ONE[0] 1
[1] 1, 1
[2] 1, 1, 1
[3] 1, 1, 1, 1
[4] 1, 1, 1, 1, 1
[5] 1, 1, 1, 1, 1, 1

      OEIS Similars: A000012, A008836, A014077

↕ Type↕ Trait↕ Anum↕ Sequence
StdTriangleT(n, k), 0 ≤ k ≤ nA0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
StdRevT(n, n - k), 0 ≤ k ≤ nA0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
StdInvT-1(n, k), 0 ≤ k ≤ nA0978061 -1 1 0 -1 1 0 0 -1 1 0 0 0 -1 1 0 0 0 0 -1 1 0 0 0 0 0 -1 1 0 0 0 0 0 0 -1 1 0 0 0 0 0 0 0 -1 1 0
StdRevInvT-1(n, n - k), 0 ≤ k ≤ nA0000121 1 -1 1 -1 0 1 -1 0 0 1 -1 0 0 0 1 -1 0 0 0 0 1 -1 0 0 0 0 0 1 -1 0 0 0 0 0 0 1 -1 0 0 0 0 0 0 0 1
StdInvRev(T(n, n - k))-1, 0 ≤ k ≤ nA0978061 -1 1 0 -1 1 0 0 -1 1 0 0 0 -1 1 0 0 0 0 -1 1 0 0 0 0 0 -1 1 0 0 0 0 0 0 -1 1 0 0 0 0 0 0 0 -1 1 0
StdAccsee docsA0022601 1 2 1 2 3 1 2 3 4 1 2 3 4 5 1 2 3 4 5 6 1 2 3 4 5 6 7 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 9 1 2 3 4 5
StdAccRevsee docsA0022601 1 2 1 2 3 1 2 3 4 1 2 3 4 5 1 2 3 4 5 6 1 2 3 4 5 6 7 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 9 1 2 3 4 5
StdAntiDiagsee docsA0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
StdDiffx1T(n, k) (k+1)A0022601 1 2 1 2 3 1 2 3 4 1 2 3 4 5 1 2 3 4 5 6 1 2 3 4 5 6 7 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 9 1 2 3 4 5
StdRowSum k=0..n T(n, k)A0000271 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
StdEvenSum k=0..n T(n, k) even(k)A0045261 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13 14 14 15 15 16 16 17 17 18 18 19 19 20
StdOddSum k=0..n T(n, k) odd(k)A0045260 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13 14 14 15 15 16 16 17 17 18 18 19 19
StdAltSum k=0..n T(n, k) (-1)^kA0000351 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
StdAbsSum k=0..n | T(n, k) |A0000271 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
StdDiagSum k=0..n // 2 T(n - k, k)A0045261 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13 14 14 15 15 16 16 17 17 18 18 19 19 20
StdAccSum k=0..n j=0..k T(n, j)A0002171 3 6 10 15 21 28 36 45 55 66 78 91 105 120 136 153 171 190 210 231 253 276 300 325 351 378 406 435
StdAccRevSum k=0..n j=0..k T(n, n - j)A0002171 3 6 10 15 21 28 36 45 55 66 78 91 105 120 136 153 171 190 210 231 253 276 300 325 351 378 406 435
StdRowLcmLcm k=0..n | T(n, k) | > 1A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
StdRowGcdGcd k=0..n | T(n, k) | > 1A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
StdRowMaxMax k=0..n | T(n, k) |A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
StdColMiddleT(n, n // 2)A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
StdCentralET(2 n, n)A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
StdCentralOT(2 n + 1, n)A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
StdColLeftT(n, 0)A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
StdColRightT(n, n)A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
StdBinConv k=0..n C(n, k) T(n, k)A0000791 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 1048576
StdInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kA0000071 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
StdTransNat0 k=0..n T(n, k) kA0002170 1 3 6 10 15 21 28 36 45 55 66 78 91 105 120 136 153 171 190 210 231 253 276 300 325 351 378 406
StdTransNat1 k=0..n T(n, k) (k + 1)A0002171 3 6 10 15 21 28 36 45 55 66 78 91 105 120 136 153 171 190 210 231 253 276 300 325 351 378 406 435
