PARTITIONMAX[0] 1
[1] 0, 1
[2] 0, 1, 2
[3] 0, 1, 2, 3
[4] 0, 1, 3, 4, 5
[5] 0, 1, 3, 5, 6, 7

      OEIS Similars: A026820

↕ Type↕ Trait↕ Anum↕ Sequence
StdTriangleT(n, k), 0 ≤ k ≤ nmissing1 0 1 0 1 2 0 1 2 3 0 1 3 4 5 0 1 3 5 6 7 0 1 4 7 9 10 11 0 1 4 8 11 13 14 15 0 1 5 10 15 18 20 21
StdRevT(n, n - k), 0 ≤ k ≤ nmissing1 1 0 2 1 0 3 2 1 0 5 4 3 1 0 7 6 5 3 1 0 11 10 9 7 4 1 0 15 14 13 11 8 4 1 0 22 21 20 18 15 10 5 1
StdAccsee docsmissing1 0 1 0 1 3 0 1 3 6 0 1 4 8 13 0 1 4 9 15 22 0 1 5 12 21 31 42 0 1 5 13 24 37 51 66 0 1 6 16 31 49
StdAccRevsee docsmissing1 1 1 2 3 3 3 5 6 6 5 9 12 13 13 7 13 18 21 22 22 11 21 30 37 41 42 42 15 29 42 53 61 65 66 66 22
StdAntiDiagsee docsmissing1 0 0 1 0 1 0 1 2 0 1 2 0 1 3 3 0 1 3 4 0 1 4 5 5 0 1 4 7 6 0 1 5 8 9 7 0 1 5 10 11 10 0 1 6 12 15
StdDiffx1T(n, k) (k+1)missing1 0 2 0 2 6 0 2 6 12 0 2 9 16 25 0 2 9 20 30 42 0 2 12 28 45 60 77 0 2 12 32 55 78 98 120 0 2 15 40
StdRowSum k=0..n T(n, k)A0583971 1 3 6 13 22 42 66 112 172 270 397 602 858 1245 1748 2464 3381 4671 6302 8537 11372 15147 19914
StdEvenSum k=0..n T(n, k) even(k)missing1 0 2 2 8 9 24 29 62 78 146 184 321 403 657 829 1291 1615 2433 3027 4427 5486 7826 9641 13497 16536
StdOddSum k=0..n T(n, k) odd(k)missing0 1 1 4 5 13 18 37 50 94 124 213 281 455 588 919 1173 1766 2238 3275 4110 5886 7321 10273 12704
StdAltSum k=0..n T(n, k) (-1)^kA0466821 -1 1 -2 3 -4 6 -8 12 -16 22 -29 40 -52 69 -90 118 -151 195 -248 317 -400 505 -632 793 -985 1224
StdAbsSum k=0..n | T(n, k) |A0583971 1 3 6 13 22 42 66 112 172 270 397 602 858 1245 1748 2464 3381 4671 6302 8537 11372 15147 19914
StdDiagSum k=0..n // 2 T(n - k, k)A1106181 0 1 1 3 3 7 8 15 18 30 37 58 71 105 131 186 230 318 393 530 653 863 1060 1380 1686 2164 2637 3345
StdAccSum k=0..n j=0..k T(n, j)missing1 1 4 10 26 51 112 197 374 632 1088 1735 2853 4363 6789 10161 15237 22134 32341 45951 65489 91492
StdAccRevSum k=0..n j=0..k T(n, n - j)missing1 2 8 20 52 103 224 397 746 1260 2152 3426 5575 8507 13131 19555 29115 42105 61079 86391 122325
StdRowLcmLcm k=0..n | T(n, k) | > 1missing1 1 2 6 60 210 13860 120120 13860 10925460 15050280 559999440 9651094553100 2041988848062263100
StdRowGcdGcd k=0..n | T(n, k) | > 1A0000121 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
StdRowMaxMax k=0..n | T(n, k) |A0000411 1 2 3 5 7 11 15 22 30 42 56 77 101 135 176 231 297 385 490 627 792 1002 1255 1575 1958 2436 3010
StdColMiddleT(n, n // 2)A1106181 0 1 1 3 3 7 8 15 18 30 37 58 71 105 131 186 230 318 393 530 653 863 1060 1380 1686 2164 2637 3345
StdCentralET(2 n, n)A2098161 1 3 7 15 30 58 105 186 318 530 863 1380 2164 3345 5096 7665 11395 16765 24418 35251 50460 71669
StdCentralOT(2 n + 1, n)missing0 1 3 8 18 37 71 131 230 393 653 1060 1686 2637 4057 6158 9228 13671 20040 29098 41869 59755 84626
