NATURALS[0] 1
[1] 2, 3
[2] 4, 5, 6
[3] 7, 8, 9, 10
[4] 11, 12, 13, 14, 15
[5] 16, 17, 18, 19, 20, 21

      OEIS Similars: A000027, A001477

↕ Type↕ Trait↕ Anum↕ Sequence
StdTriangleT(n, k), 0 ≤ k ≤ nA0000271 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
StdRevT(n, n - k), 0 ≤ k ≤ nA0387221 3 2 6 5 4 10 9 8 7 15 14 13 12 11 21 20 19 18 17 16 28 27 26 25 24 23 22 36 35 34 33 32 31 30 29
StdAccsee docsmissing1 2 5 4 9 15 7 15 24 34 11 23 36 50 65 16 33 51 70 90 111 22 45 69 94 120 147 175 29 59 90 122 155
StdAccRevsee docsmissing1 3 5 6 11 15 10 19 27 34 15 29 42 54 65 21 41 60 78 95 111 28 55 81 106 130 153 175 36 71 105 138
StdAntiDiagsee docsA0565361 2 4 3 7 5 11 8 6 16 12 9 22 17 13 10 29 23 18 14 37 30 24 19 15 46 38 31 25 20 56 47 39 32 26 21
StdDiffx1T(n, k) (k+1)missing1 2 6 4 10 18 7 16 27 40 11 24 39 56 75 16 34 54 76 100 126 22 46 72 100 130 162 196 29 60 93 128
StdRowSum k=0..n T(n, k)A0060031 5 15 34 65 111 175 260 369 505 671 870 1105 1379 1695 2056 2465 2925 3439 4010 4641 5335 6095
StdEvenSum k=0..n T(n, k) even(k)A1314741 2 10 16 39 54 100 128 205 250 366 432 595 686 904 1024 1305 1458 1810 2000 2431 2662 3180 3456
StdOddSum k=0..n T(n, k) odd(k)missing0 3 5 18 26 57 75 132 164 255 305 438 510 693 791 1032 1160 1467 1629 2010 2210 2673 2915 3468 3756
StdAltSum k=0..n T(n, k) (-1)^kmissing1 -1 5 -2 13 -3 25 -4 41 -5 61 -6 85 -7 113 -8 145 -9 181 -10 221 -11 265 -12 313 -13 365 -14 421
StdAbsSum k=0..n | T(n, k) |A0060031 5 15 34 65 111 175 260 369 505 671 870 1105 1379 1695 2056 2465 2925 3439 4010 4641 5335 6095
StdDiagSum k=0..n // 2 T(n - k, k)A0798241 2 7 12 25 37 62 84 125 160 221 272 357 427 540 632 777 894 1075 1220 1441 1617 1882 2092 2405
StdAccSum k=0..n j=0..k T(n, j)missing1 7 28 80 185 371 672 1128 1785 2695 3916 5512 7553 10115 13280 17136 21777 27303 33820 41440 50281
StdAccRevSum k=0..n j=0..k T(n, n - j)A1321171 8 32 90 205 406 728 1212 1905 2860 4136 5798 7917 10570 13840 17816 22593 28272 34960 42770 51821
StdRowLcmLcm k=0..n | T(n, k) | > 1A0614311 6 60 2520 60060 1627920 124324200 1694579040 446626220040 73706596563600 177223661334720
StdRowGcdGcd k=0..n | T(n, k) | > 1A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
StdRowMaxMax k=0..n | T(n, k) |A0002171 3 6 10 15 21 28 36 45 55 66 78 91 105 120 136 153 171 190 210 231 253 276 300 325 351 378 406 435
StdColMiddleT(n, n // 2)A0009821 2 5 8 13 18 25 32 41 50 61 72 85 98 113 128 145 162 181 200 221 242 265 288 313 338 365 392 421
StdCentralET(2 n, n)A0018441 5 13 25 41 61 85 113 145 181 221 265 313 365 421 481 545 613 685 761 841 925 1013 1105
StdCentralOT(2 n + 1, n)A0011052 8 18 32 50 72 98 128 162 200 242 288 338 392 450 512 578 648 722 800 882 968 1058 1152
