OEIS Similars: A090181, A001263, A131198
↕ Type | ↕ Trait | ↕ Anum | ↕ Sequence |
---|---|---|---|
Std | TriangleT(n, k), 0 ≤ k ≤ n | A090181 | 1 0 1 0 1 1 0 1 3 1 0 1 6 6 1 0 1 10 20 10 1 0 1 15 50 50 15 1 0 1 21 105 175 105 21 1 0 1 28 196 |
Std | RevT(n, n - k), 0 ≤ k ≤ n | A090181 | 1 1 0 1 1 0 1 3 1 0 1 6 6 1 0 1 10 20 10 1 0 1 15 50 50 15 1 0 1 21 105 175 105 21 1 0 1 28 196 490 |
Std | InvT-1(n, k), 0 ≤ k ≤ n | missing | 1 0 1 0 -1 1 0 2 -3 1 0 -7 12 -6 1 0 39 -70 40 -10 1 0 -321 585 -350 100 -15 1 0 3681 -6741 4095 |
Std | RevInvT-1(n, n - k), 0 ≤ k ≤ n | missing | 1 1 0 1 -1 0 1 -3 2 0 1 -6 12 -7 0 1 -10 40 -70 39 0 1 -15 100 -350 585 -321 0 1 -21 210 -1225 4095 |
Std | Accsee docs | A349740 | 1 0 1 0 1 2 0 1 4 5 0 1 7 13 14 0 1 11 31 41 42 0 1 16 66 116 131 132 0 1 22 127 302 407 428 429 0 |
Std | AccRevsee docs | missing | 1 1 1 1 2 2 1 4 5 5 1 7 13 14 14 1 11 31 41 42 42 1 16 66 116 131 132 132 1 22 127 302 407 428 429 |
Std | AntiDiagsee docs | missing | 1 0 0 1 0 1 0 1 1 0 1 3 0 1 6 1 0 1 10 6 0 1 15 20 1 0 1 21 50 10 0 1 28 105 50 1 0 1 36 196 175 15 |
Std | Diffx1T(n, k) (k+1) | missing | 1 0 2 0 2 3 0 2 9 4 0 2 18 24 5 0 2 30 80 50 6 0 2 45 200 250 90 7 0 2 63 420 875 630 147 8 0 2 84 |
Std | RowSum∑ k=0..n T(n, k) | A000108 | 1 1 2 5 14 42 132 429 1430 4862 16796 58786 208012 742900 2674440 9694845 35357670 129644790 |
Std | EvenSum∑ k=0..n T(n, k) even(k) | A071688 | 1 0 1 3 7 20 66 217 715 2424 8398 29414 104006 371384 1337220 4847637 17678835 64821680 238819350 |
Std | OddSum∑ k=0..n T(n, k) odd(k) | A071684 | 0 1 1 2 7 22 66 212 715 2438 8398 29372 104006 371516 1337220 4847208 17678835 64823110 238819350 |
Std | AltSum∑ k=0..n T(n, k) (-1)^k | A126120 | 1 -1 0 1 0 -2 0 5 0 -14 0 42 0 -132 0 429 0 -1430 0 4862 0 -16796 0 58786 0 -208012 0 742900 0 |
Std | AbsSum∑ k=0..n | T(n, k) | | A000108 | 1 1 2 5 14 42 132 429 1430 4862 16796 58786 208012 742900 2674440 9694845 35357670 129644790 |
Std | DiagSum∑ k=0..n // 2 T(n - k, k) | A004148 | 1 0 1 1 2 4 8 17 37 82 185 423 978 2283 5373 12735 30372 72832 175502 424748 1032004 2516347 |
Std | AccSum∑ k=0..n ∑ j=0..k T(n, j) | A001700 | 1 1 3 10 35 126 462 1716 6435 24310 92378 352716 1352078 5200300 20058300 77558760 300540195 |
Std | AccRevSum∑ k=0..n ∑ j=0..k T(n, n - j) | A189176 | 1 2 5 15 49 168 594 2145 7865 29172 109174 411502 1560090 5943200 22732740 87253605 335897865 |
Std | RowLcmLcm k=0..n | T(n, k) | > 1 | missing | 1 1 1 3 6 20 150 525 980 7056 52920 485100 4573800 3397680 5153148 135270135 1803601800 27254427200 |
Std | RowGcdGcd k=0..n | T(n, k) | > 1 | missing | 1 1 1 3 6 10 5 7 14 12 9 11 11 13 13 1 2 68 17 19 19 1 1 23 23 5 25 3 9 29 29 31 62 4 1 1 1 37 37 1 |
Std | RowMaxMax k=0..n | T(n, k) | | A005558 | 1 1 1 3 6 20 50 175 490 1764 5292 19404 60984 226512 736164 2760615 9202050 34763300 118195220 |
Std | ColMiddleT(n, n // 2) | missing | 1 0 1 1 6 10 50 105 490 1176 5292 13860 60984 169884 736164 2147145 9202050 27810640 118195220 |
Std | CentralET(2 n, n) | A125558 | 1 1 6 50 490 5292 60984 736164 9202050 118195220 1551580888 20734762776 281248448936 3863302870000 |
Std | CentralOT(2 n + 1, n) | A046715 | 0 1 10 105 1176 13860 169884 2147145 27810640 367479684 4936848280 67255063876 927192688800 |
Std | ColLeftT(n, 0) | A000007 | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Std | ColRightT(n, n) | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Std | BinConv∑ k=0..n C(n, k) T(n, k) | missing | 1 1 3 13 65 356 2072 12601 79221 511174 3368090 22577160 153534680 1056945280 7352977504 |
Std | InvBinConv∑ k=0..n C(n, k) T(n, n - k) (-1)^k | missing | 1 1 -1 -5 9 56 -120 -825 1925 14014 -34398 -259896 659736 5116320 -13302432 -105172353 278397405 |