StdColLeftT(n, 0)A0000071 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
StdColRightT(n, n)A0000411 1 2 3 5 7 11 15 22 30 42 56 77 101 135 176 231 297 385 490 627 792 1002 1255 1575 1958 2436 3010
StdBinConv k=0..n C(n, k) T(n, k)missing1 1 4 12 43 122 412 1142 3516 9846 28512 77694 220429 588975 1611815 4280440 11454531 29906782
StdInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kmissing1 1 0 0 3 2 0 8 28 60 72 188 693 1271 1703 4466 12579 23502 39916 96212 247779 505676 912837
StdTransNat0 k=0..n T(n, k) kmissing0 1 5 14 39 81 182 331 634 1088 1882 3029 4973 7649 11886 17807 26651 38724 56408 80089 113788
StdTransNat1 k=0..n T(n, k) (k + 1)missing1 2 8 20 52 103 224 397 746 1260 2152 3426 5575 8507 13131 19555 29115 42105 61079 86391 122325
StdTransSqrs k=0..n T(n, k) k^2missing0 1 9 36 129 329 870 1829 3958 7586 14472 25489 45369 75299 125432 200603 319061 491110 755022
StdPosHalf k=0..n 2^n T(n, k) (1/2)^kmissing1 1 4 11 33 79 219 503 1296 3016 7420 17006 41689 94657 225951 518262 1219135 2770429 6490533
StdNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kmissing1 1 0 3 1 7 3 15 28 52 120 82 473 225 2199 2042 10423 5325 29589 23480 149819 194930 575928 660663
StdDiagRow1T(n + 1, n)A0000650 1 2 4 6 10 14 21 29 41 55 76 100 134 175 230 296 384 489 626 791 1001 1254 1574 1957 2435 3009
StdDiagRow2T(n + 2, n)A0070420 1 3 5 9 13 20 28 40 54 75 99 133 174 229 295 383 488 625 790 1000 1253 1573 1956 2434 3008 3716
StdDiagRow3T(n + 3, n)A3353230 1 3 7 11 18 26 38 52 73 97 131 172 227 293 381 486 623 788 998 1251 1571 1954 2432 3006 3714 4561
StdDiagCol1T(n + 1, 1)A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
StdDiagCol2T(n + 2, 2)A0045262 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13 14 14 15 15 16 16 17 17 18 18 19 19 20 20
StdDiagCol3T(n + 3, 3)A0013993 4 5 7 8 10 12 14 16 19 21 24 27 30 33 37 40 44 48 52 56 61 65 70 75 80 85 91 96 102 108 114 120
StdPolysee docsmissing1 0 1 0 1 1 0 3 2 1 0 6 10 3 1 0 13 34 21 4 1 0 22 126 102 36 5 1 0 42 374 543 228 55 6 1 0 66 1242
StdPolyRow1 k=0..1 T(1, k) n^kA0000270 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
StdPolyRow2 k=0..2 T(2, k) n^kA0141050 3 10 21 36 55 78 105 136 171 210 253 300 351 406 465 528 595 666 741 820 903 990 1081 1176 1275
StdPolyRow3 k=0..3 T(3, k) n^kA0673890 6 34 102 228 430 726 1134 1672 2358 3210 4246 5484 6942 8638 10590 12816 15334 18162 21318 24820
StdPolyCol2 k=0..n T(n, k) 2^kmissing1 2 10 34 126 374 1242 3490 10518 29174 82810 222826 617398 1627670 4368786 11423706 30054838
StdPolyCol3 k=0..n T(n, k) 3^kmissing1 3 21 102 543 2352 11406 47316 210756 868368 3667710 14722887 60908124 240118896 964285149
StdPolyDiag k=0..n T(n, k) n^kmissing1 1 10 102 1588 26330 604302 14248080 419038536 13020195564 465418244610 17543526940687