StdColLeftT(n, 0)A0001241 2 4 7 11 16 22 29 37 46 56 67 79 92 106 121 137 154 172 191 211 232 254 277 301 326 352 379 407
StdColRightT(n, n)A0002171 3 6 10 15 21 28 36 45 55 66 78 91 105 120 136 153 171 190 210 231 253 276 300 325 351 378 406 435
StdBinConv k=0..n C(n, k) T(n, k)A0848501 5 20 68 208 592 1600 4160 10496 25856 62464 148480 348160 806912 1851392 4210688 9502720 21299200
StdInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kA0195901 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
StdTransNat0 k=0..n T(n, k) kA1524570 3 17 56 140 295 553 952 1536 2355 3465 4928 6812 9191 12145 15760 20128 25347 31521 38760 47180
StdTransNat1 k=0..n T(n, k) (k + 1)A1321171 8 32 90 205 406 728 1212 1905 2860 4136 5798 7917 10570 13840 17816 22593 28272 34960 42770 51821
StdTransSqrs k=0..n T(n, k) k^2missing0 3 29 134 430 1105 2443 4844 8844 15135 24585 38258 57434 83629 118615 164440 223448 298299 391989
StdPosHalf k=0..n 2^n T(n, k) (1/2)^kmissing1 7 32 116 367 1065 2914 7642 19409 48071 116668 278448 655267 1523605 3506054 7995254 18087781
StdNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kmissing1 -1 12 -32 119 -327 934 -2434 6273 -15569 38024 -90996 214843 -500587 1154202 -2635958 5971109
StdDiagRow1T(n + 1, n)A0000962 5 9 14 20 27 35 44 54 65 77 90 104 119 135 152 170 189 209 230 252 275 299 324 350 377 405 434
StdDiagRow2T(n + 2, n)A0348564 8 13 19 26 34 43 53 64 76 89 103 118 134 151 169 188 208 229 251 274 298 323 349 376 404 433 463
StdDiagRow3T(n + 3, n)A0559987 12 18 25 33 42 52 63 75 88 102 117 133 150 168 187 207 228 250 273 297 322 348 375 403 432 462
StdDiagCol1T(n + 1, 1)A1529483 5 8 12 17 23 30 38 47 57 68 80 93 107 122 138 155 173 192 212 233 255 278 302 327 353 380 408 437
StdDiagCol2T(n + 2, 2)A1529506 9 13 18 24 31 39 48 58 69 81 94 108 123 139 156 174 193 213 234 256 279 303 328 354 381 409 438
StdDiagCol3T(n + 3, 3)A14501810 14 19 25 32 40 49 59 70 82 95 109 124 140 157 175 194 214 235 257 280 304 329 355 382 410 439
StdPolysee docsmissing1 2 1 4 5 1 7 15 8 1 11 34 38 11 1 16 65 139 73 14 1 22 111 439 382 120 17 1 29 175 1266 1757 823
StdPolyRow1 k=0..1 T(1, k) n^kA0167892 5 8 11 14 17 20 23 26 29 32 35 38 41 44 47 50 53 56 59 62 65 68 71 74 77 80 83 86 89 92 95 98 101
StdPolyRow2 k=0..2 T(2, k) n^kmissing4 15 38 73 120 179 250 333 428 535 654 785 928 1083 1250 1429 1620 1823 2038 2265 2504 2755 3018
StdPolyRow3 k=0..3 T(3, k) n^kmissing7 34 139 382 823 1522 2539 3934 5767 8098 10987 14494 18679 23602 29323 35902 43399 51874 61387
StdPolyCol2 k=0..n T(n, k) 2^kmissing1 8 38 139 439 1266 3436 8933 22493 55252 133066 315327 737203 1703846 3899288 8847241 19922809
StdPolyCol3 k=0..n T(n, k) 3^kmissing1 11 73 382 1757 7465 30061 116444 437929 1609063 5801537 20593306 72143077 249910085 857347141
