OEIS Similars: A000012, A008836, A014077
↕ Type | ↕ Trait | ↕ Anum | ↕ Sequence |
---|---|---|---|
Std | TriangleT(n, k), 0 ≤ k ≤ n | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Std | RevT(n, n - k), 0 ≤ k ≤ n | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Std | InvT-1(n, k), 0 ≤ k ≤ n | A097806 | 1 -1 1 0 -1 1 0 0 -1 1 0 0 0 -1 1 0 0 0 0 -1 1 0 0 0 0 0 -1 1 0 0 0 0 0 0 -1 1 0 0 0 0 0 0 0 -1 1 0 |
Std | RevInvT-1(n, n - k), 0 ≤ k ≤ n | A000012 | 1 1 -1 1 -1 0 1 -1 0 0 1 -1 0 0 0 1 -1 0 0 0 0 1 -1 0 0 0 0 0 1 -1 0 0 0 0 0 0 1 -1 0 0 0 0 0 0 0 1 |
Std | InvRev(T(n, n - k))-1, 0 ≤ k ≤ n | A097806 | 1 -1 1 0 -1 1 0 0 -1 1 0 0 0 -1 1 0 0 0 0 -1 1 0 0 0 0 0 -1 1 0 0 0 0 0 0 -1 1 0 0 0 0 0 0 0 -1 1 0 |
Std | Accsee docs | A002260 | 1 1 2 1 2 3 1 2 3 4 1 2 3 4 5 1 2 3 4 5 6 1 2 3 4 5 6 7 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 9 1 2 3 4 5 |
Std | AccRevsee docs | A002260 | 1 1 2 1 2 3 1 2 3 4 1 2 3 4 5 1 2 3 4 5 6 1 2 3 4 5 6 7 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 9 1 2 3 4 5 |
Std | AntiDiagsee docs | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Std | Diffx1T(n, k) (k+1) | A002260 | 1 1 2 1 2 3 1 2 3 4 1 2 3 4 5 1 2 3 4 5 6 1 2 3 4 5 6 7 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 9 1 2 3 4 5 |
Std | RowSum∑ k=0..n T(n, k) | A000027 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
Std | EvenSum∑ k=0..n T(n, k) even(k) | A004526 | 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13 14 14 15 15 16 16 17 17 18 18 19 19 20 |
Std | OddSum∑ k=0..n T(n, k) odd(k) | A004526 | 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13 14 14 15 15 16 16 17 17 18 18 19 19 |
Std | AltSum∑ k=0..n T(n, k) (-1)^k | A000035 | 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 |
Std | AbsSum∑ k=0..n | T(n, k) | | A000027 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
Std | DiagSum∑ k=0..n // 2 T(n - k, k) | A004526 | 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13 14 14 15 15 16 16 17 17 18 18 19 19 20 |
Std | AccSum∑ k=0..n ∑ j=0..k T(n, j) | A000217 | 1 3 6 10 15 21 28 36 45 55 66 78 91 105 120 136 153 171 190 210 231 253 276 300 325 351 378 406 435 |
Std | AccRevSum∑ k=0..n ∑ j=0..k T(n, n - j) | A000217 | 1 3 6 10 15 21 28 36 45 55 66 78 91 105 120 136 153 171 190 210 231 253 276 300 325 351 378 406 435 |
Std | RowLcmLcm k=0..n | T(n, k) | > 1 | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Std | RowGcdGcd k=0..n | T(n, k) | > 1 | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Std | RowMaxMax k=0..n | T(n, k) | | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Std | ColMiddleT(n, n // 2) | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Std | CentralET(2 n, n) | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Std | CentralOT(2 n + 1, n) | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Std | ColLeftT(n, 0) | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Std | ColRightT(n, n) | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Std | BinConv∑ k=0..n C(n, k) T(n, k) | A000079 | 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 1048576 |
