ORDEREDCYCLE[0] 1
[1] 0, 1
[2] 0, 1, 2
[3] 0, 2, 6, 6
[4] 0, 6, 22, 36, 24
[5] 0, 24, 100, 210, 240, 120

      OEIS Similars: A225479, A048594, A075181

↕ Type↕ Trait↕ Anum↕ Sequence
StdTriangleT(n, k), 0 ≤ k ≤ nA2254791 0 1 0 1 2 0 2 6 6 0 6 22 36 24 0 24 100 210 240 120 0 120 548 1350 2040 1800 720 0 720 3528 9744
StdRevT(n, n - k), 0 ≤ k ≤ nmissing1 1 0 2 1 0 6 6 2 0 24 36 22 6 0 120 240 210 100 24 0 720 1800 2040 1350 548 120 0 5040 15120 21000
StdAccsee docsmissing1 0 1 0 1 3 0 2 8 14 0 6 28 64 88 0 24 124 334 574 694 0 120 668 2018 4058 5858 6578 0 720 4248
StdAccRevsee docsmissing1 1 1 2 3 3 6 12 14 14 24 60 82 88 88 120 360 570 670 694 694 720 2520 4560 5910 6458 6578 6578
StdAntiDiagsee docsmissing1 0 0 1 0 1 0 2 2 0 6 6 0 24 22 6 0 120 100 36 0 720 548 210 24 0 5040 3528 1350 240 0 40320 26136
StdDiffx1T(n, k) (k+1)missing1 0 2 0 2 6 0 4 18 24 0 12 66 144 120 0 48 300 840 1200 720 0 240 1644 5400 10200 10800 5040 0 1440
StdRowSum k=0..n T(n, k)A0078401 1 3 14 88 694 6578 72792 920904 13109088 207360912 3608233056 68495486640 1408631978064
StdEvenSum k=0..n T(n, k) even(k)A0528111 0 2 6 46 340 3308 36288 460752 6551424 103685232 1803956880 34247483664 704301934752
StdOddSum k=0..n T(n, k) odd(k)missing0 1 1 8 42 354 3270 36504 460152 6557664 103675680 1804276176 34248002976 704330043312
StdAltSum k=0..n T(n, k) (-1)^kA0062521 -1 1 -2 4 -14 38 -216 600 -6240 9552 -319296 -519312 -28108560 -176474352 -3998454144
StdAbsSum k=0..n | T(n, k) |A0078401 1 3 14 88 694 6578 72792 920904 13109088 207360912 3608233056 68495486640 1408631978064
StdDiagSum k=0..n // 2 T(n - k, k)A1298411 0 1 1 4 12 52 256 1502 10158 78360 680280 6574872 70075416 816909816 10342968456 141357740736
StdAccSum k=0..n j=0..k T(n, j)missing1 1 4 24 186 1750 19300 243768 3467184 54820848 953707008 18102106704 372250674576 8244093725712
StdAccRevSum k=0..n j=0..k T(n, n - j)A0528011 2 8 46 342 3108 33324 411360 5741856 89379120 1534623936 28804923024 586686138384 12885385945248
StdRowLcmLcm k=0..n | T(n, k) | > 1missing1 1 2 6 792 8400 25153200 76734000 763351047043200 2541777015532656545280
StdRowGcdGcd k=0..n | T(n, k) | > 1A0751821 1 2 2 2 2 2 24 24 24 24 48 48 48 48 384 1152 1152 1152 2304 2304 11520 11520 46080 46080 414720
StdRowMaxMax k=0..n | T(n, k) |A0585831 1 2 6 36 240 2040 21000 235200 3265920 47628000 795175920 14411295360 279281882880 6049083680640
StdColMiddleT(n, n // 2)A3444981 0 1 2 22 100 1350 9744 162456 1614816 32319000 410031600 9604465200 148370508000 3986353491120
StdCentralET(2 n, n)A3768731 1 22 1350 162456 32319000 9604465200 3986353491120 2202727143576960 1563325251963995520
StdCentralOT(2 n + 1, n)missing0 2 100 9744 1614816 410031600 148370508000 72622987557120 46243059751848960 37165349757066935040
StdColLeftT(n, 0)A0000071 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
StdColRightT(n, n)A0001421 1 2 6 24 120 720 5040 40320 362880 3628800 39916800 479001600 6227020800 87178291200
StdBinConv k=0..n C(n, k) T(n, k)A2777591 1 4 30 324 4540 78060 1589448 37388400 997513200 29759790240 981669324240 35475203063520
StdInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kA3085651 1 0 -6 -12 140 1020 -5208 -117264 -2448 17756640 117905040 -3177424800 -56997933408 523176632160
