OEIS Similars: A002262, A002260, A004736, A025581
↕ Type | ↕ Trait | ↕ Anum | ↕ Sequence |
---|---|---|---|
Std | TriangleT(n, k), 0 ≤ k ≤ n | A002262 | 0 0 1 0 1 2 0 1 2 3 0 1 2 3 4 0 1 2 3 4 5 0 1 2 3 4 5 6 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 8 0 1 2 3 4 |
Std | RevT(n, n - k), 0 ≤ k ≤ n | A025581 | 0 1 0 2 1 0 3 2 1 0 4 3 2 1 0 5 4 3 2 1 0 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 8 7 6 5 4 3 2 1 0 9 8 7 6 5 |
Std | Accsee docs | A112367 | 0 0 1 0 1 3 0 1 3 6 0 1 3 6 10 0 1 3 6 10 15 0 1 3 6 10 15 21 0 1 3 6 10 15 21 28 0 1 3 6 10 15 21 |
Std | AccRevsee docs | A141418 | 0 1 1 2 3 3 3 5 6 6 4 7 9 10 10 5 9 12 14 15 15 6 11 15 18 20 21 21 7 13 18 22 25 27 28 28 8 15 21 |
Std | AntiDiagsee docs | A055087 | 0 0 0 1 0 1 0 1 2 0 1 2 0 1 2 3 0 1 2 3 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 6 0 |
Std | Diffx1T(n, k) (k+1) | missing | 0 0 2 0 2 6 0 2 6 12 0 2 6 12 20 0 2 6 12 20 30 0 2 6 12 20 30 42 0 2 6 12 20 30 42 56 0 2 6 12 20 |
Std | RowSum∑ k=0..n T(n, k) | A000217 | 0 1 3 6 10 15 21 28 36 45 55 66 78 91 105 120 136 153 171 190 210 231 253 276 300 325 351 378 406 |
Std | EvenSum∑ k=0..n T(n, k) even(k) | A110660 | 0 0 2 2 6 6 12 12 20 20 30 30 42 42 56 56 72 72 90 90 110 110 132 132 156 156 182 182 210 210 240 |
Std | OddSum∑ k=0..n T(n, k) odd(k) | A008794 | 0 1 1 4 4 9 9 16 16 25 25 36 36 49 49 64 64 81 81 100 100 121 121 144 144 169 169 196 196 225 225 |
Std | AltSum∑ k=0..n T(n, k) (-1)^k | A004526 | 0 -1 1 -2 2 -3 3 -4 4 -5 5 -6 6 -7 7 -8 8 -9 9 -10 10 -11 11 -12 12 -13 13 -14 14 -15 15 -16 16 -17 |
Std | AbsSum∑ k=0..n | T(n, k) | | A000217 | 0 1 3 6 10 15 21 28 36 45 55 66 78 91 105 120 136 153 171 190 210 231 253 276 300 325 351 378 406 |
Std | DiagSum∑ k=0..n // 2 T(n - k, k) | A008805 | 0 0 1 1 3 3 6 6 10 10 15 15 21 21 28 28 36 36 45 45 55 55 66 66 78 78 91 91 105 105 120 120 136 136 |
Std | AccSum∑ k=0..n ∑ j=0..k T(n, j) | A000292 | 0 1 4 10 20 35 56 84 120 165 220 286 364 455 560 680 816 969 1140 1330 1540 1771 2024 2300 2600 |
Std | AccRevSum∑ k=0..n ∑ j=0..k T(n, n - j) | A007290 | 0 2 8 20 40 70 112 168 240 330 440 572 728 910 1120 1360 1632 1938 2280 2660 3080 3542 4048 4600 |
Std | RowLcmLcm k=0..n | T(n, k) | > 1 | A003418 | 1 1 2 6 12 60 60 420 840 2520 2520 27720 27720 360360 360360 360360 720720 12252240 12252240 |
Std | RowGcdGcd k=0..n | T(n, k) | > 1 | A000012 | 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Std | RowMaxMax k=0..n | T(n, k) | | A000027 | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 |
Std | ColMiddleT(n, n // 2) | A004526 | 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13 14 14 15 15 16 16 17 17 18 18 19 19 |
Std | CentralET(2 n, n) | A000027 | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 |