Std | TransNat0∑ k=0..n T(n, k) k | A001700 | 0 1 3 10 35 126 462 1716 6435 24310 92378 352716 1352078 5200300 20058300 77558760 300540195 |
Std | TransNat1∑ k=0..n T(n, k) (k + 1) | A189176 | 1 2 5 15 49 168 594 2145 7865 29172 109174 411502 1560090 5943200 22732740 87253605 335897865 |
Std | TransSqrs∑ k=0..n T(n, k) k^2 | A141222 | 0 1 5 22 95 406 1722 7260 30459 127270 529958 2200276 9111830 37650172 155266100 639191160 |
Std | PosHalf∑ k=0..n 2^n T(n, k) (1/2)^k | A001003 | 1 1 3 11 45 197 903 4279 20793 103049 518859 2646723 13648869 71039373 372693519 1968801519 |
Std | NegHalf∑ k=0..n (-2)^n T(n, k) (-1/2)^k | A091593 | 1 1 -1 -1 5 -3 -21 51 41 -391 407 1927 -6227 -2507 49347 -71109 -236079 966129 9519 -7408497 |
Std | DiagRow1T(n + 1, n) | A000217 | 0 1 3 6 10 15 21 28 36 45 55 66 78 91 105 120 136 153 171 190 210 231 253 276 300 325 351 378 406 |
Std | DiagRow2T(n + 2, n) | A002415 | 0 1 6 20 50 105 196 336 540 825 1210 1716 2366 3185 4200 5440 6936 8721 10830 13300 16170 19481 |
Std | DiagRow3T(n + 3, n) | A006542 | 0 1 10 50 175 490 1176 2520 4950 9075 15730 26026 41405 63700 95200 138720 197676 276165 379050 |
Std | DiagCol1T(n + 1, 1) | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Std | DiagCol2T(n + 2, 2) | A000217 | 1 3 6 10 15 21 28 36 45 55 66 78 91 105 120 136 153 171 190 210 231 253 276 300 325 351 378 406 435 |
Std | DiagCol3T(n + 3, 3) | A002415 | 1 6 20 50 105 196 336 540 825 1210 1716 2366 3185 4200 5440 6936 8721 10830 13300 16170 19481 23276 |
Std | Polysee docs | missing | 1 0 1 0 1 1 0 2 2 1 0 5 6 3 1 0 14 22 12 4 1 0 42 90 57 20 5 1 0 132 394 300 116 30 6 1 0 429 1806 |
Std | PolyRow1∑ k=0..1 T(1, k) n^k | A000027 | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 |
Std | PolyRow2∑ k=0..2 T(2, k) n^k | A002378 | 0 2 6 12 20 30 42 56 72 90 110 132 156 182 210 240 272 306 342 380 420 462 506 552 600 650 702 756 |
Std | PolyRow3∑ k=0..3 T(3, k) n^k | A033445 | 0 5 22 57 116 205 330 497 712 981 1310 1705 2172 2717 3346 4065 4880 5797 6822 7961 9220 10605 |
Std | PolyCol2∑ k=0..n T(n, k) 2^k | A006318 | 1 2 6 22 90 394 1806 8558 41586 206098 1037718 5293446 27297738 142078746 745387038 3937603038 |
Std | PolyCol3∑ k=0..n T(n, k) 3^k | A047891 | 1 3 12 57 300 1686 9912 60213 374988 2381322 15361896 100389306 663180024 4421490924 29712558576 |
Std | PolyDiag∑ k=0..n T(n, k) n^k | missing | 1 1 6 57 740 12130 239442 5516133 145043208 4281280686 140046944510 5025026633946 196122756175788 |
Alt | TriangleT(n, k), 0 ≤ k ≤ n | A090181 | 1 0 -1 0 -1 1 0 -1 3 -1 0 -1 6 -6 1 0 -1 10 -20 10 -1 0 -1 15 -50 50 -15 1 0 -1 21 -105 175 -105 21 |
Alt | RevT(n, n - k), 0 ≤ k ≤ n | A090181 | 1 -1 0 1 -1 0 -1 3 -1 0 1 -6 6 -1 0 -1 10 -20 10 -1 0 1 -15 50 -50 15 -1 0 -1 21 -105 175 -105 21 |
Alt | InvT-1(n, k), 0 ≤ k ≤ n | missing | 1 0 1 0 1 1 0 -2 -3 1 0 -17 -24 6 1 0 121 170 -40 -10 1 0 2551 3585 -850 -200 15 1 0 -38121 -53571 |
Alt | RevInvT-1(n, n - k), 0 ≤ k ≤ n | missing | 1 1 0 1 1 0 1 -3 -2 0 1 6 -24 -17 0 1 -10 -40 170 121 0 1 15 -200 -850 3585 2551 0 1 -21 -210 2975 |
Alt | Accsee docs | missing | 1 0 -1 0 -1 0 0 -1 2 1 0 -1 5 -1 0 0 -1 9 -11 -1 -2 0 -1 14 -36 14 -1 0 0 -1 20 -85 90 -15 6 5 0 -1 |
Alt | AccRevsee docs | missing | 1 -1 -1 1 0 0 -1 2 1 1 1 -5 1 0 0 -1 9 -11 -1 -2 -2 1 -14 36 -14 1 0 0 -1 20 -85 90 -15 6 5 5 1 -27 |
Alt | AntiDiagsee docs | missing | 1 0 0 -1 0 -1 0 -1 1 0 -1 3 0 -1 6 -1 0 -1 10 -6 0 -1 15 -20 1 0 -1 21 -50 10 0 -1 28 -105 50 -1 0 |
Alt | Diffx1T(n, k) (k+1) | missing | 1 0 -2 0 -2 3 0 -2 9 -4 0 -2 18 -24 5 0 -2 30 -80 50 -6 0 -2 45 -200 250 -90 7 0 -2 63 -420 875 |
Alt | RowSum∑ k=0..n T(n, k) | A126120 | 1 -1 0 1 0 -2 0 5 0 -14 0 42 0 -132 0 429 0 -1430 0 4862 0 -16796 0 58786 0 -208012 0 742900 0 |
