PARTITION[0] 1
[1] 0, 1
[2] 0, 1, 1
[3] 0, 1, 1, 1
[4] 0, 1, 2, 1, 1
[5] 0, 1, 2, 2, 1, 1

      OEIS Similars: A072233, A008284, A058398

↕ Type↕ Trait↕ Anum↕ Sequence
StdTriangleT(n, k), 0 ≤ k ≤ nA0722331 0 1 0 1 1 0 1 1 1 0 1 2 1 1 0 1 2 2 1 1 0 1 3 3 2 1 1 0 1 3 4 3 2 1 1 0 1 4 5 5 3 2 1 1 0 1 4 7 6
StdRevT(n, n - k), 0 ≤ k ≤ nmissing1 1 0 1 1 0 1 1 1 0 1 1 2 1 0 1 1 2 2 1 0 1 1 2 3 3 1 0 1 1 2 3 4 3 1 0 1 1 2 3 5 5 4 1 0 1 1 2 3 5
StdInvT-1(n, k), 0 ≤ k ≤ nmissing1 0 1 0 -1 1 0 0 -1 1 0 1 -1 -1 1 0 0 1 -1 -1 1 0 0 1 0 -1 -1 1 0 -1 1 1 0 -1 -1 1 0 -1 0 2 0 0 -1
StdRevInvT-1(n, n - k), 0 ≤ k ≤ nmissing1 1 0 1 -1 0 1 -1 0 0 1 -1 -1 1 0 1 -1 -1 1 0 0 1 -1 -1 0 1 0 0 1 -1 -1 0 1 1 -1 0 1 -1 -1 0 0 2 0
StdAccsee docsmissing1 0 1 0 1 2 0 1 2 3 0 1 3 4 5 0 1 3 5 6 7 0 1 4 7 9 10 11 0 1 4 8 11 13 14 15 0 1 5 10 15 18 20 21
StdAccRevsee docsmissing1 1 1 1 2 2 1 2 3 3 1 2 4 5 5 1 2 4 6 7 7 1 2 4 7 10 11 11 1 2 4 7 11 14 15 15 1 2 4 7 12 17 21 22
StdAntiDiagsee docsmissing1 0 0 1 0 1 0 1 1 0 1 1 0 1 2 1 0 1 2 1 0 1 3 2 1 0 1 3 3 1 0 1 4 4 2 1 0 1 4 5 3 1 0 1 5 7 5 2 1 0
StdDiffx1T(n, k) (k+1)missing1 0 2 0 2 3 0 2 3 4 0 2 6 4 5 0 2 6 8 5 6 0 2 9 12 10 6 7 0 2 9 16 15 12 7 8 0 2 12 20 25 18 14 8 9
StdRowSum k=0..n T(n, k)A0000411 1 2 3 5 7 11 15 22 30 42 56 77 101 135 176 231 297 385 490 627 792 1002 1255 1575 1958 2436 3010
StdEvenSum k=0..n T(n, k) even(k)A0271871 0 1 1 3 3 6 7 12 14 22 27 40 49 69 86 118 146 195 242 317 392 505 623 793 973 1224 1498 1867 2274
StdOddSum k=0..n T(n, k) odd(k)A0271930 1 1 2 2 4 5 8 10 16 20 29 37 52 66 90 113 151 190 248 310 400 497 632 782 985 1212 1512 1851 2291
StdAltSum k=0..n T(n, k) (-1)^kA0007001 -1 0 -1 1 -1 1 -1 2 -2 2 -2 3 -3 3 -4 5 -5 5 -6 7 -8 8 -9 11 -12 12 -14 16 -17 18 -20 23 -25 26
StdAbsSum k=0..n | T(n, k) |A0000411 1 2 3 5 7 11 15 22 30 42 56 77 101 135 176 231 297 385 490 627 792 1002 1255 1575 1958 2436 3010
StdDiagSum k=0..n // 2 T(n - k, k)A0028651 0 1 1 2 2 4 4 7 8 12 14 21 24 34 41 55 66 88 105 137 165 210 253 320 383 478 574 708 847 1039
StdAccSum k=0..n j=0..k T(n, j)A0583971 1 3 6 13 22 42 66 112 172 270 397 602 858 1245 1748 2464 3381 4671 6302 8537 11372 15147 19914
StdAccRevSum k=0..n j=0..k T(n, n - j)A0936941 2 5 9 17 27 46 69 108 158 234 331 476 657 915 1244 1694 2262 3029 3988 5257 6844 8901 11461 14749
StdRowLcmLcm k=0..n | T(n, k) | > 1missing1 1 1 1 2 2 6 12 60 420 2520 2310 60060 6930 425040 5135130 5811960 3110747640 15075161640
StdRowGcdGcd k=0..n | T(n, k) | > 1A0642841 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
StdRowMaxMax k=0..n | T(n, k) |A0025691 1 1 1 2 2 3 4 5 7 9 11 15 18 23 30 37 47 58 71 90 110 136 164 201 248 300 364 436 525 638 764 919
StdColMiddleT(n, n // 2)A0666391 0 1 1 2 2 3 4 5 6 7 10 11 14 15 21 22 29 30 41 42 55 56 76 77 100 101 134 135 175 176 230 231 296
StdCentralET(2 n, n)A0000411 1 2 3 5 7 11 15 22 30 42 56 77 101 135 176 231 297 385 490 627 792 1002 1255
StdCentralOT(2 n + 1, n)A0000650 1 2 4 6 10 14 21 29 41 55 76 100 134 175 230 296 384 489 626 791 1001 1254 1574
StdColLeftT(n, 0)A0000071 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
StdColRightT(n, n)A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
StdBinConv k=0..n C(n, k) T(n, k)A0985451 1 3 7 21 51 148 365 983 2461 6360 15687 39757 97033 240425 582622 1421273 3409861 8222920
StdInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kmissing1 1 -1 1 5 1 4 15 55 139 152 397 1429 2549 3457 9330 26105 48791 86512 207785 520314 1068268