StdPolyDiag k=0..n T(n, k) n^kmissing1 5 38 382 5003 81051 1556440 34428668 860089109 23917161745 732098765426 24448357054650
AltTriangleT(n, k), 0 ≤ k ≤ nA0000271 2 -3 4 -5 6 7 -8 9 -10 11 -12 13 -14 15 16 -17 18 -19 20 -21 22 -23 24 -25 26 -27 28 29 -30 31
AltRevT(n, n - k), 0 ≤ k ≤ nA0387221 -3 2 6 -5 4 -10 9 -8 7 15 -14 13 -12 11 -21 20 -19 18 -17 16 28 -27 26 -25 24 -23 22 -36 35 -34
AltAccsee docsmissing1 2 -1 4 -1 5 7 -1 8 -2 11 -1 12 -2 13 16 -1 17 -2 18 -3 22 -1 23 -2 24 -3 25 29 -1 30 -2 31 -3 32
AltAccRevsee docsmissing1 -3 -1 6 1 5 -10 -1 -9 -2 15 1 14 2 13 -21 -1 -20 -2 -19 -3 28 1 27 2 26 3 25 -36 -1 -35 -2 -34 -3
AltAntiDiagsee docsA0565361 2 4 -3 7 -5 11 -8 6 16 -12 9 22 -17 13 -10 29 -23 18 -14 37 -30 24 -19 15 46 -38 31 -25 20 56 -47
AltDiffx1T(n, k) (k+1)missing1 2 -6 4 -10 18 7 -16 27 -40 11 -24 39 -56 75 16 -34 54 -76 100 -126 22 -46 72 -100 130 -162 196 29
AltRowSum k=0..n T(n, k)missing1 -1 5 -2 13 -3 25 -4 41 -5 61 -6 85 -7 113 -8 145 -9 181 -10 221 -11 265 -12 313 -13 365 -14 421
AltEvenSum k=0..n T(n, k) even(k)A1314741 2 10 16 39 54 100 128 205 250 366 432 595 686 904 1024 1305 1458 1810 2000 2431 2662 3180 3456
AltOddSum k=0..n T(n, k) odd(k)missing0 -3 -5 -18 -26 -57 -75 -132 -164 -255 -305 -438 -510 -693 -791 -1032 -1160 -1467 -1629 -2010 -2210
AltAltSum k=0..n T(n, k) (-1)^kA0060031 5 15 34 65 111 175 260 369 505 671 870 1105 1379 1695 2056 2465 2925 3439 4010 4641 5335 6095
AltAbsSum k=0..n | T(n, k) |A0060031 5 15 34 65 111 175 260 369 505 671 870 1105 1379 1695 2056 2465 2925 3439 4010 4641 5335 6095
AltDiagSum k=0..n // 2 T(n - k, k)missing1 2 1 2 9 13 8 10 27 34 21 24 55 65 40 44 93 106 65 70 141 157 96 102 199 218 133 140 267 289 176
AltAccSum k=0..n j=0..k T(n, j)missing1 1 8 12 33 45 88 112 185 225 336 396 553 637 848 960 1233 1377 1720 1900 2321 2541 3048 3312 3913
AltAccRevSum k=0..n j=0..k T(n, n - j)missing1 -4 12 -22 45 -66 112 -148 225 -280 396 -474 637 -742 960 -1096 1377 -1548 1900 -2110 2541 -2794
AltRowLcmLcm k=0..n | T(n, k) | > 1A0614311 6 60 2520 60060 1627920 124324200 1694579040 446626220040 73706596563600 177223661334720
AltRowGcdGcd k=0..n | T(n, k) | > 1A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
AltRowMaxMax k=0..n | T(n, k) |A0002171 3 6 10 15 21 28 36 45 55 66 78 91 105 120 136 153 171 190 210 231 253 276 300 325 351 378 406 435
AltColMiddleT(n, n // 2)A0009821 2 -5 -8 13 18 -25 -32 41 50 -61 -72 85 98 -113 -128 145 162 -181 -200 221 242 -265 -288 313 338
AltCentralET(2 n, n)A0018441 -5 13 -25 41 -61 85 -113 145 -181 221 -265 313 -365 421 -481 545 -613 685 -761 841 -925 1013
AltCentralOT(2 n + 1, n)A0011052 -8 18 -32 50 -72 98 -128 162 -200 242 -288 338 -392 450 -512 578 -648 722 -800 882 -968 1058
AltColLeftT(n, 0)A0001241 2 4 7 11 16 22 29 37 46 56 67 79 92 106 121 137 154 172 191 211 232 254 277 301 326 352 379 407
