MOTZKINPOLY[0] 1
[1] 1, 0
[2] 1, 0, 1
[3] 1, 0, 3, 0
[4] 1, 0, 6, 0, 2
[5] 1, 0, 10, 0, 10, 0

      OEIS Similars: A359364

↕ Type↕ Trait↕ Anum↕ Sequence
StdTriangleT(n, k), 0 ≤ k ≤ nA3593641 1 0 1 0 1 1 0 3 0 1 0 6 0 2 1 0 10 0 10 0 1 0 15 0 30 0 5 1 0 21 0 70 0 35 0 1 0 28 0 140 0 140 0
StdRevT(n, n - k), 0 ≤ k ≤ nA0976101 0 1 1 0 1 0 3 0 1 2 0 6 0 1 0 10 0 10 0 1 5 0 30 0 15 0 1 0 35 0 70 0 21 0 1 14 0 140 0 140 0 28
StdInvRev(T(n, n - k))-1, 0 ≤ k ≤ nmissing1 0 1 -1 0 1 0 -3 0 1 4 0 -6 0 1 0 20 0 -10 0 1 -35 0 60 0 -15 0 1 0 -245 0 140 0 -21 0 1 546 0
StdAccsee docsmissing1 1 1 1 1 2 1 1 4 4 1 1 7 7 9 1 1 11 11 21 21 1 1 16 16 46 46 51 1 1 22 22 92 92 127 127 1 1 29 29
StdAccRevsee docsmissing1 0 1 1 1 2 0 3 3 4 2 2 8 8 9 0 10 10 20 20 21 5 5 35 35 50 50 51 0 35 35 105 105 126 126 127 14 14
StdAntiDiagsee docsmissing1 1 1 0 1 0 1 0 1 1 0 3 1 0 6 0 1 0 10 0 1 0 15 0 2 1 0 21 0 10 1 0 28 0 30 0 1 0 36 0 70 0 1 0 45
StdDiffx1T(n, k) (k+1)missing1 1 0 1 0 3 1 0 9 0 1 0 18 0 10 1 0 30 0 50 0 1 0 45 0 150 0 35 1 0 63 0 350 0 245 0 1 0 84 0 700 0
StdRowSum k=0..n T(n, k)A0010061 1 2 4 9 21 51 127 323 835 2188 5798 15511 41835 113634 310572 853467 2356779 6536382 18199284
StdEvenSum k=0..n T(n, k) even(k)A0010061 1 2 4 9 21 51 127 323 835 2188 5798 15511 41835 113634 310572 853467 2356779 6536382 18199284
StdAltSum k=0..n T(n, k) (-1)^kA0010061 1 2 4 9 21 51 127 323 835 2188 5798 15511 41835 113634 310572 853467 2356779 6536382 18199284
StdAbsSum k=0..n | T(n, k) |A0010061 1 2 4 9 21 51 127 323 835 2188 5798 15511 41835 113634 310572 853467 2356779 6536382 18199284
StdDiagSum k=0..n // 2 T(n - k, k)A0234261 1 1 1 2 4 7 11 18 32 59 107 191 343 627 1159 2146 3972 7373 13757 25781 48437 91165 171945 325096
StdAccSum k=0..n j=0..k T(n, j)A1899121 2 4 10 25 66 177 484 1339 3742 10538 29866 85087 243478 699324 2015082 5822619 16865718 48958404
StdAccRevSum k=0..n j=0..k T(n, n - j)A0251791 1 4 10 29 81 231 659 1891 5443 15718 45508 132067 384047 1118820 3264642 9539787 27913083
StdRowLcmLcm k=0..n | T(n, k) | > 1missing1 1 1 3 6 10 30 210 140 1260 6300 4620 13860 180180 420420 6306300 5045040 4084080 36756720
StdRowGcdGcd k=0..n | T(n, k) | > 1missing1 1 1 3 2 10 5 7 14 6 3 11 66 26 13 1 2 34 17 19 38 2 1 23 46 10 5 3 6 58 435 155 62 2 1 1 6 222 37
StdRowMaxMax k=0..n | T(n, k) |missing1 1 1 3 6 10 30 70 140 420 1050 2310 6930 18018 42042 126126 336336 816816 2450448 6651216 16628040
StdColMiddleT(n, n // 2)missing1 1 0 0 6 10 0 0 140 252 0 0 4620 8580 0 0 180180 340340 0 0 7759752 14814072 0 0 356948592
StdCentralET(2 n, n)A3596471 0 6 0 140 0 4620 0 180180 0 7759752 0 356948592 0 17210021400 0 859544957700 0 44123307828600 0