StdTransNat0 k=0..n T(n, k) kA0061280 1 3 6 12 20 35 54 86 128 192 275 399 556 780 1068 1463 1965 2644 3498 4630 6052 7899 10206 13174
StdTransNat1 k=0..n T(n, k) (k + 1)A0936941 2 5 9 17 27 46 69 108 158 234 331 476 657 915 1244 1694 2262 3029 3988 5257 6844 8901 11461 14749
StdTransSqrs k=0..n T(n, k) k^2A2960100 1 5 14 34 68 133 232 402 652 1048 1609 2465 3640 5358 7694 10993 15399 21498 29520 40394 54572
StdPosHalf k=0..n 2^n T(n, k) (1/2)^kA0759001 1 3 7 19 43 115 259 659 1523 3731 8531 20883 47379 113043 259219 609683 1385363 3245459 7344531
StdNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kA3524021 1 -1 3 -1 7 -1 15 31 63 159 95 671 287 3231 2975 15519 7839 44191 34975 224415 291999 863391
StdDiagRow1T(n + 1, n)A0000120 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
StdDiagRow2T(n + 2, n)A0556420 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
StdDiagRow3T(n + 3, n)A0107010 1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
StdDiagCol1T(n + 1, 1)A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
StdDiagCol2T(n + 2, 2)A0045261 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13 14 14 15 15 16 16 17 17 18 18 19 19 20
StdDiagCol3T(n + 3, 3)A0013991 1 2 3 4 5 7 8 10 12 14 16 19 21 24 27 30 33 37 40 44 48 52 56 61 65 70 75 80 85 91 96 102 108 114
StdPolysee docsmissing1 0 1 0 1 1 0 2 2 1 0 3 6 3 1 0 5 14 12 4 1 0 7 34 39 20 5 1 0 11 74 129 84 30 6 1 0 15 166 399 356
StdPolyRow1 k=0..1 T(1, k) n^kA0000270 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
StdPolyRow2 k=0..2 T(2, k) n^kA0023780 2 6 12 20 30 42 56 72 90 110 132 156 182 210 240 272 306 342 380 420 462 506 552 600 650 702 756
StdPolyRow3 k=0..3 T(3, k) n^kA0274440 3 14 39 84 155 258 399 584 819 1110 1463 1884 2379 2954 3615 4368 5219 6174 7239 8420 9723 11154
StdPolyCol2 k=0..n T(n, k) 2^kA0709331 2 6 14 34 74 166 350 746 1546 3206 6550 13386 27114 54894 110630 222794 447538 898574 1801590
StdPolyCol3 k=0..n T(n, k) 3^kA2425871 3 12 39 129 399 1245 3783 11514 34734 104754 314922 946623 2842077 8532147 25603788 76830033
StdPolyDiag k=0..n T(n, k) n^kA1245771 1 6 39 356 4055 57786 983535 19520264 441967518 11235798510 316719689506 9800860032876
AltTriangleT(n, k), 0 ≤ k ≤ nA0722331 0 -1 0 -1 1 0 -1 1 -1 0 -1 2 -1 1 0 -1 2 -2 1 -1 0 -1 3 -3 2 -1 1 0 -1 3 -4 3 -2 1 -1 0 -1 4 -5 5
AltRevT(n, n - k), 0 ≤ k ≤ nmissing1 -1 0 1 -1 0 -1 1 -1 0 1 -1 2 -1 0 -1 1 -2 2 -1 0 1 -1 2 -3 3 -1 0 -1 1 -2 3 -4 3 -1 0 1 -1 2 -3 5
AltInvT-1(n, k), 0 ≤ k ≤ nmissing1 0 1 0 1 1 0 0 -1 1 0 -1 -3 1 1 0 0 -1 1 -1 1 0 0 -1 2 -3 1 1 0 1 1 1 -2 1 -1 1 0 3 6 0 -4 2 -3 1
AltRevInvT-1(n, n - k), 0 ≤ k ≤ nmissing1 1 0 1 1 0 1 -1 0 0 1 1 -3 -1 0 1 -1 1 -1 0 0 1 1 -3 2 -1 0 0 1 -1 1 -2 1 1 1 0 1 1 -3 2 -4 0 6 3
AltAccsee docsmissing1 0 -1 0 -1 0 0 -1 0 -1 0 -1 1 0 1 0 -1 1 -1 0 -1 0 -1 2 -1 1 0 1 0 -1 2 -2 1 -1 0 -1 0 -1 3 -2 3 0
AltAccRevsee docsmissing1 -1 -1 1 0 0 -1 0 -1 -1 1 0 2 1 1 -1 0 -2 0 -1 -1 1 0 2 -1 2 1 1 -1 0 -2 1 -3 0 -1 -1 1 0 2 -1 4
AltDiffx1T(n, k) (k+1)missing1 0 -2 0 -2 3 0 -2 3 -4 0 -2 6 -4 5 0 -2 6 -8 5 -6 0 -2 9 -12 10 -6 7 0 -2 9 -16 15 -12 7 -8 0 -2
AltRowSum k=0..n T(n, k)A0007001 -1 0 -1 1 -1 1 -1 2 -2 2 -2 3 -3 3 -4 5 -5 5 -6 7 -8 8 -9 11 -12 12 -14 16 -17 18 -20 23 -25 26
AltEvenSum k=0..n T(n, k) even(k)A0271871 0 1 1 3 3 6 7 12 14 22 27 40 49 69 86 118 146 195 242 317 392 505 623 793 973 1224 1498 1867 2274