Std | InvBinConv∑ k=0..n C(n, k) T(n, n - k) (-1)^k | A000007 | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Std | TransNat0∑ k=0..n T(n, k) k | A000217 | 0 1 3 6 10 15 21 28 36 45 55 66 78 91 105 120 136 153 171 190 210 231 253 276 300 325 351 378 406 |
Std | TransNat1∑ k=0..n T(n, k) (k + 1) | A000217 | 1 3 6 10 15 21 28 36 45 55 66 78 91 105 120 136 153 171 190 210 231 253 276 300 325 351 378 406 435 |
Std | TransSqrs∑ k=0..n T(n, k) k^2 | A000330 | 0 1 5 14 30 55 91 140 204 285 385 506 650 819 1015 1240 1496 1785 2109 2470 2870 3311 3795 4324 |
Std | PosHalf∑ k=0..n 2^n T(n, k) (1/2)^k | A000225 | 1 3 7 15 31 63 127 255 511 1023 2047 4095 8191 16383 32767 65535 131071 262143 524287 1048575 |
Std | NegHalf∑ k=0..n (-2)^n T(n, k) (-1/2)^k | A001045 | 1 -1 3 -5 11 -21 43 -85 171 -341 683 -1365 2731 -5461 10923 -21845 43691 -87381 174763 -349525 |
Std | DiagRow1T(n + 1, n) | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Std | DiagRow2T(n + 2, n) | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Std | DiagRow3T(n + 3, n) | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Std | DiagCol1T(n + 1, 1) | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Std | DiagCol2T(n + 2, 2) | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Std | DiagCol3T(n + 3, 3) | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Std | Polysee docs | A104878 | 1 1 1 1 2 1 1 3 3 1 1 4 7 4 1 1 5 15 13 5 1 1 6 31 40 21 6 1 1 7 63 121 85 31 7 1 1 8 127 364 341 |
Std | PolyRow1∑ k=0..1 T(1, k) n^k | A000027 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
Std | PolyRow2∑ k=0..2 T(2, k) n^k | A002061 | 1 3 7 13 21 31 43 57 73 91 111 133 157 183 211 241 273 307 343 381 421 463 507 553 601 651 703 757 |
Std | PolyRow3∑ k=0..3 T(3, k) n^k | A053698 | 1 4 15 40 85 156 259 400 585 820 1111 1464 1885 2380 2955 3616 4369 5220 6175 7240 8421 9724 11155 |
Std | PolyCol2∑ k=0..n T(n, k) 2^k | A000225 | 1 3 7 15 31 63 127 255 511 1023 2047 4095 8191 16383 32767 65535 131071 262143 524287 1048575 |
Std | PolyCol3∑ k=0..n T(n, k) 3^k | A003462 | 1 4 13 40 121 364 1093 3280 9841 29524 88573 265720 797161 2391484 7174453 21523360 64570081 |
Std | PolyDiag∑ k=0..n T(n, k) n^k | A031973 | 1 2 7 40 341 3906 55987 960800 19173961 435848050 11111111111 313842837672 9726655034461 |
Alt | TriangleT(n, k), 0 ≤ k ≤ n | A000012 | 1 1 -1 1 -1 1 1 -1 1 -1 1 -1 1 -1 1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 |
Alt | RevT(n, n - k), 0 ≤ k ≤ n | A000012 | 1 -1 1 1 -1 1 -1 1 -1 1 1 -1 1 -1 1 -1 1 -1 1 -1 1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 1 -1 1 -1 1 |
Alt | InvT-1(n, k), 0 ≤ k ≤ n | missing | 1 -1 1 -2 1 1 0 0 -1 1 0 0 -2 1 1 0 0 0 0 -1 1 0 0 0 0 -2 1 1 0 0 0 0 0 0 -1 1 0 0 0 0 0 0 -2 1 1 0 |
Alt | RevInvT-1(n, n - k), 0 ≤ k ≤ n | missing | 1 1 -1 1 1 -2 1 -1 0 0 1 1 -2 0 0 1 -1 0 0 0 0 1 1 -2 0 0 0 0 1 -1 0 0 0 0 0 0 1 1 -2 0 0 0 0 0 0 1 |