AltTriangleT(n, k), 0 ≤ k ≤ nmissing1 0 -1 0 -1 2 0 -1 2 -3 0 -1 3 -4 5 0 -1 3 -5 6 -7 0 -1 4 -7 9 -10 11 0 -1 4 -8 11 -13 14 -15 0 -1
AltRevT(n, n - k), 0 ≤ k ≤ nmissing1 -1 0 2 -1 0 -3 2 -1 0 5 -4 3 -1 0 -7 6 -5 3 -1 0 11 -10 9 -7 4 -1 0 -15 14 -13 11 -8 4 -1 0 22
AltAccsee docsmissing1 0 -1 0 -1 1 0 -1 1 -2 0 -1 2 -2 3 0 -1 2 -3 3 -4 0 -1 3 -4 5 -5 6 0 -1 3 -5 6 -7 7 -8 0 -1 4 -6 9
AltAccRevsee docsmissing1 -1 -1 2 1 1 -3 -1 -2 -2 5 1 4 3 3 -7 -1 -6 -3 -4 -4 11 1 10 3 7 6 6 -15 -1 -14 -3 -11 -7 -8 -8 22
AltAntiDiagsee docsmissing1 0 0 -1 0 -1 0 -1 2 0 -1 2 0 -1 3 -3 0 -1 3 -4 0 -1 4 -5 5 0 -1 4 -7 6 0 -1 5 -8 9 -7 0 -1 5 -10
AltDiffx1T(n, k) (k+1)missing1 0 -2 0 -2 6 0 -2 6 -12 0 -2 9 -16 25 0 -2 9 -20 30 -42 0 -2 12 -28 45 -60 77 0 -2 12 -32 55 -78
AltRowSum k=0..n T(n, k)A0466821 -1 1 -2 3 -4 6 -8 12 -16 22 -29 40 -52 69 -90 118 -151 195 -248 317 -400 505 -632 793 -985 1224
AltEvenSum k=0..n T(n, k) even(k)missing1 0 2 2 8 9 24 29 62 78 146 184 321 403 657 829 1291 1615 2433 3027 4427 5486 7826 9641 13497 16536
AltOddSum k=0..n T(n, k) odd(k)missing0 -1 -1 -4 -5 -13 -18 -37 -50 -94 -124 -213 -281 -455 -588 -919 -1173 -1766 -2238 -3275 -4110 -5886
AltAltSum k=0..n T(n, k) (-1)^kA0583971 1 3 6 13 22 42 66 112 172 270 397 602 858 1245 1748 2464 3381 4671 6302 8537 11372 15147 19914
AltAbsSum k=0..n | T(n, k) |A0583971 1 3 6 13 22 42 66 112 172 270 397 602 858 1245 1748 2464 3381 4671 6302 8537 11372 15147 19914
AltDiagSum k=0..n // 2 T(n - k, k)missing1 0 -1 -1 1 1 -1 -2 3 2 -2 -5 6 5 -5 -11 12 10 -10 -21 22 19 -19 -38 40 36 -36 -67 69 65 -64 -114
AltAccSum k=0..n j=0..k T(n, j)missing1 -1 0 -2 2 -3 4 -5 10 -12 16 -19 29 -35 45 -61 81 -98 121 -155 197 -248 302 -375 473 -581 703 -869
AltAccRevSum k=0..n j=0..k T(n, n - j)missing1 -2 4 -8 16 -25 44 -67 110 -164 248 -358 531 -745 1059 -1469 2043 -2771 3779 -5053 6777 -8952
AltRowLcmLcm k=0..n | T(n, k) | > 1missing1 1 2 6 60 210 13860 120120 13860 10925460 15050280 559999440 9651094553100 2041988848062263100
AltRowGcdGcd k=0..n | T(n, k) | > 1A0000121 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
AltRowMaxMax k=0..n | T(n, k) |A0000411 1 2 3 5 7 11 15 22 30 42 56 77 101 135 176 231 297 385 490 627 792 1002 1255 1575 1958 2436 3010
AltColMiddleT(n, n // 2)A1106181 0 -1 -1 3 3 -7 -8 15 18 -30 -37 58 71 -105 -131 186 230 -318 -393 530 653 -863 -1060 1380 1686
AltCentralET(2 n, n)A2098161 -1 3 -7 15 -30 58 -105 186 -318 530 -863 1380 -2164 3345 -5096 7665 -11395 16765 -24418 35251
AltCentralOT(2 n + 1, n)missing0 -1 3 -8 18 -37 71 -131 230 -393 653 -1060 1686 -2637 4057 -6158 9228 -13671 20040 -29098 41869
AltColLeftT(n, 0)A0000071 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