AltColRightT(n, n)A0002171 -3 6 -10 15 -21 28 -36 45 -55 66 -78 91 -105 120 -136 153 -171 190 -210 231 -253 276 -300 325
AltInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kA0848501 -5 20 -68 208 -592 1600 -4160 10496 -25856 62464 -148480 348160 -806912 1851392 -4210688 9502720
AltTransNat0 k=0..n T(n, k) kmissing0 -3 7 -20 32 -63 87 -144 184 -275 335 -468 552 -735 847 -1088 1232 -1539 1719 -2100 2320 -2783
AltTransNat1 k=0..n T(n, k) (k + 1)missing1 -4 12 -22 45 -66 112 -148 225 -280 396 -474 637 -742 960 -1096 1377 -1548 1900 -2110 2541 -2794
AltTransSqrs k=0..n T(n, k) k^2missing0 -3 19 -62 154 -321 597 -1020 1636 -2495 3655 -5178 7134 -9597 12649 -16376 20872 -26235 32571
AltPosHalf k=0..n 2^n T(n, k) (1/2)^kmissing1 1 12 32 119 327 934 2434 6273 15569 38024 90996 214843 500587 1154202 2635958 5971109 13427541
AltNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kmissing1 -7 32 -116 367 -1065 2914 -7642 19409 -48071 116668 -278448 655267 -1523605 3506054 -7995254
AltDiagRow1T(n + 1, n)A0000962 -5 9 -14 20 -27 35 -44 54 -65 77 -90 104 -119 135 -152 170 -189 209 -230 252 -275 299 -324 350
AltDiagRow2T(n + 2, n)A0348564 -8 13 -19 26 -34 43 -53 64 -76 89 -103 118 -134 151 -169 188 -208 229 -251 274 -298 323 -349 376
AltDiagRow3T(n + 3, n)A0559987 -12 18 -25 33 -42 52 -63 75 -88 102 -117 133 -150 168 -187 207 -228 250 -273 297 -322 348 -375
AltDiagCol1T(n + 1, 1)A152948-3 -5 -8 -12 -17 -23 -30 -38 -47 -57 -68 -80 -93 -107 -122 -138 -155 -173 -192 -212 -233 -255 -278
AltDiagCol2T(n + 2, 2)A1529506 9 13 18 24 31 39 48 58 69 81 94 108 123 139 156 174 193 213 234 256 279 303 328 354 381 409 438
AltDiagCol3T(n + 3, 3)A145018-10 -14 -19 -25 -32 -40 -49 -59 -70 -82 -95 -109 -124 -140 -157 -175 -194 -214 -235 -257 -280 -304
AltPolysee docsmissing1 2 1 4 -1 1 7 5 -4 1 11 -2 18 -7 1 16 13 -53 43 -10 1 22 -3 167 -206 80 -13 1 29 25 -450 929 -521
AltPolyRow1 k=0..1 T(1, k) n^kA0167772 -1 -4 -7 -10 -13 -16 -19 -22 -25 -28 -31 -34 -37 -40 -43 -46 -49 -52 -55 -58 -61 -64 -67 -70 -73
AltPolyRow2 k=0..2 T(2, k) n^kmissing4 5 18 43 80 129 190 263 348 445 554 675 808 953 1110 1279 1460 1653 1858 2075 2304 2545 2798 3063
AltPolyRow3 k=0..3 T(3, k) n^kmissing7 -2 -53 -206 -521 -1058 -1877 -3038 -4601 -6626 -9173 -12302 -16073 -20546 -25781 -31838 -38777
AltPolyCol2 k=0..n T(n, k) 2^kmissing1 -4 18 -53 167 -450 1216 -3091 7749 -18872 45302 -106929 249427 -575230 1314396 -2978207 6699281
AltPolyCol3 k=0..n T(n, k) 3^kmissing1 -7 43 -206 929 -3869 15451 -59452 222673 -815603 2934011 -10396298 36370513 -125851849 431364043
AltPolyDiag k=0..n T(n, k) n^kmissing1 -1 18 -206 3115 -55119 1125460 -26031676 672745653 -19212182045 600826446286 -20421579090186