AltOddSum k=0..n T(n, k) odd(k)A0271930 -1 -1 -2 -2 -4 -5 -8 -10 -16 -20 -29 -37 -52 -66 -90 -113 -151 -190 -248 -310 -400 -497 -632 -782
AltAltSum k=0..n T(n, k) (-1)^kA0000411 1 2 3 5 7 11 15 22 30 42 56 77 101 135 176 231 297 385 490 627 792 1002 1255 1575 1958 2436 3010
AltAbsSum k=0..n | T(n, k) |A0000411 1 2 3 5 7 11 15 22 30 42 56 77 101 135 176 231 297 385 490 627 792 1002 1255 1575 1958 2436 3010
AltDiagSum k=0..n // 2 T(n - k, k)A2985961 0 -1 -1 0 0 0 0 1 0 0 0 1 0 0 -1 1 0 0 -1 1 -1 0 -1 2 -1 0 -2 2 -1 1 -2 3 -2 1 -3 4 -2 2 -4 5 -3
AltAccSum k=0..n j=0..k T(n, j)missing1 -1 -1 -2 1 -2 2 -2 8 -8 10 -9 18 -18 21 -32 44 -45 47 -62 77 -96 99 -118 153 -177 182 -226 269
AltAccRevSum k=0..n j=0..k T(n, n - j)missing1 -2 1 -3 5 -5 6 -7 12 -14 14 -17 24 -27 27 -36 46 -50 53 -64 77 -88 93 -107 133 -147 154 -180 211
AltRowLcmLcm k=0..n | T(n, k) | > 1missing1 1 1 1 2 2 6 12 60 420 2520 2310 60060 6930 425040 5135130 5811960 3110747640 15075161640
AltRowGcdGcd k=0..n | T(n, k) | > 1A0642841 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
AltRowMaxMax k=0..n | T(n, k) |A0025691 1 1 1 2 2 3 4 5 7 9 11 15 18 23 30 37 47 58 71 90 110 136 164 201 248 300 364 436 525 638 764 919
AltColMiddleT(n, n // 2)A0666391 0 -1 -1 2 2 -3 -4 5 6 -7 -10 11 14 -15 -21 22 29 -30 -41 42 55 -56 -76 77 100 -101 -134 135 175
AltCentralET(2 n, n)A0000411 -1 2 -3 5 -7 11 -15 22 -30 42 -56 77 -101 135 -176 231 -297 385 -490 627 -792 1002 -1255
AltCentralOT(2 n + 1, n)A0000650 -1 2 -4 6 -10 14 -21 29 -41 55 -76 100 -134 175 -230 296 -384 489 -626 791 -1001 1254 -1574
AltColLeftT(n, 0)A0000071 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
AltBinConv k=0..n C(n, k) T(n, k)missing1 -1 -1 -1 5 -1 4 -15 55 -139 152 -397 1429 -2549 3457 -9330 26105 -48791 86512 -207785 520314
AltInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kA0985451 -1 3 -7 21 -51 148 -365 983 -2461 6360 -15687 39757 -97033 240425 -582622 1421273 -3409861
AltTransNat0 k=0..n T(n, k) kmissing0 -1 1 -2 4 -4 5 -6 10 -12 12 -15 21 -24 24 -32 41 -45 48 -58 70 -80 85 -98 122 -135 142 -166 195
AltTransNat1 k=0..n T(n, k) (k + 1)missing1 -2 1 -3 5 -5 6 -7 12 -14 14 -17 24 -27 27 -36 46 -50 53 -64 77 -88 93 -107 133 -147 154 -180 211
AltTransSqrs k=0..n T(n, k) k^2missing0 -1 3 -6 14 -20 27 -40 62 -84 96 -129 183 -224 250 -326 431 -503 574 -704 878 -1028 1151 -1364
AltPosHalf k=0..n 2^n T(n, k) (1/2)^kA3524021 -1 -1 -3 -1 -7 -1 -15 31 -63 159 -95 671 -287 3231 -2975 15519 -7839 44191 -34975 224415 -291999
AltNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kA0759001 -1 3 -7 19 -43 115 -259 659 -1523 3731 -8531 20883 -47379 113043 -259219 609683 -1385363 3245459
AltDiagRow1T(n + 1, n)A0000120 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1
AltDiagRow2T(n + 2, n)A0556420 -1 2 -2 2 -2 2 -2 2 -2 2 -2 2 -2 2 -2 2 -2 2 -2 2 -2 2 -2 2 -2 2 -2 2 -2 2 -2 2 -2 2 -2 2 -2 2 -2
AltDiagRow3T(n + 3, n)A0107010 -1 2 -3 3 -3 3 -3 3 -3 3 -3 3 -3 3 -3 3 -3 3 -3 3 -3 3 -3 3 -3 3 -3 3 -3 3 -3 3 -3 3 -3 3 -3 3 -3
AltDiagCol1T(n + 1, 1)A000012-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
AltDiagCol2T(n + 2, 2)A0045261 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13 14 14 15 15 16 16 17 17 18 18 19 19 20
AltDiagCol3T(n + 3, 3)A001399-1 -1 -2 -3 -4 -5 -7 -8 -10 -12 -14 -16 -19 -21 -24 -27 -30 -33 -37 -40 -44 -48 -52 -56 -61 -65 -70