StdCentralOT(2 n + 1, n)missing1 0 10 0 252 0 8580 0 340340 0 14814072 0 686439600 0 33272708040 0 1668528447300 0 85924336297800
StdColLeftT(n, 0)A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
StdColRightT(n, n)A1261201 0 1 0 2 0 5 0 14 0 42 0 132 0 429 0 1430 0 4862 0 16796 0 58786 0 208012 0 742900 0 2674440 0
StdBinConv k=0..n C(n, k) T(n, k)missing1 1 2 10 39 151 681 3137 14519 69463 339118 1674278 8376721 42398721 216532018 1114896954
StdInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kmissing1 -1 2 -10 39 -151 681 -3137 14519 -69463 339118 -1674278 8376721 -42398721 216532018 -1114896954
StdTransNat0 k=0..n T(n, k) kmissing0 0 2 6 20 60 180 532 1568 4608 13530 39710 116556 342212 1005186 2954070 8686320 25556304 75232854
StdTransNat1 k=0..n T(n, k) (k + 1)A0251791 1 4 10 29 81 231 659 1891 5443 15718 45508 132067 384047 1118820 3264642 9539787 27913083
StdTransSqrs k=0..n T(n, k) k^2missing0 0 4 12 56 200 720 2464 8288 27360 89220 287980 922152 2933528 9281636 29233260 91716000 286789728
StdPosHalf k=0..n 2^n T(n, k) (1/2)^kA0001081 2 5 14 42 132 429 1430 4862 16796 58786 208012 742900 2674440 9694845 35357670 129644790
StdNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kA0001081 -2 5 -14 42 -132 429 -1430 4862 -16796 58786 -208012 742900 -2674440 9694845 -35357670 129644790
StdDiagRow1T(n + 1, n)A1383641 0 3 0 10 0 35 0 126 0 462 0 1716 0 6435 0 24310 0 92378 0 352716 0 1352078 0 5200300 0 20058300 0
StdDiagRow2T(n + 2, n)A0024571 0 6 0 30 0 140 0 630 0 2772 0 12012 0 51480 0 218790 0 923780 0 3879876 0 16224936 0 67603900 0
StdDiagRow3T(n + 3, n)A0028021 0 10 0 70 0 420 0 2310 0 12012 0 60060 0 291720 0 1385670 0 6466460 0 29745716 0 135207800 0
StdDiagCol2T(n + 2, 2)A0002171 3 6 10 15 21 28 36 45 55 66 78 91 105 120 136 153 171 190 210 231 253 276 300 325 351 378 406 435
StdPolysee docsmissing1 1 1 1 1 1 1 2 1 1 1 4 5 1 1 1 9 13 10 1 1 1 21 57 28 17 1 1 1 51 201 217 49 26 1 1 1 127 861 901
StdPolyRow1 k=0..1 T(1, k) n^kA0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
StdPolyRow2 k=0..2 T(2, k) n^kA0025221 2 5 10 17 26 37 50 65 82 101 122 145 170 197 226 257 290 325 362 401 442 485 530 577 626 677 730
StdPolyRow3 k=0..3 T(3, k) n^kA0561071 4 13 28 49 76 109 148 193 244 301 364 433 508 589 676 769 868 973 1084 1201 1324 1453 1588 1729
StdPolyCol2 k=0..n T(n, k) 2^kA0911471 1 5 13 57 201 861 3445 14897 63313 278389 1223069 5465065 24513945 111037005 505298565 2314343265
StdPolyCol3 k=0..n T(n, k) 3^kmissing1 1 10 28 217 901 6211 31375 205507 1153603 7413364 44174494 282750535 1745836795 11205047530