Alt | EvenSum∑ k=0..n T(n, k) even(k) | A071688 | 1 0 1 3 7 20 66 217 715 2424 8398 29414 104006 371384 1337220 4847637 17678835 64821680 238819350 |
Alt | OddSum∑ k=0..n T(n, k) odd(k) | A071684 | 0 -1 -1 -2 -7 -22 -66 -212 -715 -2438 -8398 -29372 -104006 -371516 -1337220 -4847208 -17678835 |
Alt | AltSum∑ k=0..n T(n, k) (-1)^k | A000108 | 1 1 2 5 14 42 132 429 1430 4862 16796 58786 208012 742900 2674440 9694845 35357670 129644790 |
Alt | AbsSum∑ k=0..n | T(n, k) | | A000108 | 1 1 2 5 14 42 132 429 1430 4862 16796 58786 208012 742900 2674440 9694845 35357670 129644790 |
Alt | DiagSum∑ k=0..n // 2 T(n - k, k) | A129509 | 1 0 -1 -1 0 2 4 3 -5 -20 -29 -1 94 221 191 -327 -1454 -2282 -162 8002 19902 18275 -30505 -143511 |
Alt | AccSum∑ k=0..n ∑ j=0..k T(n, j) | A001405 | 1 -1 -1 2 3 -6 -10 20 35 -70 -126 252 462 -924 -1716 3432 6435 -12870 -24310 48620 92378 -184756 |
Alt | AccRevSum∑ k=0..n ∑ j=0..k T(n, n - j) | missing | 1 -2 1 3 -3 -8 10 25 -35 -84 126 294 -462 -1056 1716 3861 -6435 -14300 24310 53482 -92378 -201552 |
Alt | RowLcmLcm k=0..n | T(n, k) | > 1 | missing | 1 1 1 3 6 20 150 525 980 7056 52920 485100 4573800 3397680 5153148 135270135 1803601800 27254427200 |
Alt | RowGcdGcd k=0..n | T(n, k) | > 1 | missing | 1 1 1 3 6 10 5 7 14 12 9 11 11 13 13 1 2 68 17 19 19 1 1 23 23 5 25 3 9 29 29 31 62 4 1 1 1 37 37 1 |
Alt | RowMaxMax k=0..n | T(n, k) | | A005558 | 1 1 1 3 6 20 50 175 490 1764 5292 19404 60984 226512 736164 2760615 9202050 34763300 118195220 |
Alt | ColMiddleT(n, n // 2) | missing | 1 0 -1 -1 6 10 -50 -105 490 1176 -5292 -13860 60984 169884 -736164 -2147145 9202050 27810640 |
Alt | CentralET(2 n, n) | A125558 | 1 -1 6 -50 490 -5292 60984 -736164 9202050 -118195220 1551580888 -20734762776 281248448936 |
Alt | CentralOT(2 n + 1, n) | A046715 | 0 -1 10 -105 1176 -13860 169884 -2147145 27810640 -367479684 4936848280 -67255063876 927192688800 |
Alt | ColLeftT(n, 0) | A000007 | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Alt | BinConv∑ k=0..n C(n, k) T(n, k) | missing | 1 -1 -1 5 9 -56 -120 825 1925 -14014 -34398 259896 659736 -5116320 -13302432 105172353 278397405 |
Alt | InvBinConv∑ k=0..n C(n, k) T(n, n - k) (-1)^k | missing | 1 -1 3 -13 65 -356 2072 -12601 79221 -511174 3368090 -22577160 153534680 -1056945280 7352977504 |
Alt | TransNat0∑ k=0..n T(n, k) k | A001405 | 0 -1 1 2 -3 -6 10 20 -35 -70 126 252 -462 -924 1716 3432 -6435 -12870 24310 48620 -92378 -184756 |
Alt | TransNat1∑ k=0..n T(n, k) (k + 1) | missing | 1 -2 1 3 -3 -8 10 25 -35 -84 126 294 -462 -1056 1716 3861 -6435 -14300 24310 53482 -92378 -201552 |
Alt | TransSqrs∑ k=0..n T(n, k) k^2 | missing | 0 -1 3 2 -15 -6 70 20 -315 -70 1386 252 -6006 -924 25740 3432 -109395 -12870 461890 48620 -1939938 |
Alt | PosHalf∑ k=0..n 2^n T(n, k) (1/2)^k | A091593 | 1 -1 -1 1 5 3 -21 -51 41 391 407 -1927 -6227 2507 49347 71109 -236079 -966129 9519 7408497 13685205 |
Alt | NegHalf∑ k=0..n (-2)^n T(n, k) (-1/2)^k | A001003 | 1 -1 3 -11 45 -197 903 -4279 20793 -103049 518859 -2646723 13648869 -71039373 372693519 -1968801519 |
Alt | DiagRow1T(n + 1, n) | A000217 | 0 -1 3 -6 10 -15 21 -28 36 -45 55 -66 78 -91 105 -120 136 -153 171 -190 210 -231 253 -276 300 -325 |
Alt | DiagRow2T(n + 2, n) | A002415 | 0 -1 6 -20 50 -105 196 -336 540 -825 1210 -1716 2366 -3185 4200 -5440 6936 -8721 10830 -13300 16170 |
Alt | DiagRow3T(n + 3, n) | A006542 | 0 -1 10 -50 175 -490 1176 -2520 4950 -9075 15730 -26026 41405 -63700 95200 -138720 197676 -276165 |
Alt | DiagCol1T(n + 1, 1) | A000012 | -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 |
Alt | DiagCol2T(n + 2, 2) | A000217 | 1 3 6 10 15 21 28 36 45 55 66 78 91 105 120 136 153 171 190 210 231 253 276 300 325 351 378 406 435 |
Alt | DiagCol3T(n + 3, 3) | A002415 | -1 -6 -20 -50 -105 -196 -336 -540 -825 -1210 -1716 -2366 -3185 -4200 -5440 -6936 -8721 -10830 |