RevTriangleT(n, k), 0 ≤ k ≤ nA0387221 3 2 6 5 4 10 9 8 7 15 14 13 12 11 21 20 19 18 17 16 28 27 26 25 24 23 22 36 35 34 33 32 31 30 29
RevAccsee docsmissing1 3 5 6 11 15 10 19 27 34 15 29 42 54 65 21 41 60 78 95 111 28 55 81 106 130 153 175 36 71 105 138
RevAccRevsee docsmissing1 2 5 4 9 15 7 15 24 34 11 23 36 50 65 16 33 51 70 90 111 22 45 69 94 120 147 175 29 59 90 122 155
RevAntiDiagsee docsmissing1 3 6 2 10 5 15 9 4 21 14 8 28 20 13 7 36 27 19 12 45 35 26 18 11 55 44 34 25 17 66 54 43 33 24 16
RevDiffx1T(n, k) (k+1)missing1 3 4 6 10 12 10 18 24 28 15 28 39 48 55 21 40 57 72 85 96 28 54 78 100 120 138 154 36 70 102 132
RevRowSum k=0..n T(n, k)A0060031 5 15 34 65 111 175 260 369 505 671 870 1105 1379 1695 2056 2465 2925 3439 4010 4641 5335 6095
RevEvenSum k=0..n T(n, k) even(k)missing1 3 10 18 39 57 100 132 205 255 366 438 595 693 904 1032 1305 1467 1810 2010 2431 2673 3180 3468
RevOddSum k=0..n T(n, k) odd(k)missing0 2 5 16 26 54 75 128 164 250 305 432 510 686 791 1024 1160 1458 1629 2000 2210 2662 2915 3456 3756
RevAltSum k=0..n T(n, k) (-1)^kmissing1 1 5 2 13 3 25 4 41 5 61 6 85 7 113 8 145 9 181 10 221 11 265 12 313 13 365 14 421 15 481 16 545
RevAbsSum k=0..n | T(n, k) |A0060031 5 15 34 65 111 175 260 369 505 671 870 1105 1379 1695 2056 2465 2925 3439 4010 4641 5335 6095
RevDiagSum k=0..n // 2 T(n - k, k)missing1 3 8 15 28 43 68 94 135 175 236 293 378 455 568 668 813 939 1120 1275 1496 1683 1948 2170 2483
RevAccSum k=0..n j=0..k T(n, j)A1321171 8 32 90 205 406 728 1212 1905 2860 4136 5798 7917 10570 13840 17816 22593 28272 34960 42770 51821
RevAccRevSum k=0..n j=0..k T(n, n - j)missing1 7 28 80 185 371 672 1128 1785 2695 3916 5512 7553 10115 13280 17136 21777 27303 33820 41440 50281
RevRowLcmLcm k=0..n | T(n, k) | > 1A0614311 6 60 2520 60060 1627920 124324200 1694579040 446626220040 73706596563600 177223661334720
RevRowGcdGcd k=0..n | T(n, k) | > 1A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
RevRowMaxMax k=0..n | T(n, k) |A0002171 3 6 10 15 21 28 36 45 55 66 78 91 105 120 136 153 171 190 210 231 253 276 300 325 351 378 406 435
RevColMiddleT(n, n // 2)A0993921 3 5 9 13 19 25 33 41 51 61 73 85 99 113 129 145 163 181 201 221 243 265 289 313 339 365 393 421
RevCentralET(2 n, n)A0018441 5 13 25 41 61 85 113 145 181 221 265 313 365 421 481 545 613 685 761 841 925 1013 1105
RevCentralOT(2 n + 1, n)A0583313 9 19 33 51 73 99 129 163 201 243 289 339 393 451 513 579 649 723 801 883 969 1059 1153
RevColLeftT(n, 0)A0002171 3 6 10 15 21 28 36 45 55 66 78 91 105 120 136 153 171 190 210 231 253 276 300 325 351 378 406 435
RevColRightT(n, n)A0001241 2 4 7 11 16 22 29 37 46 56 67 79 92 106 121 137 154 172 191 211 232 254 277 301 326 352 379 407
RevBinConv k=0..n C(n, k) T(n, k)A0848501 5 20 68 208 592 1600 4160 10496 25856 62464 148480 348160 806912 1851392 4210688 9502720 21299200