StdPolyDiag k=0..n T(n, k) n^kA3596491 1 5 28 609 6501 272701 4286815 272156417 5648748355 484054204501 12482361156398 1351553781736225
AltTriangleT(n, k), 0 ≤ k ≤ nA3593641 1 0 1 0 1 1 0 3 0 1 0 6 0 2 1 0 10 0 10 0 1 0 15 0 30 0 5 1 0 21 0 70 0 35 0 1 0 28 0 140 0 140 0
AltRevT(n, n - k), 0 ≤ k ≤ nA0976101 0 1 1 0 1 0 3 0 1 2 0 6 0 1 0 10 0 10 0 1 5 0 30 0 15 0 1 0 35 0 70 0 21 0 1 14 0 140 0 140 0 28
AltInvRev(T(n, n - k))-1, 0 ≤ k ≤ nmissing1 0 1 -1 0 1 0 -3 0 1 4 0 -6 0 1 0 20 0 -10 0 1 -35 0 60 0 -15 0 1 0 -245 0 140 0 -21 0 1 546 0
AltAccsee docsmissing1 1 1 1 1 2 1 1 4 4 1 1 7 7 9 1 1 11 11 21 21 1 1 16 16 46 46 51 1 1 22 22 92 92 127 127 1 1 29 29
AltAccRevsee docsmissing1 0 1 1 1 2 0 3 3 4 2 2 8 8 9 0 10 10 20 20 21 5 5 35 35 50 50 51 0 35 35 105 105 126 126 127 14 14
AltAntiDiagsee docsmissing1 1 1 0 1 0 1 0 1 1 0 3 1 0 6 0 1 0 10 0 1 0 15 0 2 1 0 21 0 10 1 0 28 0 30 0 1 0 36 0 70 0 1 0 45
AltDiffx1T(n, k) (k+1)missing1 1 0 1 0 3 1 0 9 0 1 0 18 0 10 1 0 30 0 50 0 1 0 45 0 150 0 35 1 0 63 0 350 0 245 0 1 0 84 0 700 0
AltRowSum k=0..n T(n, k)A0010061 1 2 4 9 21 51 127 323 835 2188 5798 15511 41835 113634 310572 853467 2356779 6536382 18199284
AltEvenSum k=0..n T(n, k) even(k)A0010061 1 2 4 9 21 51 127 323 835 2188 5798 15511 41835 113634 310572 853467 2356779 6536382 18199284
AltAltSum k=0..n T(n, k) (-1)^kA0010061 1 2 4 9 21 51 127 323 835 2188 5798 15511 41835 113634 310572 853467 2356779 6536382 18199284
AltAbsSum k=0..n | T(n, k) |A0010061 1 2 4 9 21 51 127 323 835 2188 5798 15511 41835 113634 310572 853467 2356779 6536382 18199284
AltDiagSum k=0..n // 2 T(n - k, k)A0234261 1 1 1 2 4 7 11 18 32 59 107 191 343 627 1159 2146 3972 7373 13757 25781 48437 91165 171945 325096
AltAccSum k=0..n j=0..k T(n, j)A1899121 2 4 10 25 66 177 484 1339 3742 10538 29866 85087 243478 699324 2015082 5822619 16865718 48958404
AltAccRevSum k=0..n j=0..k T(n, n - j)A0251791 1 4 10 29 81 231 659 1891 5443 15718 45508 132067 384047 1118820 3264642 9539787 27913083
AltRowLcmLcm k=0..n | T(n, k) | > 1missing1 1 1 3 6 10 30 210 140 1260 6300 4620 13860 180180 420420 6306300 5045040 4084080 36756720
AltRowGcdGcd k=0..n | T(n, k) | > 1missing1 1 1 3 2 10 5 7 14 6 3 11 66 26 13 1 2 34 17 19 38 2 1 23 46 10 5 3 6 58 435 155 62 2 1 1 6 222 37
AltRowMaxMax k=0..n | T(n, k) |missing1 1 1 3 6 10 30 70 140 420 1050 2310 6930 18018 42042 126126 336336 816816 2450448 6651216 16628040
AltColMiddleT(n, n // 2)missing1 1 0 0 6 10 0 0 140 252 0 0 4620 8580 0 0 180180 340340 0 0 7759752 14814072 0 0 356948592