StdTransNat0 k=0..n T(n, k) kA2159160 1 5 32 254 2414 26746 338568 4820952 76270032 1327263024 25196689968 518190651744 11476753967184
StdTransNat1 k=0..n T(n, k) (k + 1)A0528011 2 8 46 342 3108 33324 411360 5741856 89379120 1534623936 28804923024 586686138384 12885385945248
StdTransSqrs k=0..n T(n, k) k^2missing0 1 9 80 802 9154 118022 1701048 27139608 475183584 9062172768 187025449104 4153589356128
StdPosHalf k=0..n 2^n T(n, k) (1/2)^kA2279171 1 4 26 232 2624 35888 575280 10569984 218911872 5044346112 127980834816 3544627393536
StdNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kA3542371 1 0 2 -8 64 -592 6768 -90624 1395840 -24292608 471453696 -10094066688 236340378624 -6007053852672
StdDiagRow1T(n + 1, n)A0012860 1 6 36 240 1800 15120 141120 1451520 16329600 199584000 2634508800 37362124800 566658892800
StdDiagRow2T(n + 2, n)missing0 2 22 210 2040 21000 231840 2751840 35078400 479001600 6985440000 108453945600 1787154969600
StdDiagRow3T(n + 3, n)missing0 6 100 1350 17640 235200 3265920 47628000 731808000 11855289600 202378176000 3636061228800
StdDiagCol1T(n + 1, 1)A0001421 1 2 6 24 120 720 5040 40320 362880 3628800 39916800 479001600 6227020800 87178291200
StdDiagCol2T(n + 2, 2)A0525172 6 22 100 548 3528 26136 219168 2053152 21257280 241087680 2972885760 39605518080 566931294720
StdDiagCol3T(n + 3, 3)A0527486 36 210 1350 9744 78792 708744 7036200 76521456 905507856 11589357312 159580302336 2352940786944
StdPolysee docsmissing1 0 1 0 1 1 0 3 2 1 0 14 10 3 1 0 88 76 21 4 1 0 694 772 222 36 5 1 0 6578 9808 3132 488 55 6 1 0
StdPolyRow1 k=0..1 T(1, k) n^kA0000270 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
StdPolyRow2 k=0..2 T(2, k) n^kA0141050 3 10 21 36 55 78 105 136 171 210 253 300 351 406 465 528 595 666 741 820 903 990 1081 1176 1275
StdPolyRow3 k=0..3 T(3, k) n^kmissing0 14 76 222 488 910 1524 2366 3472 4878 6620 8734 11256 14222 17668 21630 26144 31246 36972 43358
StdPolyCol2 k=0..n T(n, k) 2^kA0885001 2 10 76 772 9808 149552 2660544 54093696 1237306560 31446049728 879119219328 26811313164672
StdPolyCol3 k=0..n T(n, k) 3^kA3542631 3 21 222 3132 55242 1169262 28873800 814870584 25871762016 912684973968 35416732159872
StdPolyDiag k=0..n T(n, k) n^kA3171711 1 10 222 8824 553870 50545008 6328330344 1041597412224 218138133235680 56650689388344000
AltTriangleT(n, k), 0 ≤ k ≤ nA2254791 0 -1 0 -1 2 0 -2 6 -6 0 -6 22 -36 24 0 -24 100 -210 240 -120 0 -120 548 -1350 2040 -1800 720 0
AltRevT(n, n - k), 0 ≤ k ≤ nmissing1 -1 0 2 -1 0 -6 6 -2 0 24 -36 22 -6 0 -120 240 -210 100 -24 0 720 -1800 2040 -1350 548 -120 0
AltAccsee docsmissing1 0 -1 0 -1 1 0 -2 4 -2 0 -6 16 -20 4 0 -24 76 -134 106 -14 0 -120 428 -922 1118 -682 38 0 -720
AltAccRevsee docsmissing1 -1 -1 2 1 1 -6 0 -2 -2 24 -12 10 4 4 -120 120 -90 10 -14 -14 720 -1080 960 -390 158 38 38 -5040
AltAntiDiagsee docsmissing1 0 0 -1 0 -1 0 -2 2 0 -6 6 0 -24 22 -6 0 -120 100 -36 0 -720 548 -210 24 0 -5040 3528 -1350 240 0
AltDiffx1T(n, k) (k+1)missing1 0 -2 0 -2 6 0 -4 18 -24 0 -12 66 -144 120 0 -48 300 -840 1200 -720 0 -240 1644 -5400 10200 -10800
AltRowSum k=0..n T(n, k)A0062521 -1 1 -2 4 -14 38 -216 600 -6240 9552 -319296 -519312 -28108560 -176474352 -3998454144
AltEvenSum k=0..n T(n, k) even(k)A0528111 0 2 6 46 340 3308 36288 460752 6551424 103685232 1803956880 34247483664 704301934752