StdTransSqrs k=0..n T(n, k) k^2A0003300 1 5 14 30 55 91 140 204 285 385 506 650 819 1015 1240 1496 1785 2109 2470 2870 3311 3795 4324
StdPosHalf k=0..n 2^n T(n, k) (1/2)^kA0002251 3 7 15 31 63 127 255 511 1023 2047 4095 8191 16383 32767 65535 131071 262143 524287 1048575
StdNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kA0010451 -1 3 -5 11 -21 43 -85 171 -341 683 -1365 2731 -5461 10923 -21845 43691 -87381 174763 -349525
StdDiagRow1T(n + 1, n)A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
StdDiagRow2T(n + 2, n)A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
StdDiagRow3T(n + 3, n)A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
StdDiagCol1T(n + 1, 1)A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
StdDiagCol2T(n + 2, 2)A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
StdDiagCol3T(n + 3, 3)A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
StdPolysee docsA1048781 1 1 1 2 1 1 3 3 1 1 4 7 4 1 1 5 15 13 5 1 1 6 31 40 21 6 1 1 7 63 121 85 31 7 1 1 8 127 364 341
StdPolyRow1 k=0..1 T(1, k) n^kA0000271 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
StdPolyRow2 k=0..2 T(2, k) n^kA0020611 3 7 13 21 31 43 57 73 91 111 133 157 183 211 241 273 307 343 381 421 463 507 553 601 651 703 757
StdPolyRow3 k=0..3 T(3, k) n^kA0536981 4 15 40 85 156 259 400 585 820 1111 1464 1885 2380 2955 3616 4369 5220 6175 7240 8421 9724 11155
StdPolyCol2 k=0..n T(n, k) 2^kA0002251 3 7 15 31 63 127 255 511 1023 2047 4095 8191 16383 32767 65535 131071 262143 524287 1048575
StdPolyCol3 k=0..n T(n, k) 3^kA0034621 4 13 40 121 364 1093 3280 9841 29524 88573 265720 797161 2391484 7174453 21523360 64570081
StdPolyDiag k=0..n T(n, k) n^kA0319731 2 7 40 341 3906 55987 960800 19173961 435848050 11111111111 313842837672 9726655034461
AltTriangleT(n, k), 0 ≤ k ≤ nA0000121 1 -1 1 -1 1 1 -1 1 -1 1 -1 1 -1 1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1
AltRevT(n, n - k), 0 ≤ k ≤ nA0000121 -1 1 1 -1 1 -1 1 -1 1 1 -1 1 -1 1 -1 1 -1 1 -1 1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 1 -1 1 -1 1
AltInvT-1(n, k), 0 ≤ k ≤ nmissing1 -1 1 -2 1 1 0 0 -1 1 0 0 -2 1 1 0 0 0 0 -1 1 0 0 0 0 -2 1 1 0 0 0 0 0 0 -1 1 0 0 0 0 0 0 -2 1 1 0
AltRevInvT-1(n, n - k), 0 ≤ k ≤ nmissing1 1 -1 1 1 -2 1 -1 0 0 1 1 -2 0 0 1 -1 0 0 0 0 1 1 -2 0 0 0 0 1 -1 0 0 0 0 0 0 1 1 -2 0 0 0 0 0 0 1
AltInvRev(T(n, n - k))-1, 0 ≤ k ≤ nA0978061 1 1 0 1 1 0 0 1 1 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0
AltAccsee docsA1779901 1 0 1 0 1 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1
AltAntiDiagsee docsA0000121 1 1 -1 1 -1 1 -1 1 1 -1 1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 1 -1 1 -1 1 1 -1 1 -1 1 -1 1 -1 1 -1 1
AltRowSum k=0..n T(n, k)A0000351 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
AltEvenSum k=0..n T(n, k) even(k)A0045261 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13 14 14 15 15 16 16 17 17 18 18 19 19 20
AltOddSum k=0..n T(n, k) odd(k)A0045260 -1 -1 -2 -2 -3 -3 -4 -4 -5 -5 -6 -6 -7 -7 -8 -8 -9 -9 -10 -10 -11 -11 -12 -12 -13 -13 -14 -14 -15
AltAltSum k=0..n T(n, k) (-1)^kA0000271 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
AltAbsSum k=0..n | T(n, k) |A0000271 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
AltDiagSum k=0..n // 2 T(n - k, k)A1338721 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0