AltCentralET(2 n, n)A3596471 0 6 0 140 0 4620 0 180180 0 7759752 0 356948592 0 17210021400 0 859544957700 0 44123307828600 0
AltCentralOT(2 n + 1, n)missing1 0 10 0 252 0 8580 0 340340 0 14814072 0 686439600 0 33272708040 0 1668528447300 0 85924336297800
AltColLeftT(n, 0)A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
AltColRightT(n, n)A1261201 0 1 0 2 0 5 0 14 0 42 0 132 0 429 0 1430 0 4862 0 16796 0 58786 0 208012 0 742900 0 2674440 0
AltBinConv k=0..n C(n, k) T(n, k)missing1 1 2 10 39 151 681 3137 14519 69463 339118 1674278 8376721 42398721 216532018 1114896954
AltInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kmissing1 -1 2 -10 39 -151 681 -3137 14519 -69463 339118 -1674278 8376721 -42398721 216532018 -1114896954
AltTransNat0 k=0..n T(n, k) kmissing0 0 2 6 20 60 180 532 1568 4608 13530 39710 116556 342212 1005186 2954070 8686320 25556304 75232854
AltTransNat1 k=0..n T(n, k) (k + 1)A0251791 1 4 10 29 81 231 659 1891 5443 15718 45508 132067 384047 1118820 3264642 9539787 27913083
AltTransSqrs k=0..n T(n, k) k^2missing0 0 4 12 56 200 720 2464 8288 27360 89220 287980 922152 2933528 9281636 29233260 91716000 286789728
AltPosHalf k=0..n 2^n T(n, k) (1/2)^kA0001081 2 5 14 42 132 429 1430 4862 16796 58786 208012 742900 2674440 9694845 35357670 129644790
AltNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kA0001081 -2 5 -14 42 -132 429 -1430 4862 -16796 58786 -208012 742900 -2674440 9694845 -35357670 129644790
AltDiagRow1T(n + 1, n)A1383641 0 3 0 10 0 35 0 126 0 462 0 1716 0 6435 0 24310 0 92378 0 352716 0 1352078 0 5200300 0 20058300 0
AltDiagRow2T(n + 2, n)A0024571 0 6 0 30 0 140 0 630 0 2772 0 12012 0 51480 0 218790 0 923780 0 3879876 0 16224936 0 67603900 0
AltDiagRow3T(n + 3, n)A0028021 0 10 0 70 0 420 0 2310 0 12012 0 60060 0 291720 0 1385670 0 6466460 0 29745716 0 135207800 0
AltDiagCol2T(n + 2, 2)A0002171 3 6 10 15 21 28 36 45 55 66 78 91 105 120 136 153 171 190 210 231 253 276 300 325 351 378 406 435
AltPolysee docsmissing1 1 1 1 1 1 1 2 1 1 1 4 5 1 1 1 9 13 10 1 1 1 21 57 28 17 1 1 1 51 201 217 49 26 1 1 1 127 861 901
AltPolyRow1 k=0..1 T(1, k) n^kA0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
AltPolyRow2 k=0..2 T(2, k) n^kA0025221 2 5 10 17 26 37 50 65 82 101 122 145 170 197 226 257 290 325 362 401 442 485 530 577 626 677 730
AltPolyRow3 k=0..3 T(3, k) n^kA0561071 4 13 28 49 76 109 148 193 244 301 364 433 508 589 676 769 868 973 1084 1201 1324 1453 1588 1729
AltPolyCol2 k=0..n T(n, k) 2^kA0911471 1 5 13 57 201 861 3445 14897 63313 278389 1223069 5465065 24513945 111037005 505298565 2314343265
AltPolyCol3 k=0..n T(n, k) 3^kmissing1 1 10 28 217 901 6211 31375 205507 1153603 7413364 44174494 282750535 1745836795 11205047530
