 157 188
RevDiagRow3T(n + 3, n)A0021340 0 0 1 2 5 10 15 25 37 52 67 97 117 154 184 235 277 338 385 469 531 630 698 810 910 1038 1144 1295
RevDiagCol1T(n + 1, 1)A0069960 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RevDiagCol2T(n + 2, 2)A0920370 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RevDiagCol3T(n + 3, 3)A0000070 3 5 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RevPolysee docsmissing1 1 1 0 1 1 0 2 1 1 0 3 4 1 1 0 5 10 6 1 1 0 7 32 21 8 1 1 0 11 72 99 36 10 1 1 0 15 232 297 224 55
RevPolyRow1 k=0..1 T(1, k) n^kA0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
RevPolyRow2 k=0..2 T(2, k) n^kA0058430 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68
RevPolyRow3 k=0..3 T(3, k) n^kA0141050 3 10 21 36 55 78 105 136 171 210 253 300 351 406 465 528 595 666 741 820 903 990 1081 1176 1275
RevPolyCol2 k=0..n T(n, k) 2^kmissing1 1 4 10 32 72 232 512 1504 3584 9664 22528 62208 142336 370688 885760 2240512 5238784 13271040
RevPolyCol3 k=0..n T(n, k) 3^kmissing1 1 6 21 99 297 1485 4293 19440 64152 256608 817938 3536379 10884699 42810525 146205324 549332847
RevPolyDiag k=0..n T(n, k) n^kmissing1 1 4 21 224 1875 39096 424977 11960320 215765046 6351000000 120937383226 6446715568128
 << TableSourceSimilarsIndex >> 

Note: The A-numbers are based on a finite number of numerical comparisons. They ignore the sign and the OEIS-offset. Sometimes they differ in the first few values. In such cases, we consider our version to be the better one because it has a common formula as a root. Since the offset of all triangles is 0 also the offset of all sequences is 0.