Alt | InvRev(T(n, n - k))-1, 0 ≤ k ≤ n | A097806 | 1 1 1 0 1 1 0 0 1 1 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 |
Alt | Accsee docs | A177990 | 1 1 0 1 0 1 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 |
Alt | AntiDiagsee docs | A000012 | 1 1 1 -1 1 -1 1 -1 1 1 -1 1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 1 -1 1 -1 1 1 -1 1 -1 1 -1 1 -1 1 -1 1 |
Alt | RowSum∑ k=0..n T(n, k) | A000035 | 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 |
Alt | EvenSum∑ k=0..n T(n, k) even(k) | A004526 | 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13 14 14 15 15 16 16 17 17 18 18 19 19 20 |
Alt | OddSum∑ k=0..n T(n, k) odd(k) | A004526 | 0 -1 -1 -2 -2 -3 -3 -4 -4 -5 -5 -6 -6 -7 -7 -8 -8 -9 -9 -10 -10 -11 -11 -12 -12 -13 -13 -14 -14 -15 |
Alt | AltSum∑ k=0..n T(n, k) (-1)^k | A000027 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
Alt | AbsSum∑ k=0..n | T(n, k) | | A000027 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
Alt | DiagSum∑ k=0..n // 2 T(n - k, k) | A133872 | 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 |
Alt | AccSum∑ k=0..n ∑ j=0..k T(n, j) | A004526 | 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13 14 14 15 15 16 16 17 17 18 18 19 19 20 |
Alt | RowLcmLcm k=0..n | T(n, k) | > 1 | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Alt | RowGcdGcd k=0..n | T(n, k) | > 1 | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Alt | RowMaxMax k=0..n | T(n, k) | | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Alt | ColLeftT(n, 0) | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Alt | BinConv∑ k=0..n C(n, k) T(n, k) | A000007 | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Alt | InvBinConv∑ k=0..n C(n, k) T(n, n - k) (-1)^k | A000079 | 1 -2 4 -8 16 -32 64 -128 256 -512 1024 -2048 4096 -8192 16384 -32768 65536 -131072 262144 -524288 |
Alt | TransNat0∑ k=0..n T(n, k) k | A004526 | 0 -1 1 -2 2 -3 3 -4 4 -5 5 -6 6 -7 7 -8 8 -9 9 -10 10 -11 11 -12 12 -13 13 -14 14 -15 15 -16 16 -17 |
Alt | TransSqrs∑ k=0..n T(n, k) k^2 | A000217 | 0 -1 3 -6 10 -15 21 -28 36 -45 55 -66 78 -91 105 -120 136 -153 171 -190 210 -231 253 -276 300 -325 |
Alt | PosHalf∑ k=0..n 2^n T(n, k) (1/2)^k | A001045 | 1 1 3 5 11 21 43 85 171 341 683 1365 2731 5461 10923 21845 43691 87381 174763 349525 699051 1398101 |
Alt | NegHalf∑ k=0..n (-2)^n T(n, k) (-1/2)^k | A000225 | 1 -3 7 -15 31 -63 127 -255 511 -1023 2047 -4095 8191 -16383 32767 -65535 131071 -262143 524287 |
Alt | DiagCol1T(n + 1, 1) | A000012 | -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 |
Alt | DiagCol2T(n + 2, 2) | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Alt | DiagCol3T(n + 3, 3) | A000012 | -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 |
Alt | Polysee docs | missing | 1 1 1 1 0 1 1 1 -1 1 1 0 3 -2 1 1 1 -5 7 -3 1 1 0 11 -20 13 -4 1 1 1 -21 61 -51 21 -5 1 1 0 43 -182 |
Alt | PolyRow1∑ k=0..1 T(1, k) n^k | A000027 | 1 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25 -26 |