AltOddSum k=0..n T(n, k) odd(k)missing0 -1 -1 -8 -42 -354 -3270 -36504 -460152 -6557664 -103675680 -1804276176 -34248002976 -704330043312
AltAltSum k=0..n T(n, k) (-1)^kA0078401 1 3 14 88 694 6578 72792 920904 13109088 207360912 3608233056 68495486640 1408631978064
AltAbsSum k=0..n | T(n, k) |A0078401 1 3 14 88 694 6578 72792 920904 13109088 207360912 3608233056 68495486640 1408631978064
AltDiagSum k=0..n // 2 T(n - k, k)missing1 0 -1 -1 0 0 -8 -56 -358 -2622 -22008 -206664 -2142216 -24300984 -299534136 -3987009096
AltAccSum k=0..n j=0..k T(n, j)missing1 -1 0 0 -6 10 -140 168 -5040 -2928 -300192 -1157904 -29147184 -232691472 -4351402848 -51981987072
AltAccRevSum k=0..n j=0..k T(n, n - j)A3172801 -2 4 -10 30 -108 444 -2112 11040 -65712 414816 -2992944 21876816 -188936928 1527813216
AltRowLcmLcm k=0..n | T(n, k) | > 1missing1 1 2 6 792 8400 25153200 76734000 763351047043200 2541777015532656545280
AltRowGcdGcd k=0..n | T(n, k) | > 1A0751821 1 2 2 2 2 2 24 24 24 24 48 48 48 48 384 1152 1152 1152 2304 2304 11520 11520 46080 46080 414720
AltRowMaxMax k=0..n | T(n, k) |A0585831 1 2 6 36 240 2040 21000 235200 3265920 47628000 795175920 14411295360 279281882880 6049083680640
AltColMiddleT(n, n // 2)A3444981 0 -1 -2 22 100 -1350 -9744 162456 1614816 -32319000 -410031600 9604465200 148370508000
AltCentralET(2 n, n)A3768731 -1 22 -1350 162456 -32319000 9604465200 -3986353491120 2202727143576960 -1563325251963995520
AltCentralOT(2 n + 1, n)missing0 -2 100 -9744 1614816 -410031600 148370508000 -72622987557120 46243059751848960
AltColLeftT(n, 0)A0000071 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
AltColRightT(n, n)A0001421 -1 2 -6 24 -120 720 -5040 40320 -362880 3628800 -39916800 479001600 -6227020800 87178291200
AltBinConv k=0..n C(n, k) T(n, k)A3085651 -1 0 6 -12 -140 1020 5208 -117264 2448 17756640 -117905040 -3177424800 56997933408 523176632160
AltInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kA2777591 -1 4 -30 324 -4540 78060 -1589448 37388400 -997513200 29759790240 -981669324240 35475203063520
AltTransNat0 k=0..n T(n, k) kA3203440 -1 3 -8 26 -94 406 -1896 10440 -59472 405264 -2673648 22396128 -160828368 1704287568 -11993279232
AltTransNat1 k=0..n T(n, k) (k + 1)A3172801 -2 4 -10 30 -108 444 -2112 11040 -65712 414816 -2992944 21876816 -188936928 1527813216
AltTransSqrs k=0..n T(n, k) k^2missing0 -1 7 -32 142 -674 3482 -19704 121512 -815328 5906208 -46139664 385308960 -3445291056 32621204400
AltPosHalf k=0..n 2^n T(n, k) (1/2)^kA3542371 -1 0 -2 -8 -64 -592 -6768 -90624 -1395840 -24292608 -471453696 -10094066688 -236340378624
AltNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kA2279171 -1 4 -26 232 -2624 35888 -575280 10569984 -218911872 5044346112 -127980834816 3544627393536
AltDiagRow1T(n + 1, n)A0012860 -1 6 -36 240 -1800 15120 -141120 1451520 -16329600 199584000 -2634508800 37362124800
AltDiagRow2T(n + 2, n)missing0 -2 22 -210 2040 -21000 231840 -2751840 35078400 -479001600 6985440000 -108453945600 1787154969600
AltDiagRow3T(n + 3, n)missing0 -6 100 -1350 17640 -235200 3265920 -47628000 731808000 -11855289600 202378176000 -3636061228800
AltDiagCol1T(n + 1, 1)A000142-1 -1 -2 -6 -24 -120 -720 -5040 -40320 -362880 -3628800 -39916800 -479001600 -6227020800
AltDiagCol2T(n + 2, 2)A0525172 6 22 100 548 3528 26136 219168 2053152 21257280 241087680 2972885760 39605518080 566931294720