Std | CentralOT(2 n + 1, n) | A000027 | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 |
Std | ColRightT(n, n) | A000027 | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 |
Std | BinConv∑ k=0..n C(n, k) T(n, k) | A001787 | 0 1 4 12 32 80 192 448 1024 2304 5120 11264 24576 53248 114688 245760 524288 1114112 2359296 |
Std | InvBinConv∑ k=0..n C(n, k) T(n, n - k) (-1)^k | A063524 | 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Std | TransNat0∑ k=0..n T(n, k) k | A000330 | 0 1 5 14 30 55 91 140 204 285 385 506 650 819 1015 1240 1496 1785 2109 2470 2870 3311 3795 4324 |
Std | TransNat1∑ k=0..n T(n, k) (k + 1) | A007290 | 0 2 8 20 40 70 112 168 240 330 440 572 728 910 1120 1360 1632 1938 2280 2660 3080 3542 4048 4600 |
Std | TransSqrs∑ k=0..n T(n, k) k^2 | A000537 | 0 1 9 36 100 225 441 784 1296 2025 3025 4356 6084 8281 11025 14400 18496 23409 29241 36100 44100 |
Std | PosHalf∑ k=0..n 2^n T(n, k) (1/2)^k | A000295 | 0 1 4 11 26 57 120 247 502 1013 2036 4083 8178 16369 32752 65519 131054 262125 524268 1048555 |
Std | NegHalf∑ k=0..n (-2)^n T(n, k) (-1/2)^k | A053088 | 0 1 0 3 -2 9 -12 31 -54 117 -224 459 -906 1825 -3636 7287 -14558 29133 -58248 116515 -233010 466041 |
Std | DiagRow1T(n + 1, n) | A000027 | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 |
Std | DiagRow2T(n + 2, n) | A000027 | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 |
Std | DiagRow3T(n + 3, n) | A000027 | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 |
Std | DiagCol1T(n + 1, 1) | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Std | DiagCol2T(n + 2, 2) | A055642 | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 |
Std | DiagCol3T(n + 3, 3) | A010701 | 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 |
Std | Polysee docs | missing | 0 0 0 0 1 0 0 3 2 0 0 6 10 3 0 0 10 34 21 4 0 0 15 98 102 36 5 0 0 21 258 426 228 55 6 0 0 28 642 |
Std | PolyRow1∑ k=0..1 T(1, k) n^k | A000027 | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 |
Std | PolyRow2∑ k=0..2 T(2, k) n^k | A014105 | 0 3 10 21 36 55 78 105 136 171 210 253 300 351 406 465 528 595 666 741 820 903 990 1081 1176 1275 |
Std | PolyRow3∑ k=0..3 T(3, k) n^k | A067389 | 0 6 34 102 228 430 726 1134 1672 2358 3210 4246 5484 6942 8638 10590 12816 15334 18162 21318 24820 |
Std | PolyCol2∑ k=0..n T(n, k) 2^k | A036799 | 0 2 10 34 98 258 642 1538 3586 8194 18434 40962 90114 196610 425986 917506 1966082 4194306 8912898 |
Std | PolyCol3∑ k=0..n T(n, k) 3^k | A289399 | 0 3 21 102 426 1641 6015 21324 73812 250959 841449 2790066 9167358 29893557 96855123 312088728 |
Std | PolyDiag∑ k=0..n T(n, k) n^k | A062806 | 0 1 10 102 1252 18555 324726 6565468 150652552 3868151445 109876543210 3420886930626 |