AltColRightT(n, n)A0000411 -1 2 -3 5 -7 11 -15 22 -30 42 -56 77 -101 135 -176 231 -297 385 -490 627 -792 1002 -1255 1575
AltBinConv k=0..n C(n, k) T(n, k)missing1 -1 0 0 3 -2 0 -8 28 -60 72 -188 693 -1271 1703 -4466 12579 -23502 39916 -96212 247779 -505676
AltInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kmissing1 -1 4 -12 43 -122 412 -1142 3516 -9846 28512 -77694 220429 -588975 1611815 -4280440 11454531
AltTransNat0 k=0..n T(n, k) kmissing0 -1 3 -6 13 -21 38 -59 98 -148 226 -329 491 -693 990 -1379 1925 -2620 3584 -4805 6460 -8552 11313
AltTransNat1 k=0..n T(n, k) (k + 1)missing1 -2 4 -8 16 -25 44 -67 110 -164 248 -358 531 -745 1059 -1469 2043 -2771 3779 -5053 6777 -8952
AltTransSqrs k=0..n T(n, k) k^2missing0 -1 7 -20 55 -113 242 -437 818 -1386 2352 -3753 6087 -9291 14288 -21267 31611 -45670 66098 -93423
AltPosHalf k=0..n 2^n T(n, k) (1/2)^kmissing1 -1 0 -3 1 -7 3 -15 28 -52 120 -82 473 -225 2199 -2042 10423 -5325 29589 -23480 149819 -194930
AltNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kmissing1 -1 4 -11 33 -79 219 -503 1296 -3016 7420 -17006 41689 -94657 225951 -518262 1219135 -2770429
AltDiagRow1T(n + 1, n)A0000650 -1 2 -4 6 -10 14 -21 29 -41 55 -76 100 -134 175 -230 296 -384 489 -626 791 -1001 1254 -1574 1957
AltDiagRow2T(n + 2, n)A0070420 -1 3 -5 9 -13 20 -28 40 -54 75 -99 133 -174 229 -295 383 -488 625 -790 1000 -1253 1573 -1956 2434
AltDiagRow3T(n + 3, n)A3353230 -1 3 -7 11 -18 26 -38 52 -73 97 -131 172 -227 293 -381 486 -623 788 -998 1251 -1571 1954 -2432
AltDiagCol1T(n + 1, 1)A000012-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
AltDiagCol2T(n + 2, 2)A0045262 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13 14 14 15 15 16 16 17 17 18 18 19 19 20 20
AltDiagCol3T(n + 3, 3)A001399-3 -4 -5 -7 -8 -10 -12 -14 -16 -19 -21 -24 -27 -30 -33 -37 -40 -44 -48 -52 -56 -61 -65 -70 -75 -80
AltPolysee docsmissing1 0 1 0 -1 1 0 1 -2 1 0 -2 6 -3 1 0 3 -18 15 -4 1 0 -4 58 -66 28 -5 1 0 6 -158 321 -164 45 -6 1 0
AltPolyRow1 k=0..1 T(1, k) n^kA0000270 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25 -26
AltPolyRow2 k=0..2 T(2, k) n^kA0003840 1 6 15 28 45 66 91 120 153 190 231 276 325 378 435 496 561 630 703 780 861 946 1035 1128 1225
AltPolyRow3 k=0..3 T(3, k) n^kmissing0 -2 -18 -66 -164 -330 -582 -938 -1416 -2034 -2810 -3762 -4908 -6266 -7854 -9690 -11792 -14178
AltPolyCol2 k=0..n T(n, k) 2^kmissing1 -2 6 -18 58 -158 486 -1314 3826 -10382 28950 -77018 211394 -553854 1479054 -3853786 10110610
AltPolyCol3 k=0..n T(n, k) 3^kmissing1 -3 15 -66 321 -1326 6162 -25050 109608 -446916 1872150 -7476519 30799878 -121097370 485257461
AltPolyDiag k=0..n T(n, k) n^kmissing1 -1 6 -66 1068 -18680 445746 -10900694 329768248 -10495613808 382652216590 -14667960221519
RevTriangleT(n, k), 0 ≤ k ≤ nmissing1 1 0 2 1 0 3 2 1 0 5 4 3 1 0 7 6 5 3 1 0 11 10 9 7 4 1 0 15 14 13 11 8 4 1 0 22 21 20 18 15 10 5 1