Alt | PolyRow2∑ k=0..2 T(2, k) n^k | A002061 | 1 1 3 7 13 21 31 43 57 73 91 111 133 157 183 211 241 273 307 343 381 421 463 507 553 601 651 703 |
Alt | PolyRow3∑ k=0..3 T(3, k) n^k | A062158 | 1 0 -5 -20 -51 -104 -185 -300 -455 -656 -909 -1220 -1595 -2040 -2561 -3164 -3855 -4640 -5525 -6516 |
Alt | PolyCol2∑ k=0..n T(n, k) 2^k | A001045 | 1 -1 3 -5 11 -21 43 -85 171 -341 683 -1365 2731 -5461 10923 -21845 43691 -87381 174763 -349525 |
Alt | PolyCol3∑ k=0..n T(n, k) 3^k | A015518 | 1 -2 7 -20 61 -182 547 -1640 4921 -14762 44287 -132860 398581 -1195742 3587227 -10761680 32285041 |
Alt | PolyDiag∑ k=0..n T(n, k) n^k | A081209 | 1 0 3 -20 205 -2604 39991 -720600 14913081 -348678440 9090909091 -261535698060 8230246567621 |
Inv | TriangleT(n, k), 0 ≤ k ≤ n | A097806 | 1 -1 1 0 -1 1 0 0 -1 1 0 0 0 -1 1 0 0 0 0 -1 1 0 0 0 0 0 -1 1 0 0 0 0 0 0 -1 1 0 0 0 0 0 0 0 -1 1 0 |
Inv | RevT(n, n - k), 0 ≤ k ≤ n | A000012 | 1 1 -1 1 -1 0 1 -1 0 0 1 -1 0 0 0 1 -1 0 0 0 0 1 -1 0 0 0 0 0 1 -1 0 0 0 0 0 0 1 -1 0 0 0 0 0 0 0 1 |
Inv | RevInvT-1(n, n - k), 0 ≤ k ≤ n | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Inv | Accsee docs | A010054 | 1 -1 0 0 -1 0 0 0 -1 0 0 0 0 -1 0 0 0 0 0 -1 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 -1 0 0 |
Inv | AccRevsee docs | A010054 | 1 1 0 1 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 |
Inv | AntiDiagsee docs | A240025 | 1 -1 0 1 0 -1 0 0 1 0 0 -1 0 0 0 1 0 0 0 -1 0 0 0 0 1 0 0 0 0 -1 0 0 0 0 0 1 0 0 0 0 0 -1 0 0 0 0 0 |
Inv | Diffx1T(n, k) (k+1) | A144217 | 1 -1 2 0 -2 3 0 0 -3 4 0 0 0 -4 5 0 0 0 0 -5 6 0 0 0 0 0 -6 7 0 0 0 0 0 0 -7 8 0 0 0 0 0 0 0 -8 9 0 |
Inv | RowSum∑ k=0..n T(n, k) | A000007 | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Inv | OddSum∑ k=0..n T(n, k) odd(k) | A000012 | 0 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 |
Inv | AltSum∑ k=0..n T(n, k) (-1)^k | A055642 | 1 -2 2 -2 2 -2 2 -2 2 -2 2 -2 2 -2 2 -2 2 -2 2 -2 2 -2 2 -2 2 -2 2 -2 2 -2 2 -2 2 -2 2 -2 2 -2 2 -2 |
Inv | AbsSum∑ k=0..n | T(n, k) | | A055642 | 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 |
Inv | AccSum∑ k=0..n ∑ j=0..k T(n, j) | A000012 | 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 |
Inv | AccRevSum∑ k=0..n ∑ j=0..k T(n, n - j) | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Inv | RowLcmLcm k=0..n | T(n, k) | > 1 | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Inv | RowGcdGcd k=0..n | T(n, k) | > 1 | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Inv | RowMaxMax k=0..n | T(n, k) | | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Inv | ColMiddleT(n, n // 2) | A115944 | 1 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Inv | CentralOT(2 n + 1, n) | A000007 | -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Inv | ColRightT(n, n) | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Inv | BinConv∑ k=0..n C(n, k) T(n, k) | A000027 | 1 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25 -26 |