Alt | TriangleT(n, k), 0 ≤ k ≤ n | A002262 | 0 0 -1 0 -1 2 0 -1 2 -3 0 -1 2 -3 4 0 -1 2 -3 4 -5 0 -1 2 -3 4 -5 6 0 -1 2 -3 4 -5 6 -7 0 -1 2 -3 4 |
Alt | RevT(n, n - k), 0 ≤ k ≤ n | A025581 | 0 -1 0 2 -1 0 -3 2 -1 0 4 -3 2 -1 0 -5 4 -3 2 -1 0 6 -5 4 -3 2 -1 0 -7 6 -5 4 -3 2 -1 0 8 -7 6 -5 4 |
Alt | Accsee docs | missing | 0 0 -1 0 -1 1 0 -1 1 -2 0 -1 1 -2 2 0 -1 1 -2 2 -3 0 -1 1 -2 2 -3 3 0 -1 1 -2 2 -3 3 -4 0 -1 1 -2 2 |
Alt | AccRevsee docs | missing | 0 -1 -1 2 1 1 -3 -1 -2 -2 4 1 3 2 2 -5 -1 -4 -2 -3 -3 6 1 5 2 4 3 3 -7 -1 -6 -2 -5 -3 -4 -4 8 1 7 2 |
Alt | AntiDiagsee docs | A055087 | 0 0 0 -1 0 -1 0 -1 2 0 -1 2 0 -1 2 -3 0 -1 2 -3 0 -1 2 -3 4 0 -1 2 -3 4 0 -1 2 -3 4 -5 0 -1 2 -3 4 |
Alt | Diffx1T(n, k) (k+1) | missing | 0 0 -2 0 -2 6 0 -2 6 -12 0 -2 6 -12 20 0 -2 6 -12 20 -30 0 -2 6 -12 20 -30 42 0 -2 6 -12 20 -30 42 |
Alt | RowSum∑ k=0..n T(n, k) | A004526 | 0 -1 1 -2 2 -3 3 -4 4 -5 5 -6 6 -7 7 -8 8 -9 9 -10 10 -11 11 -12 12 -13 13 -14 14 -15 15 -16 16 -17 |
Alt | EvenSum∑ k=0..n T(n, k) even(k) | A110660 | 0 0 2 2 6 6 12 12 20 20 30 30 42 42 56 56 72 72 90 90 110 110 132 132 156 156 182 182 210 210 240 |
Alt | OddSum∑ k=0..n T(n, k) odd(k) | A008794 | 0 -1 -1 -4 -4 -9 -9 -16 -16 -25 -25 -36 -36 -49 -49 -64 -64 -81 -81 -100 -100 -121 -121 -144 -144 |
Alt | AltSum∑ k=0..n T(n, k) (-1)^k | A000217 | 0 1 3 6 10 15 21 28 36 45 55 66 78 91 105 120 136 153 171 190 210 231 253 276 300 325 351 378 406 |
Alt | AbsSum∑ k=0..n | T(n, k) | | A000217 | 0 1 3 6 10 15 21 28 36 45 55 66 78 91 105 120 136 153 171 190 210 231 253 276 300 325 351 378 406 |
Alt | DiagSum∑ k=0..n // 2 T(n - k, k) | A002265 | 0 0 -1 -1 1 1 -2 -2 2 2 -3 -3 3 3 -4 -4 4 4 -5 -5 5 5 -6 -6 6 6 -7 -7 7 7 -8 -8 8 8 -9 -9 9 9 -10 |
Alt | AccSum∑ k=0..n ∑ j=0..k T(n, j) | A142150 | 0 -1 0 -2 0 -3 0 -4 0 -5 0 -6 0 -7 0 -8 0 -9 0 -10 0 -11 0 -12 0 -13 0 -14 0 -15 0 -16 0 -17 0 -18 |
Alt | AccRevSum∑ k=0..n ∑ j=0..k T(n, n - j) | A007590 | 0 -2 4 -8 12 -18 24 -32 40 -50 60 -72 84 -98 112 -128 144 -162 180 -200 220 -242 264 -288 312 -338 |
Alt | RowLcmLcm k=0..n | T(n, k) | > 1 | A003418 | 1 1 2 6 12 60 60 420 840 2520 2520 27720 27720 360360 360360 360360 720720 12252240 12252240 |
Alt | RowGcdGcd k=0..n | T(n, k) | > 1 | A000012 | 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Alt | RowMaxMax k=0..n | T(n, k) | | A000027 | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 |
Alt | ColMiddleT(n, n // 2) | A004526 | 0 0 -1 -1 2 2 -3 -3 4 4 -5 -5 6 6 -7 -7 8 8 -9 -9 10 10 -11 -11 12 12 -13 -13 14 14 -15 -15 16 16 |
Alt | CentralET(2 n, n) | A000027 | 0 -1 2 -3 4 -5 6 -7 8 -9 10 -11 12 -13 14 -15 16 -17 18 -19 20 -21 22 -23 |
Alt | CentralOT(2 n + 1, n) | A000027 | 0 -1 2 -3 4 -5 6 -7 8 -9 10 -11 12 -13 14 -15 16 -17 18 -19 20 -21 22 -23 |