AltPolysee docsmissing1 0 1 0 -1 1 0 0 -2 1 0 -1 2 -3 1 0 1 -6 6 -4 1 0 -1 14 -21 12 -5 1 0 1 -26 69 -52 20 -6 1 0 -1 50
AltPolyRow1 k=0..1 T(1, k) n^kA0000270 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25 -26
AltPolyRow2 k=0..2 T(2, k) n^kA0023780 0 2 6 12 20 30 42 56 72 90 110 132 156 182 210 240 272 306 342 380 420 462 506 552 600 650 702
AltPolyRow3 k=0..3 T(3, k) n^kA0697780 -1 -6 -21 -52 -105 -186 -301 -456 -657 -910 -1221 -1596 -2041 -2562 -3165 -3856 -4641 -5526 -6517
AltPolyCol2 k=0..n T(n, k) 2^kA0711091 -2 2 -6 14 -26 50 -102 214 -426 834 -1678 3398 -6778 13482 -27022 54198 -108306 216346 -432878
AltPolyCol3 k=0..n T(n, k) 3^kA2615821 -3 6 -21 69 -201 591 -1785 5406 -16194 48426 -145380 436641 -1309611 3927399 -11783280 35354139
AltPolyDiag k=0..n T(n, k) n^kA2921341 -1 2 -21 220 -2705 40926 -733537 15124216 -352606050 9174382490 -263533561852 8283376452948
RevTriangleT(n, k), 0 ≤ k ≤ nmissing1 1 0 1 1 0 1 1 1 0 1 1 2 1 0 1 1 2 2 1 0 1 1 2 3 3 1 0 1 1 2 3 4 3 1 0 1 1 2 3 5 5 4 1 0 1 1 2 3 5
RevInvRev(T(n, n - k))-1, 0 ≤ k ≤ nmissing1 0 1 0 -1 1 0 0 -1 1 0 1 -1 -1 1 0 0 1 -1 -1 1 0 0 1 0 -1 -1 1 0 -1 1 1 0 -1 -1 1 0 -1 0 2 0 0 -1
RevAccsee docsmissing1 1 1 1 2 2 1 2 3 3 1 2 4 5 5 1 2 4 6 7 7 1 2 4 7 10 11 11 1 2 4 7 11 14 15 15 1 2 4 7 12 17 21 22
RevAccRevsee docsmissing1 0 1 0 1 2 0 1 2 3 0 1 3 4 5 0 1 3 5 6 7 0 1 4 7 9 10 11 0 1 4 8 11 13 14 15 0 1 5 10 15 18 20 21
RevAntiDiagsee docsmissing1 1 1 0 1 1 1 1 0 1 1 1 1 1 2 0 1 1 2 1 1 1 2 2 0 1 1 2 3 1 1 1 2 3 3 0 1 1 2 3 4 1 1 1 2 3 5 3 0 1
RevDiffx1T(n, k) (k+1)missing1 1 0 1 2 0 1 2 3 0 1 2 6 4 0 1 2 6 8 5 0 1 2 6 12 15 6 0 1 2 6 12 20 18 7 0 1 2 6 12 25 30 28 8 0
RevRowSum k=0..n T(n, k)A0000411 1 2 3 5 7 11 15 22 30 42 56 77 101 135 176 231 297 385 490 627 792 1002 1255 1575 1958 2436 3010
RevEvenSum k=0..n T(n, k) even(k)A0466821 1 1 2 3 4 6 8 12 16 22 29 40 52 69 90 118 151 195 248 317 400 505 632 793 985 1224 1512 1867 2291
RevOddSum k=0..n T(n, k) odd(k)A0007010 0 1 1 2 3 5 7 10 14 20 27 37 49 66 86 113 146 190 242 310 392 497 623 782 973 1212 1498 1851 2274
RevAltSum k=0..n T(n, k) (-1)^kA0007001 1 0 1 1 1 1 1 2 2 2 2 3 3 3 4 5 5 5 6 7 8 8 9 11 12 12 14 16 17 18 20 23 25 26 29 33 35 37 41 46
RevAbsSum k=0..n | T(n, k) |A0000411 1 2 3 5 7 11 15 22 30 42 56 77 101 135 176 231 297 385 490 627 792 1002 1255 1575 1958 2436 3010
RevDiagSum k=0..n // 2 T(n - k, k)A0000091 1 1 2 2 3 4 5 6 8 10 12 15 18 22 27 32 38 46 54 64 76 89 104 122 142 165 192 222 256 296 340 390
RevAccSum k=0..n j=0..k T(n, j)A0936941 2 5 9 17 27 46 69 108 158 234 331 476 657 915 1244 1694 2262 3029 3988 5257 6844 8901 11461 14749
RevAccRevSum k=0..n j=0..k T(n, n - j)A0583971 1 3 6 13 22 42 66 112 172 270 397 602 858 1245 1748 2464 3381 4671 6302 8537 11372 15147 19914
RevRowLcmLcm k=0..n | T(n, k) | > 1missing1 1 1 1 2 2 6 12 60 420 2520 2310 60060 6930 425040 5135130 5811960 3110747640 15075161640
RevRowGcdGcd k=0..n | T(n, k) | > 1A0642841 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
RevRowMaxMax k=0..n | T(n, k) |A0025691 1 1 1 2 2 3 4 5 7 9 11 15 18 23 30 37 47 58 71 90 110 136 164 201 248 300 364 436 525 638 764 919
RevColMiddleT(n, n // 2)A1196201 1 1 1 2 2 3 3 5 5 7 7 11 11 15 15 22 22 30 30 42 42 56 56 77 77 101 101 135 135 176 176 231 231
RevCentralET(2 n, n)A0000411 1 2 3 5 7 11 15 22 30 42 56 77 101 135 176 231 297 385 490 627 792 1002 1255