AltPolyDiag k=0..n T(n, k) n^kA3596491 1 5 28 609 6501 272701 4286815 272156417 5648748355 484054204501 12482361156398 1351553781736225
RevTriangleT(n, k), 0 ≤ k ≤ nA0976101 0 1 1 0 1 0 3 0 1 2 0 6 0 1 0 10 0 10 0 1 5 0 30 0 15 0 1 0 35 0 70 0 21 0 1 14 0 140 0 140 0 28
RevInvT-1(n, k), 0 ≤ k ≤ nmissing1 0 1 -1 0 1 0 -3 0 1 4 0 -6 0 1 0 20 0 -10 0 1 -35 0 60 0 -15 0 1 0 -245 0 140 0 -21 0 1 546 0
RevRevInvT-1(n, n - k), 0 ≤ k ≤ nmissing1 1 0 1 0 -1 1 0 -3 0 1 0 -6 0 4 1 0 -10 0 20 0 1 0 -15 0 60 0 -35 1 0 -21 0 140 0 -245 0 1 0 -28 0
RevAccsee docsmissing1 0 1 1 1 2 0 3 3 4 2 2 8 8 9 0 10 10 20 20 21 5 5 35 35 50 50 51 0 35 35 105 105 126 126 127 14 14
RevAccRevsee docsmissing1 1 1 1 1 2 1 1 4 4 1 1 7 7 9 1 1 11 11 21 21 1 1 16 16 46 46 51 1 1 22 22 92 92 127 127 1 1 29 29
RevAntiDiagsee docsmissing1 0 1 1 0 0 2 3 1 0 0 0 5 10 6 1 0 0 0 0 14 35 30 10 1 0 0 0 0 0 42 126 140 70 15 1 0 0 0 0 0 0 132
RevDiffx1T(n, k) (k+1)missing1 0 2 1 0 3 0 6 0 4 2 0 18 0 5 0 20 0 40 0 6 5 0 90 0 75 0 7 0 70 0 280 0 126 0 8 14 0 420 0 700 0
RevRowSum k=0..n T(n, k)A0010061 1 2 4 9 21 51 127 323 835 2188 5798 15511 41835 113634 310572 853467 2356779 6536382 18199284
RevEvenSum k=0..n T(n, k) even(k)A0269451 0 2 0 9 0 51 0 323 0 2188 0 15511 0 113634 0 853467 0 6536382 0 50852019 0 400763223 0 3192727797
RevOddSum k=0..n T(n, k) odd(k)A0992500 1 0 4 0 21 0 127 0 835 0 5798 0 41835 0 310572 0 2356779 0 18199284 0 142547559 0 1129760415 0
RevAltSum k=0..n T(n, k) (-1)^kA0010061 -1 2 -4 9 -21 51 -127 323 -835 2188 -5798 15511 -41835 113634 -310572 853467 -2356779 6536382
RevAbsSum k=0..n | T(n, k) |A0010061 1 2 4 9 21 51 127 323 835 2188 5798 15511 41835 113634 310572 853467 2356779 6536382 18199284
RevDiagSum k=0..n // 2 T(n - k, k)A0063181 0 2 0 6 0 22 0 90 0 394 0 1806 0 8558 0 41586 0 206098 0 1037718 0 5293446 0 27297738 0 142078746
RevAccSum k=0..n j=0..k T(n, j)A0251791 1 4 10 29 81 231 659 1891 5443 15718 45508 132067 384047 1118820 3264642 9539787 27913083
RevAccRevSum k=0..n j=0..k T(n, n - j)A1899121 2 4 10 25 66 177 484 1339 3742 10538 29866 85087 243478 699324 2015082 5822619 16865718 48958404
RevRowLcmLcm k=0..n | T(n, k) | > 1missing1 1 1 3 6 10 30 210 140 1260 6300 4620 13860 180180 420420 6306300 5045040 4084080 36756720
RevRowGcdGcd k=0..n | T(n, k) | > 1missing1 1 1 3 2 10 5 7 14 6 3 11 66 26 13 1 2 34 17 19 38 2 1 23 46 10 5 3 6 58 435 155 62 2 1 1 6 222 37
RevRowMaxMax k=0..n | T(n, k) |missing1 1 1 3 6 10 30 70 140 420 1050 2310 6930 18018 42042 126126 336336 816816 2450448 6651216 16628040