Alt | ColRightT(n, n) | A000027 | 0 -1 2 -3 4 -5 6 -7 8 -9 10 -11 12 -13 14 -15 16 -17 18 -19 20 -21 22 -23 24 -25 26 -27 28 -29 30 |
Alt | BinConv∑ k=0..n C(n, k) T(n, k) | A063524 | 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Alt | InvBinConv∑ k=0..n C(n, k) T(n, n - k) (-1)^k | A001787 | 0 -1 4 -12 32 -80 192 -448 1024 -2304 5120 -11264 24576 -53248 114688 -245760 524288 -1114112 |
Alt | TransNat0∑ k=0..n T(n, k) k | A000217 | 0 -1 3 -6 10 -15 21 -28 36 -45 55 -66 78 -91 105 -120 136 -153 171 -190 210 -231 253 -276 300 -325 |
Alt | TransNat1∑ k=0..n T(n, k) (k + 1) | A007590 | 0 -2 4 -8 12 -18 24 -32 40 -50 60 -72 84 -98 112 -128 144 -162 180 -200 220 -242 264 -288 312 -338 |
Alt | TransSqrs∑ k=0..n T(n, k) k^2 | A011934 | 0 -1 7 -20 44 -81 135 -208 304 -425 575 -756 972 -1225 1519 -1856 2240 -2673 3159 -3700 4300 -4961 |
Alt | PosHalf∑ k=0..n 2^n T(n, k) (1/2)^k | A053088 | 0 -1 0 -3 -2 -9 -12 -31 -54 -117 -224 -459 -906 -1825 -3636 -7287 -14558 -29133 -58248 -116515 |
Alt | NegHalf∑ k=0..n (-2)^n T(n, k) (-1/2)^k | A000295 | 0 -1 4 -11 26 -57 120 -247 502 -1013 2036 -4083 8178 -16369 32752 -65519 131054 -262125 524268 |
Alt | DiagRow1T(n + 1, n) | A000027 | 0 -1 2 -3 4 -5 6 -7 8 -9 10 -11 12 -13 14 -15 16 -17 18 -19 20 -21 22 -23 24 -25 26 -27 28 -29 30 |
Alt | DiagRow2T(n + 2, n) | A000027 | 0 -1 2 -3 4 -5 6 -7 8 -9 10 -11 12 -13 14 -15 16 -17 18 -19 20 -21 22 -23 24 -25 26 -27 28 -29 30 |
Alt | DiagRow3T(n + 3, n) | A000027 | 0 -1 2 -3 4 -5 6 -7 8 -9 10 -11 12 -13 14 -15 16 -17 18 -19 20 -21 22 -23 24 -25 26 -27 28 -29 30 |
Alt | DiagCol1T(n + 1, 1) | A000012 | -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 |
Alt | DiagCol2T(n + 2, 2) | A055642 | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 |
Alt | DiagCol3T(n + 3, 3) | A010701 | -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 |
Alt | Polysee docs | missing | 0 0 0 0 -1 0 0 1 -2 0 0 -2 6 -3 0 0 2 -18 15 -4 0 0 -3 46 -66 28 -5 0 0 3 -114 258 -164 45 -6 0 0 |
Alt | PolyRow1∑ k=0..1 T(1, k) n^k | A000027 | 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25 -26 |
Alt | PolyRow2∑ k=0..2 T(2, k) n^k | A000384 | 0 1 6 15 28 45 66 91 120 153 190 231 276 325 378 435 496 561 630 703 780 861 946 1035 1128 1225 |
Alt | PolyRow3∑ k=0..3 T(3, k) n^k | missing | 0 -2 -18 -66 -164 -330 -582 -938 -1416 -2034 -2810 -3762 -4908 -6266 -7854 -9690 -11792 -14178 |
Alt | PolyCol2∑ k=0..n T(n, k) 2^k | A140960 | 0 -2 6 -18 46 -114 270 -626 1422 -3186 7054 -15474 33678 -72818 156558 -334962 713614 -1514610 |
Alt | PolyCol3∑ k=0..n T(n, k) 3^k | missing | 0 -3 15 -66 258 -957 3417 -11892 40596 -136551 453939 -1494678 4882614 -15843585 51117981 |
Alt | PolyDiag∑ k=0..n T(n, k) n^k | missing | 0 -1 6 -66 860 -13455 245658 -5134276 120961656 -3172973805 91735537190 -2898687320166 |
