PARADES[0] 1
[1] 0, 0
[2] 0, 1, 0
[3] 0, 1, 1, 0
[4] 0, 1, 5, 1, 0
[5] 0, 1, 13, 13, 1, 0

      OEIS Similars: A371761, A272644

↕ Type↕ Trait↕ Anum↕ Sequence
StdTriangleT(n, k), 0 ≤ k ≤ nA3717611 0 0 0 1 0 0 1 1 0 0 1 5 1 0 0 1 13 13 1 0 0 1 29 73 29 1 0 0 1 61 301 301 61 1 0 0 1 125 1081
StdRevT(n, n - k), 0 ≤ k ≤ nA3717611 0 0 0 1 0 0 1 1 0 0 1 5 1 0 0 1 13 13 1 0 0 1 29 73 29 1 0 0 1 61 301 301 61 1 0 0 1 125 1081
StdAccsee docsmissing1 0 0 0 1 1 0 1 2 2 0 1 6 7 7 0 1 14 27 28 28 0 1 30 103 132 133 133 0 1 62 363 664 725 726 726 0 1
StdAccRevsee docsmissing1 0 0 0 1 1 0 1 2 2 0 1 6 7 7 0 1 14 27 28 28 0 1 30 103 132 133 133 0 1 62 363 664 725 726 726 0 1
StdAntiDiagsee docsmissing1 0 0 0 0 1 0 1 0 0 1 1 0 1 5 0 0 1 13 1 0 1 29 13 0 0 1 61 73 1 0 1 125 301 29 0 0 1 253 1081 301
StdDiffx1T(n, k) (k+1)missing1 0 0 0 2 0 0 2 3 0 0 2 15 4 0 0 2 39 52 5 0 0 2 87 292 145 6 0 0 2 183 1204 1505 366 7 0 0 2 375
StdRowSum k=0..n T(n, k)A2971951 0 1 2 7 28 133 726 4483 30896 235105 1957930 17712799 172980804 1813760317 20323234814
StdEvenSum k=0..n T(n, k) even(k)missing1 0 0 1 5 14 58 363 2319 15448 116516 978965 8875513 86490402 906415374 10161617407 121190933987
StdOddSum k=0..n T(n, k) odd(k)missing0 0 1 1 2 14 75 363 2164 15448 118589 978965 8837286 86490402 907344943 10161617407 121162113368
StdAltSum k=0..n T(n, k) (-1)^kA0369681 0 -1 0 3 0 -17 0 155 0 -2073 0 38227 0 -929569 0 28820619 0 -1109652905 0 51943281731 0
StdAbsSum k=0..n | T(n, k) |A2971951 0 1 2 7 28 133 726 4483 30896 235105 1957930 17712799 172980804 1813760317 20323234814
StdDiagSum k=0..n // 2 T(n - k, k)missing1 0 0 1 1 2 6 15 43 136 456 1637 6253 25278 107802 483451 2273455 11182292 57397452 306813873
StdAccSum k=0..n j=0..k T(n, j)missing1 0 2 5 21 98 532 3267 22415 169928 1410630 12726545 123989593 1297356030 14510082536 172747495919
StdAccRevSum k=0..n j=0..k T(n, n - j)missing1 0 2 5 21 98 532 3267 22415 169928 1410630 12726545 123989593 1297356030 14510082536 172747495919
StdRowLcmLcm k=0..n | T(n, k) | > 1missing1 1 1 1 5 13 2117 18361 279573625 10586064709 32509554153536113 6696988536962584561
StdRowGcdGcd k=0..n | T(n, k) | > 1missing1 1 1 1 5 13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
StdRowMaxMax k=0..n | T(n, k) |A2726451 0 1 1 5 13 73 301 2069 11581 95401 673261 6487445 55213453 610093513 6077248381 75796724309
StdColMiddleT(n, n // 2)A2726451 0 1 1 5 13 73 301 2069 11581 95401 673261 6487445 55213453 610093513 6077248381 75796724309
StdCentralET(2 n, n)A0481441 1 5 73 2069 95401 6487445 610093513 75796724309 12020754177001 2369364111428885
StdCentralOT(2 n + 1, n)missing0 1 13 301 11581 673261 55213453 6077248381 864806272861 154546274524621 33888536448984493
StdColLeftT(n, 0)A0000071 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
StdColRightT(n, n)A0000071 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
StdBinConv k=0..n C(n, k) T(n, k)A0528411 0 2 6 38 270 2342 23646 272918 3543630 51123782 811316286 14045783798 263429174190 5320671485222
StdInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kA2106571 0 -2 0 22 0 -602 0 30742 0 -2523002 0 303692662 0 -50402079002 0 11030684333782 0
StdTransNat0 k=0..n T(n, k) kmissing0 0 1 3 14 70 399 2541 17932 139032 1175525 10768615 106276794 1124375226 12696322219 152424261105
StdTransNat1 k=0..n T(n, k) (k + 1)missing1 0 2 5 21 98 532 3267 22415 169928 1410630 12726545 123989593 1297356030 14510082536 172747495919
StdTransSqrs k=0..n T(n, k) k^2missing0 0 1 5 30 186 1263 9331 74908 650880 6095061 61250545 657890826 7524868118 91341774379