RevTransNat0 k=0..n T(n, k) kA1760600 2 13 46 120 260 497 868 1416 2190 3245 4642 6448 8736 11585 15080 19312 24378 30381 37430 45640
RevTransNat1 k=0..n T(n, k) (k + 1)missing1 7 28 80 185 371 672 1128 1785 2695 3916 5512 7553 10115 13280 17136 21777 27303 33820 41440 50281
RevTransSqrs k=0..n T(n, k) k^2missing0 2 21 104 350 930 2107 4256 7884 13650 22385 35112 53066 77714 110775 154240 210392 281826 371469
RevPosHalf k=0..n 2^n T(n, k) (1/2)^kmissing1 8 38 139 439 1266 3436 8933 22493 55252 133066 315327 737203 1703846 3899288 8847241 19922809
RevNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kmissing1 -4 18 -53 167 -450 1216 -3091 7749 -18872 45302 -106929 249427 -575230 1314396 -2978207 6699281
RevDiagRow1T(n + 1, n)A1529483 5 8 12 17 23 30 38 47 57 68 80 93 107 122 138 155 173 192 212 233 255 278 302 327 353 380 408 437
RevDiagRow2T(n + 2, n)A1529506 9 13 18 24 31 39 48 58 69 81 94 108 123 139 156 174 193 213 234 256 279 303 328 354 381 409 438
RevDiagRow3T(n + 3, n)A14501810 14 19 25 32 40 49 59 70 82 95 109 124 140 157 175 194 214 235 257 280 304 329 355 382 410 439
RevDiagCol1T(n + 1, 1)A0000962 5 9 14 20 27 35 44 54 65 77 90 104 119 135 152 170 189 209 230 252 275 299 324 350 377 405 434
RevDiagCol2T(n + 2, 2)A0348564 8 13 19 26 34 43 53 64 76 89 103 118 134 151 169 188 208 229 251 274 298 323 349 376 404 433 463
RevDiagCol3T(n + 3, 3)A0559987 12 18 25 33 42 52 63 75 88 102 117 133 150 168 187 207 228 250 273 297 322 348 375 403 432 462
RevPolysee docsmissing1 3 1 6 5 1 10 15 7 1 15 34 32 9 1 21 65 116 57 11 1 28 111 367 298 90 13 1 36 175 1065 1389 622
RevPolyRow1 k=0..1 T(1, k) n^kA0054083 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69
RevPolyRow2 k=0..2 T(2, k) n^kmissing6 15 32 57 90 131 180 237 302 375 456 545 642 747 860 981 1110 1247 1392 1545 1706 1875 2052 2237
RevPolyRow3 k=0..3 T(3, k) n^kmissing10 34 116 298 622 1130 1864 2866 4178 5842 7900 10394 13366 16858 20912 25570 30874 36866 43588
RevPolyCol2 k=0..n T(n, k) 2^kmissing1 7 32 116 367 1065 2914 7642 19409 48071 116668 278448 655267 1523605 3506054 7995254 18087781
RevPolyCol3 k=0..n T(n, k) 3^kmissing1 9 57 298 1389 6003 24589 96756 369033 1372861 5004369 17936094 63374293 221212263 764079237
RevPolyDiag k=0..n T(n, k) n^kmissing1 5 32 298 3863 63471 1242910 28023332 712175693 20103491305 623456790116 21058854407790
 << TableSourceSimilarsIndex >> 

Note: The A-numbers are based on a finite number of numerical comparisons. They ignore the sign and the OEIS-offset. Sometimes they differ in the first few values. In such cases, we consider our version to be the better one because it has a common formula as a root. Since the offset of all triangles is 0 also the offset of all sequences is 0.