RevCentralOT(2 n + 1, n)A0000411 1 2 3 5 7 11 15 22 30 42 56 77 101 135 176 231 297 385 490 627 792 1002 1255
RevColLeftT(n, 0)A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
RevColRightT(n, n)A0000071 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RevBinConv k=0..n C(n, k) T(n, k)A0985451 1 3 7 21 51 148 365 983 2461 6360 15687 39757 97033 240425 582622 1421273 3409861 8222920
RevInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kmissing1 -1 -1 -1 5 -1 4 -15 55 -139 152 -397 1429 -2549 3457 -9330 26105 -48791 86512 -207785 520314
RevTransNat0 k=0..n T(n, k) kA1960870 0 1 3 8 15 31 51 90 142 228 341 525 757 1110 1572 2233 3084 4286 5812 7910 10580 14145 18659
RevTransNat1 k=0..n T(n, k) (k + 1)A0583971 1 3 6 13 22 42 66 112 172 270 397 602 858 1245 1748 2464 3381 4671 6302 8537 11372 15147 19914
RevTransSqrs k=0..n T(n, k) k^2missing0 0 1 5 18 43 109 211 434 778 1408 2335 3977 6253 9978 15254 23313 34422 51054 73486 105994 149660
RevPosHalf k=0..n 2^n T(n, k) (1/2)^kA0709331 2 6 14 34 74 166 350 746 1546 3206 6550 13386 27114 54894 110630 222794 447538 898574 1801590
RevNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kA0711091 -2 2 -6 14 -26 50 -102 214 -426 834 -1678 3398 -6778 13482 -27022 54198 -108306 216346 -432878
RevDiagRow1T(n + 1, n)A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
RevDiagRow2T(n + 2, n)A0045261 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13 14 14 15 15 16 16 17 17 18 18 19 19 20
RevDiagRow3T(n + 3, n)A0013991 1 2 3 4 5 7 8 10 12 14 16 19 21 24 27 30 33 37 40 44 48 52 56 61 65 70 75 80 85 91 96 102 108 114
RevDiagCol1T(n + 1, 1)A0000120 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
RevDiagCol2T(n + 2, 2)A0556420 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
RevDiagCol3T(n + 3, 3)A0107010 1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
RevPolysee docsmissing1 1 1 1 1 1 1 2 1 1 1 3 3 1 1 1 5 7 4 1 1 1 7 19 13 5 1 1 1 11 43 49 21 6 1 1 1 15 115 157 101 31 7
RevPolyRow1 k=0..1 T(1, k) n^kA0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
RevPolyRow2 k=0..2 T(2, k) n^kA0000271 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
RevPolyRow3 k=0..3 T(3, k) n^kA0020611 3 7 13 21 31 43 57 73 91 111 133 157 183 211 241 273 307 343 381 421 463 507 553 601 651 703 757
RevPolyCol2 k=0..n T(n, k) 2^kA0759001 1 3 7 19 43 115 259 659 1523 3731 8531 20883 47379 113043 259219 609683 1385363 3245459 7344531
RevPolyCol3 k=0..n T(n, k) 3^kA3005791 1 4 13 49 157 589 1885 6826 22378 78754 256630 904711 2934247 10133851 33287620 113522089
RevPolyDiag k=0..n T(n, k) n^kA3386971 1 3 13 101 931 12391 178809 3331721 66288142 1589753211 40104031166 1183380156013 36187564837217
InvTriangleT(n, k), 0 ≤ k ≤ nmissing1 0 1 0 -1 1 0 0 -1 1 0 1 -1 -1 1 0 0 1 -1 -1 1 0 0 1 0 -1 -1 1 0 -1 1 1 0 -1 -1 1 0 -1 0 2 0 0 -1
InvRevT(n, n - k), 0 ≤ k ≤ nmissing1 1 0 1 -1 0 1 -1 0 0 1 -1 -1 1 0 1 -1 -1 1 0 0 1 -1 -1 0 1 0 0 1 -1 -1 0 1 1 -1 0 1 -1 -1 0 0 2 0
InvRevInvT-1(n, n - k), 0 ≤ k ≤ nmissing1 1 0 1 1 0 1 1 1 0 1 1 2 1 0 1 1 2 2 1 0 1 1 2 3 3 1 0 1 1 2 3 4 3 1 0 1 1 2 3 5 5 4 1 0 1 1 2 3 5
InvAccsee docsmissing1 0 1 0 -1 0 0 0 -1 0 0 1 0 -1 0 0 0 1 0 -1 0 0 0 1 1 0 -1 0 0 -1 0 1 1 0 -1 0 0 -1 -1 1 1 1 0 -1 0
InvAccRevsee docsmissing1 1 1 1 0 0 1 0 0 0 1 0 -1 0 0 1 0 -1 0 0 0 1 0 -1 -1 0 0 0 1 0 -1 -1 0 1 0 0 1 0 -1 -1 -1 1 1 0 0
InvAntiDiagsee docsmissing1 0 0 1 0 -1 0 0 1 0 1 -1 0 0 -1 1 0 0 1 -1 0 -1 1 -1 1 0 -1 1 0 -1 0 0 0 1 -1 1 0 0 -1 2 0 -1 0 1