Rev | TriangleT(n, k), 0 ≤ k ≤ n | A025581 | 0 1 0 2 1 0 3 2 1 0 4 3 2 1 0 5 4 3 2 1 0 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 8 7 6 5 4 3 2 1 0 9 8 7 6 5 |
Rev | Accsee docs | A141418 | 0 1 1 2 3 3 3 5 6 6 4 7 9 10 10 5 9 12 14 15 15 6 11 15 18 20 21 21 7 13 18 22 25 27 28 28 8 15 21 |
Rev | AccRevsee docs | A112367 | 0 0 1 0 1 3 0 1 3 6 0 1 3 6 10 0 1 3 6 10 15 0 1 3 6 10 15 21 0 1 3 6 10 15 21 28 0 1 3 6 10 15 21 |
Rev | AntiDiagsee docs | A082375 | 0 1 2 0 3 1 4 2 0 5 3 1 6 4 2 0 7 5 3 1 8 6 4 2 0 9 7 5 3 1 10 8 6 4 2 0 11 9 7 5 3 1 12 10 8 6 4 2 |
Rev | Diffx1T(n, k) (k+1) | A094053 | 0 1 0 2 2 0 3 4 3 0 4 6 6 4 0 5 8 9 8 5 0 6 10 12 12 10 6 0 7 12 15 16 15 12 7 0 8 14 18 20 20 18 |
Rev | RowSum∑ k=0..n T(n, k) | A000217 | 0 1 3 6 10 15 21 28 36 45 55 66 78 91 105 120 136 153 171 190 210 231 253 276 300 325 351 378 406 |
Rev | EvenSum∑ k=0..n T(n, k) even(k) | A002620 | 0 1 2 4 6 9 12 16 20 25 30 36 42 49 56 64 72 81 90 100 110 121 132 144 156 169 182 196 210 225 240 |
Rev | OddSum∑ k=0..n T(n, k) odd(k) | A002620 | 0 0 1 2 4 6 9 12 16 20 25 30 36 42 49 56 64 72 81 90 100 110 121 132 144 156 169 182 196 210 225 |
Rev | AltSum∑ k=0..n T(n, k) (-1)^k | A004526 | 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13 14 14 15 15 16 16 17 17 18 18 19 19 |
Rev | AbsSum∑ k=0..n | T(n, k) | | A000217 | 0 1 3 6 10 15 21 28 36 45 55 66 78 91 105 120 136 153 171 190 210 231 253 276 300 325 351 378 406 |
Rev | DiagSum∑ k=0..n // 2 T(n - k, k) | A002620 | 0 1 2 4 6 9 12 16 20 25 30 36 42 49 56 64 72 81 90 100 110 121 132 144 156 169 182 196 210 225 240 |
Rev | AccSum∑ k=0..n ∑ j=0..k T(n, j) | A007290 | 0 2 8 20 40 70 112 168 240 330 440 572 728 910 1120 1360 1632 1938 2280 2660 3080 3542 4048 4600 |
Rev | AccRevSum∑ k=0..n ∑ j=0..k T(n, n - j) | A000292 | 0 1 4 10 20 35 56 84 120 165 220 286 364 455 560 680 816 969 1140 1330 1540 1771 2024 2300 2600 |
Rev | RowLcmLcm k=0..n | T(n, k) | > 1 | A003418 | 1 1 2 6 12 60 60 420 840 2520 2520 27720 27720 360360 360360 360360 720720 12252240 12252240 |
Rev | RowGcdGcd k=0..n | T(n, k) | > 1 | A000012 | 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Rev | RowMaxMax k=0..n | T(n, k) | | A000027 | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 |
Rev | ColMiddleT(n, n // 2) | A004526 | 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13 14 14 15 15 16 16 17 17 18 18 19 19 |
Rev | CentralET(2 n, n) | A000027 | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 |
Rev | CentralOT(2 n + 1, n) | A000027 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 |
Rev | ColLeftT(n, 0) | A000027 | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 |
Rev | BinConv∑ k=0..n C(n, k) T(n, k) | A001787 | 0 1 4 12 32 80 192 448 1024 2304 5120 11264 24576 53248 114688 245760 524288 1114112 2359296 |