Alt | Polysee docs | missing | 1 0 1 0 -1 1 0 0 -2 1 0 1 2 -3 1 0 0 2 6 -4 1 0 -2 -10 -3 12 -5 1 0 0 6 -30 -20 20 -6 1 0 5 42 114 |
Alt | PolyRow1∑ k=0..1 T(1, k) n^k | A000027 | 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25 -26 |
Alt | PolyRow2∑ k=0..2 T(2, k) n^k | A002378 | 0 0 2 6 12 20 30 42 56 72 90 110 132 156 182 210 240 272 306 342 380 420 462 506 552 600 650 702 |
Alt | PolyRow3∑ k=0..3 T(3, k) n^k | A318765 | 0 1 2 -3 -20 -55 -114 -203 -328 -495 -710 -979 -1308 -1703 -2170 -2715 -3344 -4063 -4878 -5795 |
Alt | PolyCol2∑ k=0..n T(n, k) 2^k | A152681 | 1 -2 2 2 -10 6 42 -102 -82 782 -814 -3854 12454 5014 -98694 142218 472158 -1932258 -19038 14816994 |
Alt | PolyCol3∑ k=0..n T(n, k) 3^k | missing | 1 -3 6 -3 -30 114 -84 -867 3786 -3162 -33132 153906 -136812 -1446204 6957528 -6420387 -68260134 |
Alt | PolyDiag∑ k=0..n T(n, k) n^k | missing | 1 -1 2 -3 -36 870 -15450 267533 -4710664 83469762 -1412535510 19138692562 9041033364 |
Rev | TriangleT(n, k), 0 ≤ k ≤ n | A090181 | 1 1 0 1 1 0 1 3 1 0 1 6 6 1 0 1 10 20 10 1 0 1 15 50 50 15 1 0 1 21 105 175 105 21 1 0 1 28 196 490 |
Rev | InvRev(T(n, n - k))-1, 0 ≤ k ≤ n | missing | 1 0 1 0 -1 1 0 2 -3 1 0 -7 12 -6 1 0 39 -70 40 -10 1 0 -321 585 -350 100 -15 1 0 3681 -6741 4095 |
Rev | Accsee docs | missing | 1 1 1 1 2 2 1 4 5 5 1 7 13 14 14 1 11 31 41 42 42 1 16 66 116 131 132 132 1 22 127 302 407 428 429 |
Rev | AccRevsee docs | A349740 | 1 0 1 0 1 2 0 1 4 5 0 1 7 13 14 0 1 11 31 41 42 0 1 16 66 116 131 132 0 1 22 127 302 407 428 429 0 |
Rev | AntiDiagsee docs | missing | 1 1 1 0 1 1 1 3 0 1 6 1 1 10 6 0 1 15 20 1 1 21 50 10 0 1 28 105 50 1 1 36 196 175 15 0 1 45 336 |
Rev | Diffx1T(n, k) (k+1) | A367270 | 1 1 0 1 2 0 1 6 3 0 1 12 18 4 0 1 20 60 40 5 0 1 30 150 200 75 6 0 1 42 315 700 525 126 7 0 1 56 |
Rev | RowSum∑ k=0..n T(n, k) | A000108 | 1 1 2 5 14 42 132 429 1430 4862 16796 58786 208012 742900 2674440 9694845 35357670 129644790 |
Rev | EvenSum∑ k=0..n T(n, k) even(k) | A071684 | 1 1 1 2 7 22 66 212 715 2438 8398 29372 104006 371516 1337220 4847208 17678835 64823110 238819350 |
Rev | OddSum∑ k=0..n T(n, k) odd(k) | A071688 | 0 0 1 3 7 20 66 217 715 2424 8398 29414 104006 371384 1337220 4847637 17678835 64821680 238819350 |
Rev | AltSum∑ k=0..n T(n, k) (-1)^k | A126120 | 1 1 0 -1 0 2 0 -5 0 14 0 -42 0 132 0 -429 0 1430 0 -4862 0 16796 0 -58786 0 208012 0 -742900 0 |
Rev | AbsSum∑ k=0..n | T(n, k) | | A000108 | 1 1 2 5 14 42 132 429 1430 4862 16796 58786 208012 742900 2674440 9694845 35357670 129644790 |
Rev | DiagSum∑ k=0..n // 2 T(n - k, k) | A004148 | 1 1 1 2 4 8 17 37 82 185 423 978 2283 5373 12735 30372 72832 175502 424748 1032004 2516347 6155441 |
Rev | AccSum∑ k=0..n ∑ j=0..k T(n, j) | A189176 | 1 2 5 15 49 168 594 2145 7865 29172 109174 411502 1560090 5943200 22732740 87253605 335897865 |
Rev | AccRevSum∑ k=0..n ∑ j=0..k T(n, n - j) | A001700 | 1 1 3 10 35 126 462 1716 6435 24310 92378 352716 1352078 5200300 20058300 77558760 300540195 |
Rev | RowLcmLcm k=0..n | T(n, k) | > 1 | missing | 1 1 1 3 6 20 150 525 980 7056 52920 485100 4573800 3397680 5153148 135270135 1803601800 27254427200 |
Rev | RowGcdGcd k=0..n | T(n, k) | > 1 | missing | 1 1 1 3 6 10 5 7 14 12 9 11 11 13 13 1 2 68 17 19 19 1 1 23 23 5 25 3 9 29 29 31 62 4 1 1 1 37 37 1 |
Rev | RowMaxMax k=0..n | T(n, k) | | A005558 | 1 1 1 3 6 20 50 175 490 1764 5292 19404 60984 226512 736164 2760615 9202050 34763300 118195220 |
Rev | ColMiddleT(n, n // 2) | A005558 | 1 1 1 3 6 20 50 175 490 1764 5292 19404 60984 226512 736164 2760615 9202050 34763300 118195220 |
Rev | CentralET(2 n, n) | A125558 | 1 1 6 50 490 5292 60984 736164 9202050 118195220 1551580888 20734762776 281248448936 3863302870000 |