InvDiffx1T(n, k) (k+1)missing1 0 2 0 -2 3 0 0 -3 4 0 2 -3 -4 5 0 0 3 -4 -5 6 0 0 3 0 -5 -6 7 0 -2 3 4 0 -6 -7 8 0 -2 0 8 0 0 -7
InvRowSum k=0..n T(n, k)A0195901 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
InvEvenSum k=0..n T(n, k) even(k)missing1 0 1 -1 0 0 1 0 0 0 -1 -1 -1 0 0 1 1 2 2 3 3 1 1 -1 -2 -4 -5 -7 -7 -9 -9 -9 -8 -7 -5 -2 1 5 9 15
InvOddSum k=0..n T(n, k) odd(k)missing0 1 -1 1 0 0 -1 0 0 0 1 1 1 0 0 -1 -1 -2 -2 -3 -3 -1 -1 1 2 4 5 7 7 9 9 9 8 7 5 2 -1 -5 -9 -15 -19
InvAltSum k=0..n T(n, k) (-1)^kmissing1 -1 2 -2 0 0 2 0 0 0 -2 -2 -2 0 0 2 2 4 4 6 6 2 2 -2 -4 -8 -10 -14 -14 -18 -18 -18 -16 -14 -10 -4
InvAbsSum k=0..n | T(n, k) |missing1 1 2 2 4 4 4 6 6 6 8 10 10 12 12 14 16 18 20 24 26 28 28 30 36 42 44 46 54 64 72 82 90 90 98 98
InvDiagSum k=0..n // 2 T(n - k, k)missing1 0 1 -1 1 0 0 0 0 -1 1 0 -1 1 1 0 0 0 0 0 0 -1 0 -2 -1 -1 0 -2 1 0 1 0 0 3 1 4 2 2 3 5 1 5 2 3 0 2
InvAccSum k=0..n j=0..k T(n, j)missing1 1 -1 -1 0 0 1 0 0 0 -1 -1 -1 0 0 1 1 2 2 3 3 1 1 -1 -2 -4 -5 -7 -7 -9 -9 -9 -8 -7 -5 -2 1 5 9 15
InvAccRevSum k=0..n j=0..k T(n, n - j)missing1 2 1 1 0 0 -1 0 0 0 1 1 1 0 0 -1 -1 -2 -2 -3 -3 -1 -1 1 2 4 5 7 7 9 9 9 8 7 5 2 -1 -5 -9 -15 -19
InvRowLcmLcm k=0..n | T(n, k) | > 1missing1 1 1 1 1 1 1 1 2 2 2 2 2 2 6 2 12 12 10 30 20 210 210 40 120 168 1980 168 510 72 440 630 6120 3960
InvRowGcdGcd k=0..n | T(n, k) | > 1missing1 1 1 1 1 1 1 1 2 2 2 2 2 2 1 2 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
InvRowMaxMax k=0..n | T(n, k) |missing1 1 1 1 1 1 1 1 2 2 2 2 2 2 3 2 4 4 5 5 5 7 7 8 8 8 11 14 17 18 20 18 18 24 27 31 31 35 33 34 41 54
InvColMiddleT(n, n // 2)A2729011 0 -1 0 -1 1 0 1 0 2 1 1 0 2 1 1 0 1 0 1 0 1 0 0 -1 1 0 1 0 0 -1 1 0 1 0 1 0 1 0 1 0 1 0 2 1 1 0 1
InvCentralOT(2 n + 1, n)A0077060 0 1 1 2 1 2 1 1 1 1 0 1 1 0 1 1 1 1 1 1 2 1 1
InvColLeftT(n, 0)A0000071 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
InvColRightT(n, n)A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
InvBinConv k=0..n C(n, k) T(n, k)missing1 1 -1 -2 -5 -4 -5 22 69 172 438 925 1805 3290 6268 9336 16645 19109 25141 -1006 -38061 -292116
InvInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kmissing1 1 3 4 -5 -14 7 -6 -123 -242 -286 -417 -2067 -4536 -2444 -4470 -26843 -42805 -22895 -56942 -289877
InvTransNat0 k=0..n T(n, k) kmissing0 1 1 1 0 0 -1 0 0 0 1 1 1 0 0 -1 -1 -2 -2 -3 -3 -1 -1 1 2 4 5 7 7 9 9 9 8 7 5 2 -1 -5 -9 -15 -19
InvTransNat1 k=0..n T(n, k) (k + 1)missing1 2 1 1 0 0 -1 0 0 0 1 1 1 0 0 -1 -1 -2 -2 -3 -3 -1 -1 1 2 4 5 7 7 9 9 9 8 7 5 2 -1 -5 -9 -15 -19
InvTransSqrs k=0..n T(n, k) k^2missing0 1 3 5 4 4 -1 0 -4 -4 -3 1 1 4 8 7 11 6 6 -3 -7 -13 -17 -23 -26 -32 -31 -25 -25 -11 -3 13 24 51 61
InvPosHalf k=0..n 2^n T(n, k) (1/2)^kmissing1 1 -1 -1 3 3 11 -21 -69 -69 -293 -37 283 3867 9627 19867 35483 47771 42139 -47973 -419685 -2418533
InvNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kmissing1 1 3 3 -9 -9 15 -81 63 63 -609 1695 -2337 8415 -11169 -5025 71007 -162465 533343 -1211553 3000159
InvDiagRow1T(n + 1, n)A0000120 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
InvDiagRow2T(n + 2, n)A0000120 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
InvDiagRow3T(n + 3, n)A0399660 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
InvDiagCol1T(n + 1, 1)A0398001 -1 0 1 0 0 -1 -1 0 0 1 1 2 2 1 0 -1 -2 -3 -4 -5 -5 -5 -4 -3 -1 2 5 8 11 14 17 18 20 20 20 18 16