Rev | InvBinConv∑ k=0..n C(n, k) T(n, n - k) (-1)^k | A063524 | 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Rev | TransNat0∑ k=0..n T(n, k) k | A000292 | 0 0 1 4 10 20 35 56 84 120 165 220 286 364 455 560 680 816 969 1140 1330 1540 1771 2024 2300 2600 |
Rev | TransNat1∑ k=0..n T(n, k) (k + 1) | A000292 | 0 1 4 10 20 35 56 84 120 165 220 286 364 455 560 680 816 969 1140 1330 1540 1771 2024 2300 2600 |
Rev | TransSqrs∑ k=0..n T(n, k) k^2 | A002415 | 0 0 1 6 20 50 105 196 336 540 825 1210 1716 2366 3185 4200 5440 6936 8721 10830 13300 16170 19481 |
Rev | PosHalf∑ k=0..n 2^n T(n, k) (1/2)^k | A036799 | 0 2 10 34 98 258 642 1538 3586 8194 18434 40962 90114 196610 425986 917506 1966082 4194306 8912898 |
Rev | NegHalf∑ k=0..n (-2)^n T(n, k) (-1/2)^k | A140960 | 0 -2 6 -18 46 -114 270 -626 1422 -3186 7054 -15474 33678 -72818 156558 -334962 713614 -1514610 |
Rev | DiagRow1T(n + 1, n) | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Rev | DiagRow2T(n + 2, n) | A055642 | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 |
Rev | DiagRow3T(n + 3, n) | A010701 | 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 |
Rev | DiagCol1T(n + 1, 1) | A000027 | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 |
Rev | DiagCol2T(n + 2, 2) | A000027 | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 |
Rev | DiagCol3T(n + 3, 3) | A000027 | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 |
Rev | Polysee docs | A089000 | 0 1 0 2 1 0 3 3 1 0 4 6 4 1 0 5 10 11 5 1 0 6 15 26 18 6 1 0 7 21 57 58 27 7 1 0 8 28 120 179 112 |
Rev | PolyRow1∑ k=0..1 T(1, k) n^k | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Rev | PolyRow2∑ k=0..2 T(2, k) n^k | A000027 | 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 |
Rev | PolyRow3∑ k=0..3 T(3, k) n^k | A059100 | 3 6 11 18 27 38 51 66 83 102 123 146 171 198 227 258 291 326 363 402 443 486 531 578 627 678 731 |
Rev | PolyCol2∑ k=0..n T(n, k) 2^k | A000295 | 0 1 4 11 26 57 120 247 502 1013 2036 4083 8178 16369 32752 65519 131054 262125 524268 1048555 |
Rev | PolyCol3∑ k=0..n T(n, k) 3^k | A000340 | 0 1 5 18 58 179 543 1636 4916 14757 44281 132854 398574 1195735 3587219 10761672 32285032 96855113 |
Rev | PolyDiag∑ k=0..n T(n, k) n^k | A062805 | 0 1 4 18 112 975 11196 160132 2739136 54481005 1234567900 31384283766 884241366768 27342891567355 |
<< | Table | Source | Similars | Index | >> |
Note: The A-numbers are based on a finite number of numerical comparisons. They ignore the sign and the OEIS-offset. Sometimes they differ in the first few values. In such cases, we consider our version to be the better one because it has a common formula as a root. Since the offset of all triangles is 0 also the offset of all sequences is 0.