AltAccSum k=0..n j=0..k T(n, j)A0045261 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13 14 14 15 15 16 16 17 17 18 18 19 19 20
AltRowLcmLcm k=0..n | T(n, k) | > 1A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
AltRowGcdGcd k=0..n | T(n, k) | > 1A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
AltRowMaxMax k=0..n | T(n, k) |A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
AltColLeftT(n, 0)A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
AltBinConv k=0..n C(n, k) T(n, k)A0000071 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
AltInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kA0000791 -2 4 -8 16 -32 64 -128 256 -512 1024 -2048 4096 -8192 16384 -32768 65536 -131072 262144 -524288
AltTransNat0 k=0..n T(n, k) kA0045260 -1 1 -2 2 -3 3 -4 4 -5 5 -6 6 -7 7 -8 8 -9 9 -10 10 -11 11 -12 12 -13 13 -14 14 -15 15 -16 16 -17
AltTransSqrs k=0..n T(n, k) k^2A0002170 -1 3 -6 10 -15 21 -28 36 -45 55 -66 78 -91 105 -120 136 -153 171 -190 210 -231 253 -276 300 -325
AltPosHalf k=0..n 2^n T(n, k) (1/2)^kA0010451 1 3 5 11 21 43 85 171 341 683 1365 2731 5461 10923 21845 43691 87381 174763 349525 699051 1398101
AltNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kA0002251 -3 7 -15 31 -63 127 -255 511 -1023 2047 -4095 8191 -16383 32767 -65535 131071 -262143 524287
AltDiagCol1T(n + 1, 1)A000012-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
AltDiagCol2T(n + 2, 2)A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
AltDiagCol3T(n + 3, 3)A000012-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
AltPolysee docsmissing1 1 1 1 0 1 1 1 -1 1 1 0 3 -2 1 1 1 -5 7 -3 1 1 0 11 -20 13 -4 1 1 1 -21 61 -51 21 -5 1 1 0 43 -182
AltPolyRow1 k=0..1 T(1, k) n^kA0000271 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25 -26
AltPolyRow2 k=0..2 T(2, k) n^kA0020611 1 3 7 13 21 31 43 57 73 91 111 133 157 183 211 241 273 307 343 381 421 463 507 553 601 651 703
AltPolyRow3 k=0..3 T(3, k) n^kA0621581 0 -5 -20 -51 -104 -185 -300 -455 -656 -909 -1220 -1595 -2040 -2561 -3164 -3855 -4640 -5525 -6516
AltPolyCol2 k=0..n T(n, k) 2^kA0010451 -1 3 -5 11 -21 43 -85 171 -341 683 -1365 2731 -5461 10923 -21845 43691 -87381 174763 -349525
AltPolyCol3 k=0..n T(n, k) 3^kA0155181 -2 7 -20 61 -182 547 -1640 4921 -14762 44287 -132860 398581 -1195742 3587227 -10761680 32285041
AltPolyDiag k=0..n T(n, k) n^kA0812091 0 3 -20 205 -2604 39991 -720600 14913081 -348678440 9090909091 -261535698060 8230246567621
InvTriangleT(n, k), 0 ≤ k ≤ nA0978061 -1 1 0 -1 1 0 0 -1 1 0 0 0 -1 1 0 0 0 0 -1 1 0 0 0 0 0 -1 1 0 0 0 0 0 0 -1 1 0 0 0 0 0 0 0 -1 1 0
InvRevT(n, n - k), 0 ≤ k ≤ nA0000121 1 -1 1 -1 0 1 -1 0 0 1 -1 0 0 0 1 -1 0 0 0 0 1 -1 0 0 0 0 0 1 -1 0 0 0 0 0 0 1 -1 0 0 0 0 0 0 0 1
InvRevInvT-1(n, n - k), 0 ≤ k ≤ nA0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
InvAccsee docsA0100541 -1 0 0 -1 0 0 0 -1 0 0 0 0 -1 0 0 0 0 0 -1 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 -1 0 0
InvAccRevsee docsA0100541 1 0 1 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0
InvAntiDiagsee docsA2400251 -1 0 1 0 -1 0 0 1 0 0 -1 0 0 0 1 0 0 0 -1 0 0 0 0 1 0 0 0 0 -1 0 0 0 0 0 1 0 0 0 0 0 -1 0 0 0 0 0
InvDiffx1T(n, k) (k+1)A1442171 -1 2 0 -2 3 0 0 -3 4 0 0 0 -4 5 0 0 0 0 -5 6 0 0 0 0 0 -6 7 0 0 0 0 0 0 -7 8 0 0 0 0 0 0 0 -8 9 0
InvRowSum k=0..n T(n, k)A0000071 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