Inv | InvBinConv∑ k=0..n C(n, k) T(n, n - k) (-1)^k | A000027 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
Inv | TransNat0∑ k=0..n T(n, k) k | A000012 | 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Inv | TransNat1∑ k=0..n T(n, k) (k + 1) | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Inv | TransSqrs∑ k=0..n T(n, k) k^2 | A005408 | 0 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 |
Inv | PosHalf∑ k=0..n 2^n T(n, k) (1/2)^k | A000012 | 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 |
Inv | NegHalf∑ k=0..n (-2)^n T(n, k) (-1/2)^k | A010701 | 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 |
Inv | DiagRow1T(n + 1, n) | A000012 | -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 |
Inv | Polysee docs | missing | 1 -1 1 0 0 1 0 0 1 1 0 0 2 2 1 0 0 4 6 3 1 0 0 8 18 12 4 1 0 0 16 54 48 20 5 1 0 0 32 162 192 100 |
Inv | PolyRow1∑ k=0..1 T(1, k) n^k | A000027 | -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 |
Inv | PolyRow2∑ k=0..2 T(2, k) n^k | A002378 | 0 0 2 6 12 20 30 42 56 72 90 110 132 156 182 210 240 272 306 342 380 420 462 506 552 600 650 702 |
Inv | PolyRow3∑ k=0..3 T(3, k) n^k | A045991 | 0 0 4 18 48 100 180 294 448 648 900 1210 1584 2028 2548 3150 3840 4624 5508 6498 7600 8820 10164 |
Inv | PolyCol2∑ k=0..n T(n, k) 2^k | A000079 | 1 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 1048576 |
Inv | PolyCol3∑ k=0..n T(n, k) 3^k | A008776 | 1 2 6 18 54 162 486 1458 4374 13122 39366 118098 354294 1062882 3188646 9565938 28697814 86093442 |
Inv | PolyDiag∑ k=0..n T(n, k) n^k | A066274 | 1 0 2 18 192 2500 38880 705894 14680064 344373768 9000000000 259374246010 8173092077568 |
Inv:Rev | TriangleT(n, k), 0 ≤ k ≤ n | A000012 | 1 1 -1 1 -1 0 1 -1 0 0 1 -1 0 0 0 1 -1 0 0 0 0 1 -1 0 0 0 0 0 1 -1 0 0 0 0 0 0 1 -1 0 0 0 0 0 0 0 1 |
Inv:Rev | RevT(n, n - k), 0 ≤ k ≤ n | A097806 | 1 -1 1 0 -1 1 0 0 -1 1 0 0 0 -1 1 0 0 0 0 -1 1 0 0 0 0 0 -1 1 0 0 0 0 0 0 -1 1 0 0 0 0 0 0 0 -1 1 0 |
Inv:Rev | InvRev(T(n, n - k))-1, 0 ≤ k ≤ n | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Inv:Rev | Accsee docs | A010054 | 1 1 0 1 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 |
Inv:Rev | AccRevsee docs | A010054 | 1 -1 0 0 -1 0 0 0 -1 0 0 0 0 -1 0 0 0 0 0 -1 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 -1 0 0 |
Inv:Rev | AntiDiagsee docs | A167686 | 1 1 1 -1 1 -1 1 -1 0 1 -1 0 1 -1 0 0 1 -1 0 0 1 -1 0 0 0 1 -1 0 0 0 1 -1 0 0 0 0 1 -1 0 0 0 0 1 -1 |
Inv:Rev | Diffx1T(n, k) (k+1) | A135387 | 1 1 -2 1 -2 0 1 -2 0 0 1 -2 0 0 0 1 -2 0 0 0 0 1 -2 0 0 0 0 0 1 -2 0 0 0 0 0 0 1 -2 0 0 0 0 0 0 0 1 |
Inv:Rev | RowSum∑ k=0..n T(n, k) | A000007 | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Inv:Rev | EvenSum∑ k=0..n T(n, k) even(k) | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Inv:Rev | OddSum∑ k=0..n T(n, k) odd(k) | A000012 | 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 |
Inv:Rev | AltSum∑ k=0..n T(n, k) (-1)^k | A055642 | 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 |