Rev | CentralOT(2 n + 1, n) | A000891 | 1 3 20 175 1764 19404 226512 2760615 34763300 449141836 5924217936 79483257308 1081724803600 |
Rev | ColLeftT(n, 0) | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Rev | ColRightT(n, n) | A000007 | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Rev | BinConv∑ k=0..n C(n, k) T(n, k) | missing | 1 1 3 13 65 356 2072 12601 79221 511174 3368090 22577160 153534680 1056945280 7352977504 |
Rev | InvBinConv∑ k=0..n C(n, k) T(n, n - k) (-1)^k | missing | 1 -1 -1 5 9 -56 -120 825 1925 -14014 -34398 259896 659736 -5116320 -13302432 105172353 278397405 |
Rev | TransNat0∑ k=0..n T(n, k) k | A002054 | 0 0 1 5 21 84 330 1287 5005 19448 75582 293930 1144066 4457400 17383860 67863915 265182525 |
Rev | TransNat1∑ k=0..n T(n, k) (k + 1) | A001700 | 1 1 3 10 35 126 462 1716 6435 24310 92378 352716 1352078 5200300 20058300 77558760 300540195 |
Rev | TransSqrs∑ k=0..n T(n, k) k^2 | A034267 | 0 0 1 7 39 196 930 4257 19019 83512 361998 1553630 6615686 27992472 117823940 493768485 2061580275 |
Rev | PosHalf∑ k=0..n 2^n T(n, k) (1/2)^k | A006318 | 1 2 6 22 90 394 1806 8558 41586 206098 1037718 5293446 27297738 142078746 745387038 3937603038 |
Rev | NegHalf∑ k=0..n (-2)^n T(n, k) (-1/2)^k | A152681 | 1 -2 2 2 -10 6 42 -102 -82 782 -814 -3854 12454 5014 -98694 142218 472158 -1932258 -19038 14816994 |
Rev | DiagRow1T(n + 1, n) | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Rev | DiagRow2T(n + 2, n) | A000217 | 1 3 6 10 15 21 28 36 45 55 66 78 91 105 120 136 153 171 190 210 231 253 276 300 325 351 378 406 435 |
Rev | DiagRow3T(n + 3, n) | A002415 | 1 6 20 50 105 196 336 540 825 1210 1716 2366 3185 4200 5440 6936 8721 10830 13300 16170 19481 23276 |
Rev | DiagCol1T(n + 1, 1) | A000217 | 0 1 3 6 10 15 21 28 36 45 55 66 78 91 105 120 136 153 171 190 210 231 253 276 300 325 351 378 406 |
Rev | DiagCol2T(n + 2, 2) | A002415 | 0 1 6 20 50 105 196 336 540 825 1210 1716 2366 3185 4200 5440 6936 8721 10830 13300 16170 19481 |
Rev | DiagCol3T(n + 3, 3) | A006542 | 0 1 10 50 175 490 1176 2520 4950 9075 15730 26026 41405 63700 95200 138720 197676 276165 379050 |
Rev | Polysee docs | A008550 | 1 1 1 1 1 1 1 2 1 1 1 5 3 1 1 1 14 11 4 1 1 1 42 45 19 5 1 1 1 132 197 100 29 6 1 1 1 429 903 562 |
Rev | PolyRow1∑ k=0..1 T(1, k) n^k | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Rev | PolyRow2∑ k=0..2 T(2, k) n^k | A000027 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
Rev | PolyRow3∑ k=0..3 T(3, k) n^k | A028387 | 1 5 11 19 29 41 55 71 89 109 131 155 181 209 239 271 305 341 379 419 461 505 551 599 649 701 755 |
Rev | PolyCol2∑ k=0..n T(n, k) 2^k | A001003 | 1 1 3 11 45 197 903 4279 20793 103049 518859 2646723 13648869 71039373 372693519 1968801519 |
Rev | PolyCol3∑ k=0..n T(n, k) 3^k | A007564 | 1 1 4 19 100 562 3304 20071 124996 793774 5120632 33463102 221060008 1473830308 9904186192 |
Rev | PolyDiag∑ k=0..n T(n, k) n^k | A242369 | 1 1 3 19 185 2426 39907 788019 18130401 475697854 14004694451 456820603086 16343563014649 |
Inv | TriangleT(n, k), 0 ≤ k ≤ n | missing | 1 0 1 0 -1 1 0 2 -3 1 0 -7 12 -6 1 0 39 -70 40 -10 1 0 -321 585 -350 100 -15 1 0 3681 -6741 4095 |
Inv | RevT(n, n - k), 0 ≤ k ≤ n | missing | 1 1 0 1 -1 0 1 -3 2 0 1 -6 12 -7 0 1 -10 40 -70 39 0 1 -15 100 -350 585 -321 0 1 -21 210 -1225 4095 |
Inv | RevInvT-1(n, n - k), 0 ≤ k ≤ n | A090181 | 1 1 0 1 1 0 1 3 1 0 1 6 6 1 0 1 10 20 10 1 0 1 15 50 50 15 1 0 1 21 105 175 105 21 1 0 1 28 196 490 |
Inv | Accsee docs | missing | 1 0 1 0 -1 0 0 2 -1 0 0 -7 5 -1 0 0 39 -31 9 -1 0 0 -321 264 -86 14 -1 0 0 3681 -3060 1035 -190 20 |
Inv | AccRevsee docs | missing | 1 1 1 1 0 0 1 -2 0 0 1 -5 7 0 0 1 -9 31 -39 0 0 1 -14 86 -264 321 0 0 1 -20 190 -1035 3060 -3681 0 |
Inv | AntiDiagsee docs | missing | 1 0 0 1 0 -1 0 2 1 0 -7 -3 0 39 12 1 0 -321 -70 -6 0 3681 585 40 1 0 -56197 -6741 -350 -10 0 |