InvDiagCol2T(n + 2, 2)A0398011 -1 -1 1 1 1 0 -1 -2 -2 -1 -1 0 2 4 4 5 5 5 2 1 -2 -5 -8 -11 -14 -17 -18 -20 -18 -18 -11 -9 -1 4
InvDiagCol3T(n + 3, 3)A0398021 -1 -1 0 1 2 0 1 -1 -2 -2 -3 -2 -2 1 1 3 4 7 7 8 8 7 5 2 -1 -6 -8 -15 -18 -24 -27 -31 -31 -35 -33
InvPolysee docsmissing1 0 1 0 1 1 0 0 2 1 0 0 2 3 1 0 0 4 6 4 1 0 0 6 18 12 5 1 0 0 12 48 48 20 6 1 0 0 20 144 180 100 30
InvPolyRow1 k=0..1 T(1, k) n^kA0000270 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
InvPolyRow2 k=0..2 T(2, k) n^kA0023780 0 2 6 12 20 30 42 56 72 90 110 132 156 182 210 240 272 306 342 380 420 462 506 552 600 650 702
InvPolyRow3 k=0..3 T(3, k) n^kA0459910 0 4 18 48 100 180 294 448 648 900 1210 1584 2028 2548 3150 3840 4624 5508 6498 7600 8820 10164
InvPolyCol2 k=0..n T(n, k) 2^kmissing1 2 2 4 6 12 20 42 78 156 304 610 1198 2400 4764 9530 18992 37990 75832 151686 303084 606182
InvPolyCol3 k=0..n T(n, k) 3^kmissing1 3 6 18 48 144 414 1248 3696 11088 33138 99426 297858 893616 2679648 8038974 24113358 72340188
InvPolyDiag k=0..n T(n, k) n^kmissing1 1 2 18 180 2400 37620 689472 14418936 339603840 8900110800 257018244010 8111211039228
Inv:RevTriangleT(n, k), 0 ≤ k ≤ nmissing1 1 0 1 -1 0 1 -1 0 0 1 -1 -1 1 0 1 -1 -1 1 0 0 1 -1 -1 0 1 0 0 1 -1 -1 0 1 1 -1 0 1 -1 -1 0 0 2 0
Inv:RevRevT(n, n - k), 0 ≤ k ≤ nmissing1 0 1 0 -1 1 0 0 -1 1 0 1 -1 -1 1 0 0 1 -1 -1 1 0 0 1 0 -1 -1 1 0 -1 1 1 0 -1 -1 1 0 -1 0 2 0 0 -1
Inv:RevInvRev(T(n, n - k))-1, 0 ≤ k ≤ nA0722331 0 1 0 1 1 0 1 1 1 0 1 2 1 1 0 1 2 2 1 1 0 1 3 3 2 1 1 0 1 3 4 3 2 1 1 0 1 4 5 5 3 2 1 1 0 1 4 7 6
Inv:RevAccsee docsmissing1 1 1 1 0 0 1 0 0 0 1 0 -1 0 0 1 0 -1 0 0 0 1 0 -1 -1 0 0 0 1 0 -1 -1 0 1 0 0 1 0 -1 -1 -1 1 1 0 0
Inv:RevAccRevsee docsmissing1 0 1 0 -1 0 0 0 -1 0 0 1 0 -1 0 0 0 1 0 -1 0 0 0 1 1 0 -1 0 0 -1 0 1 1 0 -1 0 0 -1 -1 1 1 1 0 -1 0
Inv:RevAntiDiagsee docsmissing1 1 1 0 1 -1 1 -1 0 1 -1 0 1 -1 -1 0 1 -1 -1 1 1 -1 -1 1 0 1 -1 -1 0 0 1 -1 -1 0 1 0 1 -1 -1 0 1 0
Inv:RevDiffx1T(n, k) (k+1)missing1 1 0 1 -2 0 1 -2 0 0 1 -2 -3 4 0 1 -2 -3 4 0 0 1 -2 -3 0 5 0 0 1 -2 -3 0 5 6 -7 0 1 -2 -3 0 0 12 0
Inv:RevRowSum k=0..n T(n, k)A0195901 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Inv:RevEvenSum k=0..n T(n, k) even(k)missing1 1 1 1 0 0 1 0 0 0 -1 1 -1 0 0 -1 1 -2 2 -3 3 -1 1 1 -2 4 -5 7 -7 9 -9 9 -8 7 -5 2 1 -5 9 -15 19
Inv:RevOddSum k=0..n T(n, k) odd(k)missing0 0 -1 -1 0 0 -1 0 0 0 1 -1 1 0 0 1 -1 2 -2 3 -3 1 -1 -1 2 -4 5 -7 7 -9 9 -9 8 -7 5 -2 -1 5 -9 15
Inv:RevAltSum k=0..n T(n, k) (-1)^kmissing1 1 2 2 0 0 2 0 0 0 -2 2 -2 0 0 -2 2 -4 4 -6 6 -2 2 2 -4 8 -10 14 -14 18 -18 18 -16 14 -10 4 2 -10
Inv:RevAbsSum k=0..n | T(n, k) |missing1 1 2 2 4 4 4 6 6 6 8 10 10 12 12 14 16 18 20 24 26 28 28 30 36 42 44 46 54 64 72 82 90 90 98 98
Inv:RevDiagSum k=0..n // 2 T(n - k, k)missing1 1 1 0 0 0 -1 0 0 -1 0 0 0 0 1 -1 0 2 -1 1 0 0 0 1 -1 0 0 0 0 -1 0 -1 2 -3 2 -3 1 -2 3 -2 1 -1 1 0
Inv:RevAccSum k=0..n j=0..k T(n, j)missing1 2 1 1 0 0 -1 0 0 0 1 1 1 0 0 -1 -1 -2 -2 -3 -3 -1 -1 1 2 4 5 7 7 9 9 9 8 7 5 2 -1 -5 -9 -15 -19
Inv:RevAccRevSum k=0..n j=0..k T(n, n - j)missing1 1 -1 -1 0 0 1 0 0 0 -1 -1 -1 0 0 1 1 2 2 3 3 1 1 -1 -2 -4 -5 -7 -7 -9 -9 -9 -8 -7 -5 -2 1 5 9 15
Inv:RevRowLcmLcm k=0..n | T(n, k) | > 1missing1 1 1 1 1 1 1 1 2 2 2 2 2 2 6 2 12 12 10 30 20 210 210 40 120 168 1980 168 510 72 440 630 6120 3960