AltDiagCol3T(n + 3, 3)A052748-6 -36 -210 -1350 -9744 -78792 -708744 -7036200 -76521456 -905507856 -11589357312 -159580302336
AltPolysee docsmissing1 0 1 0 -1 1 0 1 -2 1 0 -2 6 -3 1 0 4 -28 15 -4 1 0 -14 172 -114 28 -5 1 0 38 -1328 1152 -296 45 -6
AltPolyRow1 k=0..1 T(1, k) n^kA0000270 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25 -26
AltPolyRow2 k=0..2 T(2, k) n^kA0003840 1 6 15 28 45 66 91 120 153 190 231 276 325 378 435 496 561 630 703 780 861 946 1035 1128 1225
AltPolyRow3 k=0..3 T(3, k) n^kA2138290 -2 -28 -114 -296 -610 -1092 -1778 -2704 -3906 -5420 -7282 -9528 -12194 -15316 -18930 -23072
AltPolyCol2 k=0..n T(n, k) 2^kA0885011 -2 6 -28 172 -1328 12272 -132480 1633344 -22663104 349324608 -5923548288 109570736256
AltPolyCol3 k=0..n T(n, k) 3^kA3355311 -3 15 -114 1152 -14562 220842 -3907656 79019496 -1797660000 45439902288 -1263456328032
AltPolyDiag k=0..n T(n, k) n^kA3171721 -1 6 -114 4168 -248870 21966768 -2685571560 434202400896 -89679267601632 23032451508686400
RevTriangleT(n, k), 0 ≤ k ≤ nmissing1 1 0 2 1 0 6 6 2 0 24 36 22 6 0 120 240 210 100 24 0 720 1800 2040 1350 548 120 0 5040 15120 21000
RevAccsee docsmissing1 1 1 2 3 3 6 12 14 14 24 60 82 88 88 120 360 570 670 694 694 720 2520 4560 5910 6458 6578 6578
RevAccRevsee docsmissing1 0 1 0 1 3 0 2 8 14 0 6 28 64 88 0 24 124 334 574 694 0 120 668 2018 4058 5858 6578 0 720 4248
RevAntiDiagsee docsmissing1 1 2 0 6 1 24 6 0 120 36 2 720 240 22 0 5040 1800 210 6 40320 15120 2040 100 0 362880 141120 21000
RevDiffx1T(n, k) (k+1)missing1 1 0 2 2 0 6 12 6 0 24 72 66 24 0 120 480 630 400 120 0 720 3600 6120 5400 2740 720 0 5040 30240
RevRowSum k=0..n T(n, k)A0078401 1 3 14 88 694 6578 72792 920904 13109088 207360912 3608233056 68495486640 1408631978064
RevEvenSum k=0..n T(n, k) even(k)missing1 1 2 8 46 354 3308 36504 460752 6557664 103685232 1804276176 34247483664 704330043312
RevOddSum k=0..n T(n, k) odd(k)missing0 0 1 6 42 340 3270 36288 460152 6551424 103675680 1803956880 34248002976 704301934752
RevAltSum k=0..n T(n, k) (-1)^kA0062521 1 1 2 4 14 38 216 600 6240 9552 319296 -519312 28108560 -176474352 3998454144 -43985078784
RevAbsSum k=0..n | T(n, k) |A0078401 1 3 14 88 694 6578 72792 920904 13109088 207360912 3608233056 68495486640 1408631978064
RevDiagSum k=0..n // 2 T(n - k, k)missing1 1 2 7 30 158 982 7056 57580 526374 5330348 59243304 717095904 9390932592 132304861512
RevAccSum k=0..n j=0..k T(n, j)A0528011 2 8 46 342 3108 33324 411360 5741856 89379120 1534623936 28804923024 586686138384 12885385945248
RevAccRevSum k=0..n j=0..k T(n, n - j)missing1 1 4 24 186 1750 19300 243768 3467184 54820848 953707008 18102106704 372250674576 8244093725712
RevRowLcmLcm k=0..n | T(n, k) | > 1missing1 1 2 6 792 8400 25153200 76734000 763351047043200 2541777015532656545280
RevRowGcdGcd k=0..n | T(n, k) | > 1A0751821 1 2 2 2 2 2 24 24 24 24 48 48 48 48 384 1152 1152 1152 2304 2304 11520 11520 46080 46080 414720
RevRowMaxMax k=0..n | T(n, k) |A0585831 1 2 6 36 240 2040 21000 235200 3265920 47628000 795175920 14411295360 279281882880 6049083680640
RevColMiddleT(n, n // 2)missing1 1 1 6 22 210 1350 17640 162456 2693880 32319000 649479600 9604465200 226750764240 3986353491120
RevCentralET(2 n, n)A3768731 1 22 1350 162456 32319000 9604465200 3986353491120 2202727143576960 1563325251963995520