Inv:Rev | AbsSum∑ k=0..n | T(n, k) | | A055642 | 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 |
Inv:Rev | DiagSum∑ k=0..n // 2 T(n - k, k) | A019590 | 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Inv:Rev | AccSum∑ k=0..n ∑ j=0..k T(n, j) | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Inv:Rev | AccRevSum∑ k=0..n ∑ j=0..k T(n, n - j) | A000012 | 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 |
Inv:Rev | RowLcmLcm k=0..n | T(n, k) | > 1 | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Inv:Rev | RowGcdGcd k=0..n | T(n, k) | > 1 | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Inv:Rev | RowMaxMax k=0..n | T(n, k) | | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Inv:Rev | ColLeftT(n, 0) | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Inv:Rev | BinConv∑ k=0..n C(n, k) T(n, k) | A000027 | 1 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25 -26 |
Inv:Rev | InvBinConv∑ k=0..n C(n, k) T(n, n - k) (-1)^k | A000027 | 1 -2 3 -4 5 -6 7 -8 9 -10 11 -12 13 -14 15 -16 17 -18 19 -20 21 -22 23 -24 25 -26 27 -28 29 -30 31 |
Inv:Rev | TransNat0∑ k=0..n T(n, k) k | A000012 | 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 |
Inv:Rev | TransNat1∑ k=0..n T(n, k) (k + 1) | A000012 | 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 |
Inv:Rev | TransSqrs∑ k=0..n T(n, k) k^2 | A000012 | 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 |
Inv:Rev | PosHalf∑ k=0..n 2^n T(n, k) (1/2)^k | A000079 | 1 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 1048576 |
Inv:Rev | NegHalf∑ k=0..n (-2)^n T(n, k) (-1/2)^k | A007283 | 1 -3 6 -12 24 -48 96 -192 384 -768 1536 -3072 6144 -12288 24576 -49152 98304 -196608 393216 -786432 |
Inv:Rev | DiagCol1T(n + 1, 1) | A000012 | -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 |
Inv:Rev | Polysee docs | missing | 1 1 1 1 0 1 1 0 -1 1 1 0 -1 -2 1 1 0 -1 -2 -3 1 1 0 -1 -2 -3 -4 1 1 0 -1 -2 -3 -4 -5 1 1 0 -1 -2 -3 |
Inv:Rev | PolyRow1∑ k=0..1 T(1, k) n^k | A000027 | 1 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25 -26 |
Inv:Rev | PolyRow2∑ k=0..2 T(2, k) n^k | A000027 | 1 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25 -26 |
Inv:Rev | PolyRow3∑ k=0..3 T(3, k) n^k | A000027 | 1 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25 -26 |
Inv:Rev | PolyCol2∑ k=0..n T(n, k) 2^k | A000012 | 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 |
Inv:Rev | PolyCol3∑ k=0..n T(n, k) 3^k | A055642 | 1 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 |
Inv:Rev | PolyDiag∑ k=0..n T(n, k) n^k | A000027 | 1 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25 -26 |
<< | Table | Source | Similars | Index | >> |
Note: The A-numbers are based on a finite number of numerical comparisons. They ignore the sign and the OEIS-offset. Sometimes they differ in the first few values. In such cases, we consider our version to be the better one because it has a common formula as a root. Since the offset of all triangles is 0 also the offset of all sequences is 0.