RevColMiddleT(n, n // 2)missing1 0 0 3 6 0 0 70 140 0 0 2310 4620 0 0 90090 180180 0 0 3879876 7759752 0 0 178474296 356948592 0 0
RevCentralET(2 n, n)A3596471 0 6 0 140 0 4620 0 180180 0 7759752 0 356948592 0 17210021400 0 859544957700 0 44123307828600 0
RevCentralOT(2 n + 1, n)missing0 3 0 70 0 2310 0 90090 0 3879876 0 178474296 0 8605010700 0 429772478850 0 22061653914300 0
RevColLeftT(n, 0)A1261201 0 1 0 2 0 5 0 14 0 42 0 132 0 429 0 1430 0 4862 0 16796 0 58786 0 208012 0 742900 0 2674440 0
RevColRightT(n, n)A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
RevBinConv k=0..n C(n, k) T(n, k)missing1 1 2 10 39 151 681 3137 14519 69463 339118 1674278 8376721 42398721 216532018 1114896954
RevInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kmissing1 1 2 10 39 151 681 3137 14519 69463 339118 1674278 8376721 42398721 216532018 1114896954
RevTransNat0 k=0..n T(n, k) kA0057170 1 2 6 16 45 126 357 1016 2907 8350 24068 69576 201643 585690 1704510 4969152 14508939 42422022
RevTransNat1 k=0..n T(n, k) (k + 1)A1899121 2 4 10 25 66 177 484 1339 3742 10538 29866 85087 243478 699324 2015082 5822619 16865718 48958404
RevTransSqrs k=0..n T(n, k) k^2missing0 1 4 12 40 125 396 1239 3872 12051 37420 115918 358392 1106131 3408692 10489860 32241312 98984523
RevPosHalf k=0..n 2^n T(n, k) (1/2)^kA0911471 1 5 13 57 201 861 3445 14897 63313 278389 1223069 5465065 24513945 111037005 505298565 2314343265
RevNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kA0911471 1 5 13 57 201 861 3445 14897 63313 278389 1223069 5465065 24513945 111037005 505298565 2314343265
RevDiagRow2T(n + 2, n)A0002171 3 6 10 15 21 28 36 45 55 66 78 91 105 120 136 153 171 190 210 231 253 276 300 325 351 378 406 435
RevDiagCol1T(n + 1, 1)A1383641 0 3 0 10 0 35 0 126 0 462 0 1716 0 6435 0 24310 0 92378 0 352716 0 1352078 0 5200300 0 20058300 0
RevDiagCol2T(n + 2, 2)A0024571 0 6 0 30 0 140 0 630 0 2772 0 12012 0 51480 0 218790 0 923780 0 3879876 0 16224936 0 67603900 0
RevDiagCol3T(n + 3, 3)A0028021 0 10 0 70 0 420 0 2310 0 12012 0 60060 0 291720 0 1385670 0 6466460 0 29745716 0 135207800 0
RevPolysee docsA2474951 0 1 1 1 1 0 2 2 1 2 4 5 3 1 0 9 14 10 4 1 5 21 42 36 17 5 1 0 51 132 137 76 26 6 1 14 127 429 543
RevPolyRow1 k=0..1 T(1, k) n^kA0000270 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
RevPolyRow2 k=0..2 T(2, k) n^kA0025221 2 5 10 17 26 37 50 65 82 101 122 145 170 197 226 257 290 325 362 401 442 485 530 577 626 677 730
RevPolyRow3 k=0..3 T(3, k) n^kA0799080 4 14 36 76 140 234 364 536 756 1030 1364 1764 2236 2786 3420 4144 4964 5886 6916 8060 9324 10714
RevPolyCol2 k=0..n T(n, k) 2^kA0001081 2 5 14 42 132 429 1430 4862 16796 58786 208012 742900 2674440 9694845 35357670 129644790