Inv | Diffx1T(n, k) (k+1) | missing | 1 0 2 0 -2 3 0 4 -9 4 0 -14 36 -24 5 0 78 -210 160 -50 6 0 -642 1755 -1400 500 -90 7 0 7362 -20223 |
Inv | RowSum∑ k=0..n T(n, k) | A019590 | 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Inv | EvenSum∑ k=0..n T(n, k) even(k) | missing | 1 0 1 -3 13 -80 686 -7987 122571 -2408856 59099284 -1771445324 63708974748 -2707745497184 |
Inv | OddSum∑ k=0..n T(n, k) odd(k) | missing | 0 1 -1 3 -13 80 -686 7987 -122571 2408856 -59099284 1771445324 -63708974748 2707745497184 |
Inv | AltSum∑ k=0..n T(n, k) (-1)^k | A103367 | 1 -1 2 -6 26 -160 1372 -15974 245142 -4817712 118198568 -3542890648 127417949496 -5415490994368 |
Inv | AbsSum∑ k=0..n | T(n, k) | | A103367 | 1 1 2 6 26 160 1372 15974 245142 4817712 118198568 3542890648 127417949496 5415490994368 |
Inv | DiagSum∑ k=0..n // 2 T(n - k, k) | missing | 1 0 1 -1 3 -10 52 -397 4307 -63298 1209835 -29123735 861135230 -30656964145 1292847813913 |
Inv | AccSum∑ k=0..n ∑ j=0..k T(n, j) | A131490 | 1 1 -1 1 -3 16 -130 1485 -22645 444136 -10889676 326345460 -11736144420 498798542880 |
Inv | AccRevSum∑ k=0..n ∑ j=0..k T(n, n - j) | A131490 | 1 2 1 -1 3 -16 130 -1485 22645 -444136 10889676 -326345460 11736144420 -498798542880 24732729791484 |
Inv | RowLcmLcm k=0..n | T(n, k) | > 1 | missing | 1 1 1 6 84 10920 8763300 12544663950 3947845887989640 10446672932559900874656 |
Inv | RowGcdGcd k=0..n | T(n, k) | > 1 | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Inv | RowMaxMax k=0..n | T(n, k) | | A103366 | 1 1 1 3 12 70 585 6741 103068 2023092 49615695 1487006785 53477384268 2272859942574 112699083156751 |
Inv | ColMiddleT(n, n // 2) | missing | 1 0 -1 2 12 -70 -350 4095 19110 -377496 -1698732 51018660 224482104 -9546971148 -41370208308 |
Inv | CentralET(2 n, n) | missing | 1 -1 12 -350 19110 -1698732 224482104 -41370208308 10145913470550 -3195583528992140 |
Inv | CentralOT(2 n + 1, n) | missing | 0 2 -70 4095 -377496 51018660 -9546971148 2367379809795 -751902006821680 297755337453806232 |
Inv | ColLeftT(n, 0) | A000007 | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Inv | ColRightT(n, n) | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Inv | BinConv∑ k=0..n C(n, k) T(n, k) | missing | 1 1 -1 -2 21 -154 1260 -11080 69405 1420552 -118046628 6282922086 -325932371226 17821090063128 |
Inv | InvBinConv∑ k=0..n C(n, k) T(n, n - k) (-1)^k | missing | 1 1 3 16 125 1346 19292 358086 8399757 243595792 8566209740 359216007162 17706825237686 |
Inv | TransNat0∑ k=0..n T(n, k) k | A131490 | 0 1 1 -1 3 -16 130 -1485 22645 -444136 10889676 -326345460 11736144420 -498798542880 24732729791484 |
Inv | TransNat1∑ k=0..n T(n, k) (k + 1) | A131490 | 1 2 1 -1 3 -16 130 -1485 22645 -444136 10889676 -326345460 11736144420 -498798542880 24732729791484 |
Inv | TransSqrs∑ k=0..n T(n, k) k^2 | A131490 | 0 1 3 -1 3 -16 130 -1485 22645 -444136 10889676 -326345460 11736144420 -498798542880 24732729791484 |
Inv | PosHalf∑ k=0..n 2^n T(n, k) (1/2)^k | missing | 1 1 -1 3 -19 205 -3341 76391 -2330343 91416249 -4482922489 268693075915 -19325695148475 |
Inv | NegHalf∑ k=0..n (-2)^n T(n, k) (-1/2)^k | missing | 1 1 3 15 117 1365 22863 527499 16137705 633619401 31080114747 1863000052551 133999138524573 |
Inv | DiagRow1T(n + 1, n) | A000217 | 0 -1 -3 -6 -10 -15 -21 -28 -36 -45 -55 -66 -78 -91 -105 -120 -136 -153 -171 -190 -210 -231 -253 |
Inv | DiagRow2T(n + 2, n) | A008911 | 0 2 12 40 100 210 392 672 1080 1650 2420 3432 4732 6370 8400 10880 13872 17442 21660 26600 32340 |
Inv | DiagRow3T(n + 3, n) | missing | 0 -7 -70 -350 -1225 -3430 -8232 -17640 -34650 -63525 -110110 -182182 -289835 -445900 -666400 |
Inv | DiagCol1T(n + 1, 1) | A103365 | 1 -1 2 -7 39 -321 3681 -56197 1102571 -27036487 810263398 -29139230033 1238451463261 |