InvOddSum k=0..n T(n, k) odd(k)A0000120 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1
InvAltSum k=0..n T(n, k) (-1)^kA0556421 -2 2 -2 2 -2 2 -2 2 -2 2 -2 2 -2 2 -2 2 -2 2 -2 2 -2 2 -2 2 -2 2 -2 2 -2 2 -2 2 -2 2 -2 2 -2 2 -2
InvAbsSum k=0..n | T(n, k) |A0556421 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
InvAccSum k=0..n j=0..k T(n, j)A0000121 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
InvAccRevSum k=0..n j=0..k T(n, n - j)A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
InvRowLcmLcm k=0..n | T(n, k) | > 1A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
InvRowGcdGcd k=0..n | T(n, k) | > 1A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
InvRowMaxMax k=0..n | T(n, k) |A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
InvColMiddleT(n, n // 2)A1159441 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
InvCentralOT(2 n + 1, n)A000007-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
InvColRightT(n, n)A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
InvBinConv k=0..n C(n, k) T(n, k)A0000271 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25 -26
InvInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kA0000271 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
InvTransNat0 k=0..n T(n, k) kA0000120 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
InvTransNat1 k=0..n T(n, k) (k + 1)A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
InvTransSqrs k=0..n T(n, k) k^2A0054080 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67
InvPosHalf k=0..n 2^n T(n, k) (1/2)^kA0000121 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
InvNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kA0107011 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
InvDiagRow1T(n + 1, n)A000012-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
InvPolysee docsmissing1 -1 1 0 0 1 0 0 1 1 0 0 2 2 1 0 0 4 6 3 1 0 0 8 18 12 4 1 0 0 16 54 48 20 5 1 0 0 32 162 192 100
InvPolyRow1 k=0..1 T(1, k) n^kA000027-1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
InvPolyRow2 k=0..2 T(2, k) n^kA0023780 0 2 6 12 20 30 42 56 72 90 110 132 156 182 210 240 272 306 342 380 420 462 506 552 600 650 702
InvPolyRow3 k=0..3 T(3, k) n^kA0459910 0 4 18 48 100 180 294 448 648 900 1210 1584 2028 2548 3150 3840 4624 5508 6498 7600 8820 10164
InvPolyCol2 k=0..n T(n, k) 2^kA0000791 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 1048576
InvPolyCol3 k=0..n T(n, k) 3^kA0087761 2 6 18 54 162 486 1458 4374 13122 39366 118098 354294 1062882 3188646 9565938 28697814 86093442
InvPolyDiag k=0..n T(n, k) n^kA0662741 0 2 18 192 2500 38880 705894 14680064 344373768 9000000000 259374246010 8173092077568
Inv:RevTriangleT(n, k), 0 ≤ k ≤ nA0000121 1 -1 1 -1 0 1 -1 0 0 1 -1 0 0 0 1 -1 0 0 0 0 1 -1 0 0 0 0 0 1 -1 0 0 0 0 0 0 1 -1 0 0 0 0 0 0 0 1
Inv:RevRevT(n, n - k), 0 ≤ k ≤ nA0978061 -1 1 0 -1 1 0 0 -1 1 0 0 0 -1 1 0 0 0 0 -1 1 0 0 0 0 0 -1 1 0 0 0 0 0 0 -1 1 0 0 0 0 0 0 0 -1 1 0
Inv:RevInvRev(T(n, n - k))-1, 0 ≤ k ≤ nA0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Inv:RevAccsee docsA0100541 1 0 1 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0
Inv:RevAccRevsee docsA0100541 -1 0 0 -1 0 0 0 -1 0 0 0 0 -1 0 0 0 0 0 -1 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 -1 0 0
Inv:RevAntiDiagsee docsA1676861 1 1 -1 1 -1 1 -1 0 1 -1 0 1 -1 0 0 1 -1 0 0 1 -1 0 0 0 1 -1 0 0 0 1 -1 0 0 0 0 1 -1 0 0 0 0 1 -1