RevCentralOT(2 n + 1, n)A2386851 6 210 17640 2693880 649479600 226750764240 108116216208000 67478689070432640 53382381970299782400
RevColLeftT(n, 0)A0001421 1 2 6 24 120 720 5040 40320 362880 3628800 39916800 479001600 6227020800 87178291200
RevColRightT(n, n)A0000071 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RevBinConv k=0..n C(n, k) T(n, k)A2777591 1 4 30 324 4540 78060 1589448 37388400 997513200 29759790240 981669324240 35475203063520
RevInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kA3085651 -1 0 6 -12 -140 1020 5208 -117264 2448 17756640 -117905040 -3177424800 56997933408 523176632160
RevTransNat0 k=0..n T(n, k) kmissing0 0 1 10 98 1056 12722 170976 2546280 41711760 746346096 14493873648 303755187936 6835461747648
RevTransNat1 k=0..n T(n, k) (k + 1)missing1 1 4 24 186 1750 19300 243768 3467184 54820848 953707008 18102106704 372250674576 8244093725712
RevTransSqrs k=0..n T(n, k) k^2missing0 0 1 14 178 2364 33878 527904 8942232 164159136 3253003488 69294469584 1580363790432
RevPosHalf k=0..n 2^n T(n, k) (1/2)^kA0885001 2 10 76 772 9808 149552 2660544 54093696 1237306560 31446049728 879119219328 26811313164672
RevNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kA0885011 -2 6 -28 172 -1328 12272 -132480 1633344 -22663104 349324608 -5923548288 109570736256
RevDiagRow1T(n + 1, n)A0001421 1 2 6 24 120 720 5040 40320 362880 3628800 39916800 479001600 6227020800 87178291200
RevDiagRow2T(n + 2, n)A0525172 6 22 100 548 3528 26136 219168 2053152 21257280 241087680 2972885760 39605518080 566931294720
RevDiagRow3T(n + 3, n)A0527486 36 210 1350 9744 78792 708744 7036200 76521456 905507856 11589357312 159580302336 2352940786944
RevDiagCol1T(n + 1, 1)A0012860 1 6 36 240 1800 15120 141120 1451520 16329600 199584000 2634508800 37362124800 566658892800
RevDiagCol2T(n + 2, 2)missing0 2 22 210 2040 21000 231840 2751840 35078400 479001600 6985440000 108453945600 1787154969600
RevDiagCol3T(n + 3, 3)missing0 6 100 1350 17640 235200 3265920 47628000 731808000 11855289600 202378176000 3636061228800
RevPolysee docsmissing1 1 1 2 1 1 6 3 1 1 24 14 4 1 1 120 88 26 5 1 1 720 694 232 42 6 1 1 5040 6578 2624 492 62 7 1 1
RevPolyRow1 k=0..1 T(1, k) n^kA0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
RevPolyRow2 k=0..2 T(2, k) n^kA0000272 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
RevPolyRow3 k=0..3 T(3, k) n^kA0518906 14 26 42 62 86 114 146 182 222 266 314 366 422 482 546 614 686 762 842 926 1014 1106 1202 1302
RevPolyCol2 k=0..n T(n, k) 2^kA2279171 1 4 26 232 2624 35888 575280 10569984 218911872 5044346112 127980834816 3544627393536
RevPolyCol3 k=0..n T(n, k) 3^kA3520691 1 5 42 492 7374 134478 2887128 71281656 1988802720 61860849552 2121993490176 79566300371952
RevPolyDiag k=0..n T(n, k) n^kA3520741 1 4 42 904 34070 2019888 174588120 20804747136 3276218158560 659664288364800 165425062846302336
 << TableSourceSimilarsIndex >> 

Note: The A-numbers are based on a finite number of numerical comparisons. They ignore the sign and the OEIS-offset. Sometimes they differ in the first few values. In such cases, we consider our version to be the better one because it has a common formula as a root. Since the offset of all triangles is 0 also the offset of all sequences is 0.