RevAccsee docsmissing1 1 1 2 3 3 3 5 6 6 5 9 12 13 13 7 13 18 21 22 22 11 21 30 37 41 42 42 15 29 42 53 61 65 66 66 22
RevAccRevsee docsmissing1 0 1 0 1 3 0 1 3 6 0 1 4 8 13 0 1 4 9 15 22 0 1 5 12 21 31 42 0 1 5 13 24 37 51 66 0 1 6 16 31 49
RevAntiDiagsee docsmissing1 1 2 0 3 1 5 2 0 7 4 1 11 6 3 0 15 10 5 1 22 14 9 3 0 30 21 13 7 1 42 29 20 11 4 0 56 41 28 18 8 1
RevDiffx1T(n, k) (k+1)missing1 1 0 2 2 0 3 4 3 0 5 8 9 4 0 7 12 15 12 5 0 11 20 27 28 20 6 0 15 28 39 44 40 24 7 0 22 42 60 72
RevRowSum k=0..n T(n, k)A0583971 1 3 6 13 22 42 66 112 172 270 397 602 858 1245 1748 2464 3381 4671 6302 8537 11372 15147 19914
RevEvenSum k=0..n T(n, k) even(k)missing1 1 2 4 8 13 24 37 62 94 146 213 321 455 657 919 1291 1766 2433 3275 4427 5886 7826 10273 13497
RevOddSum k=0..n T(n, k) odd(k)missing0 0 1 2 5 9 18 29 50 78 124 184 281 403 588 829 1173 1615 2238 3027 4110 5486 7321 9641 12704 16536
RevAltSum k=0..n T(n, k) (-1)^kA0466821 1 1 2 3 4 6 8 12 16 22 29 40 52 69 90 118 151 195 248 317 400 505 632 793 985 1224 1512 1867 2291
RevAbsSum k=0..n | T(n, k) |A0583971 1 3 6 13 22 42 66 112 172 270 397 602 858 1245 1748 2464 3381 4671 6302 8537 11372 15147 19914
RevDiagSum k=0..n // 2 T(n - k, k)missing1 1 2 4 7 12 20 31 48 72 106 152 217 303 420 574 778 1043 1390 1834 2407 3135 4061 5227 6698 8534
RevAccSum k=0..n j=0..k T(n, j)missing1 2 8 20 52 103 224 397 746 1260 2152 3426 5575 8507 13131 19555 29115 42105 61079 86391 122325
RevAccRevSum k=0..n j=0..k T(n, n - j)missing1 1 4 10 26 51 112 197 374 632 1088 1735 2853 4363 6789 10161 15237 22134 32341 45951 65489 91492
RevRowLcmLcm k=0..n | T(n, k) | > 1missing1 1 2 6 60 210 13860 120120 13860 10925460 15050280 559999440 9651094553100 2041988848062263100
RevRowGcdGcd k=0..n | T(n, k) | > 1A0000121 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
RevRowMaxMax k=0..n | T(n, k) |A0000411 1 2 3 5 7 11 15 22 30 42 56 77 101 135 176 231 297 385 490 627 792 1002 1255 1575 1958 2436 3010
RevColMiddleT(n, n // 2)A3361061 1 1 2 3 5 7 11 15 23 30 44 58 82 105 146 186 252 318 423 530 695 863 1116 1380 1763 2164 2738
RevCentralET(2 n, n)A2098161 1 3 7 15 30 58 105 186 318 530 863 1380 2164 3345 5096 7665 11395 16765 24418 35251 50460 71669
RevCentralOT(2 n + 1, n)A1719851 2 5 11 23 44 82 146 252 423 695 1116 1763 2738 4192 6334 9459 13968 20425 29588 42496 60547 85628
RevColLeftT(n, 0)A0000411 1 2 3 5 7 11 15 22 30 42 56 77 101 135 176 231 297 385 490 627 792 1002 1255 1575 1958 2436 3010
RevColRightT(n, n)A0000071 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RevBinConv k=0..n C(n, k) T(n, k)missing1 1 4 12 43 122 412 1142 3516 9846 28512 77694 220429 588975 1611815 4280440 11454531 29906782
RevInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kmissing1 -1 0 0 3 -2 0 -8 28 -60 72 -188 693 -1271 1703 -4466 12579 -23502 39916 -96212 247779 -505676
RevTransNat0 k=0..n T(n, k) kmissing0 0 1 4 13 29 70 131 262 460 818 1338 2251 3505 5544 8413 12773 18753 27670 39649 56952 80120
RevTransNat1 k=0..n T(n, k) (k + 1)missing1 1 4 10 26 51 112 197 374 632 1088 1735 2853 4363 6789 10161 15237 22134 32341 45951 65489 91492
RevTransSqrs k=0..n T(n, k) k^2missing0 0 1 6 25 69 198 429 982 1934 3832 6888 12705 21427 36644 59693 97013 151603 237738 360287 546598
RevPosHalf k=0..n 2^n T(n, k) (1/2)^kmissing1 2 10 34 126 374 1242 3490 10518 29174 82810 222826 617398 1627670 4368786 11423706 30054838
RevNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kmissing1 -2 6 -18 58 -158 486 -1314 3826 -10382 28950 -77018 211394 -553854 1479054 -3853786 10110610
RevDiagRow1T(n + 1, n)A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
RevDiagRow2T(n + 2, n)A0045262 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13 14 14 15 15 16 16 17 17 18 18 19 19 20 20
RevDiagRow3T(n + 3, n)A0013993 4 5 7 8 10 12 14 16 19 21 24 27 30 33 37 40 44 48 52 56 61 65 70 75 80 85 91 96 102 108 114 120
RevDiagCol1T(n + 1, 1)A0000650 1 2 4 6 10 14 21 29 41 55 76 100 134 175 230 296 384 489 626 791 1001 1254 1574 1957 2435 3009
RevDiagCol2T(n + 2, 2)A0070420 1 3 5 9 13 20 28 40 54 75 99 133 174 229 295 383 488 625 790 1000 1253 1573 1956 2434 3008 3716
RevDiagCol3T(n + 3, 3)A3353230 1 3 7 11 18 26 38 52 73 97 131 172 227 293 381 486 623 788 998 1251 1571 1954 2432 3006 3714 4561
RevPolysee docsmissing1 1 1 2 1 1 3 3 1 1 5 6 4 1 1 7 13 11 5 1 1 11 22 33 18 6 1 1 15 42 79 71 27 7 1 1 22 66 219 232
RevPolyRow1 k=0..1 T(1, k) n^kA0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
RevPolyRow2 k=0..2 T(2, k) n^kA0000272 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
RevPolyRow3 k=0..3 T(3, k) n^kA0591003 6 11 18 27 38 51 66 83 102 123 146 171 198 227 258 291 326 363 402 443 486 531 578 627 678 731
RevPolyCol2 k=0..n T(n, k) 2^kmissing1 1 4 11 33 79 219 503 1296 3016 7420 17006 41689 94657 225951 518262 1219135 2770429 6490533
RevPolyCol3 k=0..n T(n, k) 3^kmissing1 1 5 18 71 232 878 2820 10228 33552 118110 384917 1357028 4401320 15200709 49931342 170283018
RevPolyDiag k=0..n T(n, k) n^kmissing1 1 4 18 133 1162 14867 208608 3807678 74574156 1766392452 44114434277 1290960170189 39203195240310
 << TableSourceSimilarsIndex >> 

Note: The A-numbers are based on a finite number of numerical comparisons. They ignore the sign and the OEIS-offset. Sometimes they differ in the first few values. In such cases, we consider our version to be the better one because it has a common formula as a root. Since the offset of all triangles is 0 also the offset of all sequences is 0.