Inv | DiagCol2T(n + 2, 2) | A103366 | 1 -3 12 -70 585 -6741 103068 -2023092 49615695 -1487006785 53477384268 -2272859942574 |
Inv | DiagCol3T(n + 3, 3) | missing | 1 -6 40 -350 4095 -62916 1236816 -30346380 909621075 -32714149270 1390411990968 -68943418258078 |
Inv | Polysee docs | missing | 1 0 1 0 1 1 0 0 2 1 0 0 2 3 1 0 0 0 6 4 1 0 0 2 6 12 5 1 0 0 -10 6 24 20 6 1 0 0 82 0 36 60 30 7 1 |
Inv | PolyRow1∑ k=0..1 T(1, k) n^k | A000027 | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 |
Inv | PolyRow2∑ k=0..2 T(2, k) n^k | A002378 | 0 0 2 6 12 20 30 42 56 72 90 110 132 156 182 210 240 272 306 342 380 420 462 506 552 600 650 702 |
Inv | PolyRow3∑ k=0..3 T(3, k) n^k | A007531 | 0 0 0 6 24 60 120 210 336 504 720 990 1320 1716 2184 2730 3360 4080 4896 5814 6840 7980 9240 10626 |
Inv | PolyCol2∑ k=0..n T(n, k) 2^k | missing | 1 2 2 0 2 -10 82 -938 14310 -280698 6882638 -206263552 7417743918 -315262276030 15632160820694 |
Inv | PolyCol3∑ k=0..n T(n, k) 3^k | missing | 1 3 6 6 6 0 36 -378 5802 -113808 2790744 -83636520 3007792200 -127834699200 6338638537848 |
Inv | PolyDiag∑ k=0..n T(n, k) n^k | missing | 1 1 2 6 36 320 3150 41202 631512 10346688 220824630 4468105400 113821871988 3261960374400 |
Inv:Rev | TriangleT(n, k), 0 ≤ k ≤ n | missing | 1 1 0 1 -1 0 1 -3 2 0 1 -6 12 -7 0 1 -10 40 -70 39 0 1 -15 100 -350 585 -321 0 1 -21 210 -1225 4095 |
Inv:Rev | RevT(n, n - k), 0 ≤ k ≤ n | missing | 1 0 1 0 -1 1 0 2 -3 1 0 -7 12 -6 1 0 39 -70 40 -10 1 0 -321 585 -350 100 -15 1 0 3681 -6741 4095 |
Inv:Rev | InvRev(T(n, n - k))-1, 0 ≤ k ≤ n | A090181 | 1 0 1 0 1 1 0 1 3 1 0 1 6 6 1 0 1 10 20 10 1 0 1 15 50 50 15 1 0 1 21 105 175 105 21 1 0 1 28 196 |
Inv:Rev | Accsee docs | missing | 1 1 1 1 0 0 1 -2 0 0 1 -5 7 0 0 1 -9 31 -39 0 0 1 -14 86 -264 321 0 0 1 -20 190 -1035 3060 -3681 0 |
Inv:Rev | AccRevsee docs | missing | 1 0 1 0 -1 0 0 2 -1 0 0 -7 5 -1 0 0 39 -31 9 -1 0 0 -321 264 -86 14 -1 0 0 3681 -3060 1035 -190 20 |
Inv:Rev | AntiDiagsee docs | missing | 1 1 1 0 1 -1 1 -3 0 1 -6 2 1 -10 12 0 1 -15 40 -7 1 -21 100 -70 0 1 -28 210 -350 39 1 -36 392 -1225 |
Inv:Rev | Diffx1T(n, k) (k+1) | missing | 1 1 0 1 -2 0 1 -6 6 0 1 -12 36 -28 0 1 -20 120 -280 195 0 1 -30 300 -1400 2925 -1926 0 1 -42 630 |
Inv:Rev | RowSum∑ k=0..n T(n, k) | A019590 | 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Inv:Rev | EvenSum∑ k=0..n T(n, k) even(k) | missing | 1 1 1 3 13 80 686 7987 122571 2408856 59099284 1771445324 63708974748 2707745497184 134263189722052 |
Inv:Rev | OddSum∑ k=0..n T(n, k) odd(k) | missing | 0 0 -1 -3 -13 -80 -686 -7987 -122571 -2408856 -59099284 -1771445324 -63708974748 -2707745497184 |
Inv:Rev | AltSum∑ k=0..n T(n, k) (-1)^k | A103367 | 1 1 2 6 26 160 1372 15974 245142 4817712 118198568 3542890648 127417949496 5415490994368 |
Inv:Rev | AbsSum∑ k=0..n | T(n, k) | | A103367 | 1 1 2 6 26 160 1372 15974 245142 4817712 118198568 3542890648 127417949496 5415490994368 |
Inv:Rev | DiagSum∑ k=0..n // 2 T(n - k, k) | missing | 1 1 1 0 -2 -3 3 19 10 -128 -283 972 5163 -6494 -100347 -37756 2192992 4783671 -53309108 -247204964 |
Inv:Rev | AccSum∑ k=0..n ∑ j=0..k T(n, j) | A131490 | 1 2 1 -1 3 -16 130 -1485 22645 -444136 10889676 -326345460 11736144420 -498798542880 24732729791484 |
Inv:Rev | AccRevSum∑ k=0..n ∑ j=0..k T(n, n - j) | A131490 | 1 1 -1 1 -3 16 -130 1485 -22645 444136 -10889676 326345460 -11736144420 498798542880 |
Inv:Rev | RowLcmLcm k=0..n | T(n, k) | > 1 | missing | 1 1 1 6 84 10920 8763300 12544663950 3947845887989640 10446672932559900874656 |
Inv:Rev | RowGcdGcd k=0..n | T(n, k) | > 1 | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Inv:Rev | RowMaxMax k=0..n | T(n, k) | | A103366 | 1 1 1 3 12 70 585 6741 103068 2023092 49615695 1487006785 53477384268 2272859942574 112699083156751 |