Inv:RevRowGcdGcd k=0..n | T(n, k) | > 1missing1 1 1 1 1 1 1 1 2 2 2 2 2 2 1 2 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Inv:RevRowMaxMax k=0..n | T(n, k) |missing1 1 1 1 1 1 1 1 2 2 2 2 2 2 3 2 4 4 5 5 5 7 7 8 8 8 11 14 17 18 20 18 18 24 27 31 31 35 33 34 41 54
Inv:RevColMiddleT(n, n // 2)A0000121 1 -1 -1 -1 -1 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 -1 -1 0 0 0 0 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 1 1
Inv:RevColLeftT(n, 0)A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Inv:RevColRightT(n, n)A0000071 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Inv:RevBinConv k=0..n C(n, k) T(n, k)missing1 1 -1 -2 -5 -4 -5 22 69 172 438 925 1805 3290 6268 9336 16645 19109 25141 -1006 -38061 -292116
Inv:RevInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kmissing1 -1 3 -4 -5 14 7 6 -123 242 -286 417 -2067 4536 -2444 4470 -26843 42805 -22895 56942 -289877
Inv:RevTransNat0 k=0..n T(n, k) kmissing0 0 -1 -1 0 0 1 0 0 0 -1 -1 -1 0 0 1 1 2 2 3 3 1 1 -1 -2 -4 -5 -7 -7 -9 -9 -9 -8 -7 -5 -2 1 5 9 15
Inv:RevTransNat1 k=0..n T(n, k) (k + 1)missing1 1 -1 -1 0 0 1 0 0 0 -1 -1 -1 0 0 1 1 2 2 3 3 1 1 -1 -2 -4 -5 -7 -7 -9 -9 -9 -8 -7 -5 -2 1 5 9 15
Inv:RevTransSqrs k=0..n T(n, k) k^2missing0 0 -1 -1 4 4 11 0 -4 -4 -23 -21 -23 4 8 37 43 74 78 111 113 29 27 -69 -122 -232 -291 -403 -417
Inv:RevPosHalf k=0..n 2^n T(n, k) (1/2)^kmissing1 2 2 4 6 12 20 42 78 156 304 610 1198 2400 4764 9530 18992 37990 75832 151686 303084 606182
Inv:RevNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kmissing1 -2 6 -12 18 -36 84 -162 306 -612 1248 -2514 4938 -9864 19908 -39786 79248 -158502 317616 -635166
Inv:RevDiagRow1T(n + 1, n)A0398001 -1 0 1 0 0 -1 -1 0 0 1 1 2 2 1 0 -1 -2 -3 -4 -5 -5 -5 -4 -3 -1 2 5 8 11 14 17 18 20 20 20 18 16
Inv:RevDiagRow2T(n + 2, n)A0398011 -1 -1 1 1 1 0 -1 -2 -2 -1 -1 0 2 4 4 5 5 5 2 1 -2 -5 -8 -11 -14 -17 -18 -20 -18 -18 -11 -9 -1 4
Inv:RevDiagRow3T(n + 3, n)A0398021 -1 -1 0 1 2 0 1 -1 -2 -2 -3 -2 -2 1 1 3 4 7 7 8 8 7 5 2 -1 -6 -8 -15 -18 -24 -27 -31 -31 -35 -33
Inv:RevDiagCol1T(n + 1, 1)A0000120 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
Inv:RevDiagCol2T(n + 2, 2)A0000120 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
Inv:RevDiagCol3T(n + 3, 3)A0399660 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Inv:RevPolysee docsmissing1 1 1 1 1 1 1 0 1 1 1 0 -1 1 1 1 0 -1 -2 1 1 1 0 3 -2 -3 1 1 1 0 3 16 -3 -4 1 1 1 0 11 16 45 -4 -5
Inv:RevPolyRow1 k=0..1 T(1, k) n^kA0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Inv:RevPolyRow2 k=0..2 T(2, k) n^kA0000271 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25 -26
Inv:RevPolyRow3 k=0..3 T(3, k) n^kA0000271 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25 -26
Inv:RevPolyCol2 k=0..n T(n, k) 2^kmissing1 1 -1 -1 3 3 11 -21 -69 -69 -293 -37 283 3867 9627 19867 35483 47771 42139 -47973 -419685 -2418533
Inv:RevPolyCol3 k=0..n T(n, k) 3^kmissing1 1 -2 -2 16 16 70 -416 -1712 -1712 -9974 16270 83338 752560 2607136 6504370 14193862 13130980
Inv:RevPolyDiag k=0..n T(n, k) n^kmissing1 1 -1 -2 45 96 1255 -98496 -2031687 -4664960 -188900109 21028589990 670843358053 44517814236000
 << TableSourceSimilarsIndex >> 

Note: The A-numbers are based on a finite number of numerical comparisons. They ignore the sign and the OEIS-offset. Sometimes they differ in the first few values. In such cases, we consider our version to be the better one because it has a common formula as a root. Since the offset of all triangles is 0 also the offset of all sequences is 0.