StdPosHalf k=0..n 2^n T(n, k) (1/2)^kmissing1 0 2 6 30 174 1198 9486 84974 849678 9382254 113391246 1488810478 21103080462 321177039470
StdNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kmissing1 0 -2 2 10 -38 -38 762 -1766 -14086 122266 -29318 -5770982 36006906 148448410 -3757570438
StdDiagRow1T(n + 1, n)A0000120 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
StdDiagRow2T(n + 2, n)A0365630 1 5 13 29 61 125 253 509 1021 2045 4093 8189 16381 32765 65533 131069 262141 524285 1048573
StdDiagRow3T(n + 3, n)A0062300 1 13 73 301 1081 3613 11593 36301 111961 342013 1038313 3139501 9467641 28501213 85700233
StdDiagCol1T(n + 1, 1)A0000120 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
StdDiagCol2T(n + 2, 2)A0365630 1 5 13 29 61 125 253 509 1021 2045 4093 8189 16381 32765 65533 131069 262141 524285 1048573
StdDiagCol3T(n + 3, 3)A0062300 1 13 73 301 1081 3613 11593 36301 111961 342013 1038313 3139501 9467641 28501213 85700233
StdPolysee docsmissing1 0 1 0 0 1 0 1 0 1 0 2 2 0 1 0 7 6 3 0 1 0 28 30 12 4 0 1 0 133 174 75 20 5 0 1 0 726 1198 552 148
StdPolyRow2 k=0..2 T(2, k) n^kA0000270 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
StdPolyRow3 k=0..3 T(3, k) n^kA0023780 2 6 12 20 30 42 56 72 90 110 132 156 182 210 240 272 306 342 380 420 462 506 552 600 650 702 756
StdPolyCol2 k=0..n T(n, k) 2^kmissing1 0 2 6 30 174 1198 9486 84974 849678 9382254 113391246 1488810478 21103080462 321177039470
StdPolyCol3 k=0..n T(n, k) 3^kmissing1 0 3 12 75 552 4827 48612 553899 7045824 98989851 1522413372 25439475243 458949619416
StdPolyDiag k=0..n T(n, k) n^kmissing1 0 2 12 148 2580 62178 1971816 79323464 3935718000 235708233910 16749960290580 1392375762606108
AltTriangleT(n, k), 0 ≤ k ≤ nA3717611 0 0 0 -1 0 0 -1 1 0 0 -1 5 -1 0 0 -1 13 -13 1 0 0 -1 29 -73 29 -1 0 0 -1 61 -301 301 -61 1 0 0 -1
AltRevT(n, n - k), 0 ≤ k ≤ nA3717611 0 0 0 -1 0 0 1 -1 0 0 -1 5 -1 0 0 1 -13 13 -1 0 0 -1 29 -73 29 -1 0 0 1 -61 301 -301 61 -1 0 0 -1
AltAccsee docsmissing1 0 0 0 -1 -1 0 -1 0 0 0 -1 4 3 3 0 -1 12 -1 0 0 0 -1 28 -45 -16 -17 -17 0 -1 60 -241 60 -1 0 0 0
AltAccRevsee docsmissing1 0 0 0 -1 -1 0 1 0 0 0 -1 4 3 3 0 1 -12 1 0 0 0 -1 28 -45 -16 -17 -17 0 1 -60 241 -60 1 0 0 0 -1
AltAntiDiagsee docsmissing1 0 0 0 0 -1 0 -1 0 0 -1 1 0 -1 5 0 0 -1 13 -1 0 -1 29 -13 0 0 -1 61 -73 1 0 -1 125 -301 29 0 0 -1
AltDiffx1T(n, k) (k+1)missing1 0 0 0 -2 0 0 -2 3 0 0 -2 15 -4 0 0 -2 39 -52 5 0 0 -2 87 -292 145 -6 0 0 -2 183 -1204 1505 -366 7
AltRowSum k=0..n T(n, k)A0369681 0 -1 0 3 0 -17 0 155 0 -2073 0 38227 0 -929569 0 28820619 0 -1109652905 0 51943281731 0
AltEvenSum k=0..n T(n, k) even(k)missing1 0 0 1 5 14 58 363 2319 15448 116516 978965 8875513 86490402 906415374 10161617407 121190933987
AltOddSum k=0..n T(n, k) odd(k)missing0 0 -1 -1 -2 -14 -75 -363 -2164 -15448 -118589 -978965 -8837286 -86490402 -907344943 -10161617407
AltAltSum k=0..n T(n, k) (-1)^kA2971951 0 1 2 7 28 133 726 4483 30896 235105 1957930 17712799 172980804 1813760317 20323234814
AltAbsSum k=0..n | T(n, k) |A2971951 0 1 2 7 28 133 726 4483 30896 235105 1957930 17712799 172980804 1813760317 20323234814
AltDiagSum k=0..n // 2 T(n - k, k)missing1 0 0 -1 -1 0 4 11 15 -12 -148 -529 -1097 -72 12036 68723 242399 469116 -1007876 -15909577
AltAccSum k=0..n j=0..k T(n, j)missing1 0 -2 -1 9 10 -68 -123 775 2000 -12438 -42485 267589 1152150 -7436552 -38996527 259385571
AltAccRevSum k=0..n j=0..k T(n, n - j)missing1 0 -2 1 9 -10 -68 123 775 -2000 -12438 42485 267589 -1152150 -7436552 38996527 259385571
AltRowLcmLcm k=0..n | T(n, k) | > 1missing1 1 1 1 5 13 2117 18361 279573625 10586064709 32509554153536113 6696988536962584561