Inv:Rev | ColMiddleT(n, n // 2) | missing | 1 1 -1 -3 12 40 -350 -1225 19110 68796 -1698732 -6228684 224482104 833790672 -41370208308 |
Inv:Rev | CentralET(2 n, n) | missing | 1 -1 12 -350 19110 -1698732 224482104 -41370208308 10145913470550 -3195583528992140 |
Inv:Rev | CentralOT(2 n + 1, n) | missing | 1 -3 40 -1225 68796 -6228684 833790672 -155138281155 38329006444300 -12143217410170132 |
Inv:Rev | ColLeftT(n, 0) | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Inv:Rev | ColRightT(n, n) | A000007 | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Inv:Rev | BinConv∑ k=0..n C(n, k) T(n, k) | missing | 1 1 -1 -2 21 -154 1260 -11080 69405 1420552 -118046628 6282922086 -325932371226 17821090063128 |
Inv:Rev | InvBinConv∑ k=0..n C(n, k) T(n, n - k) (-1)^k | missing | 1 -1 3 -16 125 -1346 19292 -358086 8399757 -243595792 8566209740 -359216007162 17706825237686 |
Inv:Rev | TransNat0∑ k=0..n T(n, k) k | A131490 | 0 0 -1 1 -3 16 -130 1485 -22645 444136 -10889676 326345460 -11736144420 498798542880 |
Inv:Rev | TransNat1∑ k=0..n T(n, k) (k + 1) | A131490 | 1 1 -1 1 -3 16 -130 1485 -22645 444136 -10889676 326345460 -11736144420 498798542880 |
Inv:Rev | TransSqrs∑ k=0..n T(n, k) k^2 | missing | 0 0 -1 5 -21 144 -1430 19305 -339675 7550312 -206903844 6853254660 -269931321660 12469963572000 |
Inv:Rev | PosHalf∑ k=0..n 2^n T(n, k) (1/2)^k | missing | 1 2 2 0 2 -10 82 -938 14310 -280698 6882638 -206263552 7417743918 -315262276030 15632160820694 |
Inv:Rev | NegHalf∑ k=0..n (-2)^n T(n, k) (-1/2)^k | missing | 1 -2 6 -24 126 -870 7926 -94878 1472442 -29056038 713851434 -21406520520 769978976850 |
Inv:Rev | DiagRow1T(n + 1, n) | A103365 | 1 -1 2 -7 39 -321 3681 -56197 1102571 -27036487 810263398 -29139230033 1238451463261 |
Inv:Rev | DiagRow2T(n + 2, n) | A103366 | 1 -3 12 -70 585 -6741 103068 -2023092 49615695 -1487006785 53477384268 -2272859942574 |
Inv:Rev | DiagRow3T(n + 3, n) | missing | 1 -6 40 -350 4095 -62916 1236816 -30346380 909621075 -32714149270 1390411990968 -68943418258078 |
Inv:Rev | DiagCol1T(n + 1, 1) | A000217 | 0 -1 -3 -6 -10 -15 -21 -28 -36 -45 -55 -66 -78 -91 -105 -120 -136 -153 -171 -190 -210 -231 -253 |
Inv:Rev | DiagCol2T(n + 2, 2) | A008911 | 0 2 12 40 100 210 392 672 1080 1650 2420 3432 4732 6370 8400 10880 13872 17442 21660 26600 32340 |
Inv:Rev | DiagCol3T(n + 3, 3) | missing | 0 -7 -70 -350 -1225 -3430 -8232 -17640 -34650 -63525 -110110 -182182 -289835 -445900 -666400 |
Inv:Rev | Polysee docs | missing | 1 1 1 1 1 1 1 0 1 1 1 0 -1 1 1 1 0 3 -2 1 1 1 0 -19 10 -3 1 1 1 0 205 -98 21 -4 1 1 1 0 -3341 1600 |
Inv:Rev | PolyRow1∑ k=0..1 T(1, k) n^k | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Inv:Rev | PolyRow2∑ k=0..2 T(2, k) n^k | A000027 | 1 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25 -26 |
Inv:Rev | PolyRow3∑ k=0..3 T(3, k) n^k | A014105 | 1 0 3 10 21 36 55 78 105 136 171 210 253 300 351 406 465 528 595 666 741 820 903 990 1081 1176 1275 |
Inv:Rev | PolyCol2∑ k=0..n T(n, k) 2^k | missing | 1 1 -1 3 -19 205 -3341 76391 -2330343 91416249 -4482922489 268693075915 -19325695148475 |
Inv:Rev | PolyCol3∑ k=0..n T(n, k) 3^k | missing | 1 1 -2 10 -98 1600 -39212 1345834 -61596110 3624729616 -266632381448 23971865555176 |
Inv:Rev | PolyDiag∑ k=0..n T(n, k) n^k | missing | 1 1 -1 10 -279 16576 -1810025 329192046 -92820081375 38421129293632 -22369273006852449 |
<< | Table | Source | Similars | Index | >> |
Note: The A-numbers are based on a finite number of numerical comparisons. They ignore the sign and the OEIS-offset. Sometimes they differ in the first few values. In such cases, we consider our version to be the better one because it has a common formula as a root. Since the offset of all triangles is 0 also the offset of all sequences is 0.