Inv:RevDiffx1T(n, k) (k+1)A1353871 1 -2 1 -2 0 1 -2 0 0 1 -2 0 0 0 1 -2 0 0 0 0 1 -2 0 0 0 0 0 1 -2 0 0 0 0 0 0 1 -2 0 0 0 0 0 0 0 1
Inv:RevRowSum k=0..n T(n, k)A0000071 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Inv:RevEvenSum k=0..n T(n, k) even(k)A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Inv:RevOddSum k=0..n T(n, k) odd(k)A0000120 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
Inv:RevAltSum k=0..n T(n, k) (-1)^kA0556421 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Inv:RevAbsSum k=0..n | T(n, k) |A0556421 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Inv:RevDiagSum k=0..n // 2 T(n - k, k)A0195901 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Inv:RevAccSum k=0..n j=0..k T(n, j)A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Inv:RevAccRevSum k=0..n j=0..k T(n, n - j)A0000121 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
Inv:RevRowLcmLcm k=0..n | T(n, k) | > 1A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Inv:RevRowGcdGcd k=0..n | T(n, k) | > 1A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Inv:RevRowMaxMax k=0..n | T(n, k) |A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Inv:RevColLeftT(n, 0)A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Inv:RevBinConv k=0..n C(n, k) T(n, k)A0000271 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25 -26
Inv:RevInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kA0000271 -2 3 -4 5 -6 7 -8 9 -10 11 -12 13 -14 15 -16 17 -18 19 -20 21 -22 23 -24 25 -26 27 -28 29 -30 31
Inv:RevTransNat0 k=0..n T(n, k) kA0000120 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
Inv:RevTransNat1 k=0..n T(n, k) (k + 1)A0000121 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
Inv:RevTransSqrs k=0..n T(n, k) k^2A0000120 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
Inv:RevPosHalf k=0..n 2^n T(n, k) (1/2)^kA0000791 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 1048576
Inv:RevNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kA0072831 -3 6 -12 24 -48 96 -192 384 -768 1536 -3072 6144 -12288 24576 -49152 98304 -196608 393216 -786432
Inv:RevDiagCol1T(n + 1, 1)A000012-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
Inv:RevPolysee docsmissing1 1 1 1 0 1 1 0 -1 1 1 0 -1 -2 1 1 0 -1 -2 -3 1 1 0 -1 -2 -3 -4 1 1 0 -1 -2 -3 -4 -5 1 1 0 -1 -2 -3
Inv:RevPolyRow1 k=0..1 T(1, k) n^kA0000271 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25 -26
Inv:RevPolyRow2 k=0..2 T(2, k) n^kA0000271 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25 -26
Inv:RevPolyRow3 k=0..3 T(3, k) n^kA0000271 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25 -26
Inv:RevPolyCol2 k=0..n T(n, k) 2^kA0000121 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
Inv:RevPolyCol3 k=0..n T(n, k) 3^kA0556421 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2
Inv:RevPolyDiag k=0..n T(n, k) n^kA0000271 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25 -26
 << TableSourceSimilarsIndex >> 

Note: The A-numbers are based on a finite number of numerical comparisons. They ignore the sign and the OEIS-offset. Sometimes they differ in the first few values. In such cases, we consider our version to be the better one because it has a common formula as a root. Since the offset of all triangles is 0 also the offset of all sequences is 0.