AltRowGcdGcd k=0..n | T(n, k) | > 1missing1 1 1 1 5 13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
AltRowMaxMax k=0..n | T(n, k) |A2726451 0 1 1 5 13 73 301 2069 11581 95401 673261 6487445 55213453 610093513 6077248381 75796724309
AltColMiddleT(n, n // 2)A2726451 0 -1 -1 5 13 -73 -301 2069 11581 -95401 -673261 6487445 55213453 -610093513 -6077248381
AltCentralET(2 n, n)A0481441 -1 5 -73 2069 -95401 6487445 -610093513 75796724309 -12020754177001 2369364111428885
AltCentralOT(2 n + 1, n)missing0 -1 13 -301 11581 -673261 55213453 -6077248381 864806272861 -154546274524621 33888536448984493
AltColLeftT(n, 0)A0000071 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
AltColRightT(n, n)A0000071 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
AltBinConv k=0..n C(n, k) T(n, k)A2106571 0 -2 0 22 0 -602 0 30742 0 -2523002 0 303692662 0 -50402079002 0 11030684333782 0
AltInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kA0528411 0 2 -6 38 -270 2342 -23646 272918 -3543630 51123782 -811316286 14045783798 -263429174190
AltTransNat0 k=0..n T(n, k) kmissing0 0 -1 1 6 -10 -51 123 620 -2000 -10365 42485 229362 -1152150 -6506983 38996527 230564952
AltTransNat1 k=0..n T(n, k) (k + 1)missing1 0 -2 1 9 -10 -68 123 775 -2000 -12438 42485 267589 -1152150 -7436552 38996527 259385571
AltTransSqrs k=0..n T(n, k) k^2missing0 0 -1 3 10 -50 -103 861 1300 -18000 -19941 467335 348814 -14977950 -5880627 584947905 19902776
AltPosHalf k=0..n 2^n T(n, k) (1/2)^kmissing1 0 -2 -2 10 38 -38 -762 -1766 14086 122266 29318 -5770982 -36006906 148448410 3757570438
AltNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kmissing1 0 2 -6 30 -174 1198 -9486 84974 -849678 9382254 -113391246 1488810478 -21103080462 321177039470
AltDiagRow1T(n + 1, n)A0000120 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1
AltDiagRow2T(n + 2, n)A0365630 -1 5 -13 29 -61 125 -253 509 -1021 2045 -4093 8189 -16381 32765 -65533 131069 -262141 524285
AltDiagRow3T(n + 3, n)A0062300 -1 13 -73 301 -1081 3613 -11593 36301 -111961 342013 -1038313 3139501 -9467641 28501213 -85700233
AltDiagCol1T(n + 1, 1)A0000120 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
AltDiagCol2T(n + 2, 2)A0365630 1 5 13 29 61 125 253 509 1021 2045 4093 8189 16381 32765 65533 131069 262141 524285 1048573
AltDiagCol3T(n + 3, 3)A0062300 -1 -13 -73 -301 -1081 -3613 -11593 -36301 -111961 -342013 -1038313 -3139501 -9467641 -28501213
AltPolysee docsmissing1 0 1 0 0 1 0 -1 0 1 0 0 -2 0 1 0 3 2 -3 0 1 0 0 10 6 -4 0 1 0 -17 -38 15 12 -5 0 1 0 0 -38 -156 12
AltPolyRow2 k=0..2 T(2, k) n^kA0000270 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25 -26
AltPolyRow3 k=0..3 T(3, k) n^kA0023780 0 2 6 12 20 30 42 56 72 90 110 132 156 182 210 240 272 306 342 380 420 462 506 552 600 650 702
AltPolyCol2 k=0..n T(n, k) 2^kmissing1 0 -2 2 10 -38 -38 762 -1766 -14086 122266 -29318 -5770982 36006906 148448410 -3757570438
AltPolyCol3 k=0..n T(n, k) 3^kmissing1 0 -3 6 15 -156 393 2706 -34221 115728 1251789 -20842914 95148663 1254941052 -27304605615
AltPolyDiag k=0..n T(n, k) n^kmissing1 0 -2 6 12 -680 15078 -285138 3177784 142574976 -17255152110 1258102877350 -75274590564732
 << TableSourceSimilarsIndex >> 

Note: The A-numbers are based on a finite number of numerical comparisons. They ignore the sign and the OEIS-offset. Sometimes they differ in the first few values. In such cases, we consider our version to be the better one because it has a common formula as a root. Since the offset of all triangles is 0 also the offset of all sequences is 0.