RevPolyCol3 k=0..n T(n, k) 3^kA0022121 3 10 36 137 543 2219 9285 39587 171369 751236 3328218 14878455 67030785 304036170 1387247580
RevPolyDiag k=0..n T(n, k) n^kA2474961 1 5 36 354 4425 67181 1200745 24699662 574795035 14930563042 428235433978 13442267711940
Rev:InvTriangleT(n, k), 0 ≤ k ≤ nmissing1 0 1 -1 0 1 0 -3 0 1 4 0 -6 0 1 0 20 0 -10 0 1 -35 0 60 0 -15 0 1 0 -245 0 140 0 -21 0 1 546 0
Rev:InvRevT(n, n - k), 0 ≤ k ≤ nmissing1 1 0 1 0 -1 1 0 -3 0 1 0 -6 0 4 1 0 -10 0 20 0 1 0 -15 0 60 0 -35 1 0 -21 0 140 0 -245 0 1 0 -28 0
Rev:InvInvT-1(n, k), 0 ≤ k ≤ nA0976101 0 1 1 0 1 0 3 0 1 2 0 6 0 1 0 10 0 10 0 1 5 0 30 0 15 0 1 0 35 0 70 0 21 0 1 14 0 140 0 140 0 28
Rev:InvRevInvT-1(n, n - k), 0 ≤ k ≤ nA3593641 1 0 1 0 1 1 0 3 0 1 0 6 0 2 1 0 10 0 10 0 1 0 15 0 30 0 5 1 0 21 0 70 0 35 0 1 0 28 0 140 0 140 0
Rev:InvAccsee docsmissing1 0 1 -1 -1 0 0 -3 -3 -2 4 4 -2 -2 -1 0 20 20 10 10 11 -35 -35 25 25 10 10 11 0 -245 -245 -105 -105
Rev:InvAccRevsee docsmissing1 1 1 1 1 0 1 1 -2 -2 1 1 -5 -5 -1 1 1 -9 -9 11 11 1 1 -14 -14 46 46 11 1 1 -20 -20 120 120 -125
Rev:InvAntiDiagsee docsmissing1 0 -1 1 0 0 4 -3 1 0 0 0 -35 20 -6 1 0 0 0 0 546 -245 60 -10 1 0 0 0 0 0 -13482 4914 -980 140 -15
Rev:InvDiffx1T(n, k) (k+1)missing1 0 2 -1 0 3 0 -6 0 4 4 0 -18 0 5 0 40 0 -40 0 6 -35 0 180 0 -75 0 7 0 -490 0 560 0 -126 0 8 546 0
Rev:InvRowSum k=0..n T(n, k)A3088461 1 0 -2 -1 11 11 -125 -181 2443 4534 -73116 -164075 3106169 8150624 -177689590 -533231545
Rev:InvEvenSum k=0..n T(n, k) even(k)missing1 0 0 0 -1 0 11 0 -181 0 4534 0 -164075 0 8150624 0 -533231545 0 44461467464 0 -4603245727023 0
Rev:InvOddSum k=0..n T(n, k) odd(k)missing0 1 0 -2 0 11 0 -125 0 2443 0 -73116 0 3106169 0 -177689590 0 13167063415 0 -1226832808294 0
Rev:InvAltSum k=0..n T(n, k) (-1)^kA3088461 -1 0 2 -1 -11 11 125 -181 -2443 4534 73116 -164075 -3106169 8150624 177689590 -533231545
Rev:InvAbsSum k=0..n | T(n, k) |missing1 1 2 4 11 31 111 407 1835 8395 46288 255938 1680361 10938149 83569006 626889252 5469300087
Rev:InvDiagSum k=0..n // 2 T(n - k, k)missing1 0 0 0 2 0 -20 0 352 0 -9422 0 359480 0 -18598512 0 1255664060 0 -107332663328 0 11337290575470 0
Rev:InvAccSum k=0..n j=0..k T(n, j)missing1 1 -2 -8 3 71 11 -1077 -629 26059 25444 -927266 -1255583 45619341 78772994 -2965292800 -6221902825
Rev:InvAccRevSum k=0..n j=0..k T(n, n - j)missing1 2 2 -2 -9 6 77 -48 -1181 814 28964 -23242 -1041467 973194 51636990 -55430230 -3376264985
Rev:InvRowLcmLcm k=0..n | T(n, k) | > 1missing1 1 1 3 12 20 420 2940 76440 687960 368058600 269909640 165589564140 307523476260
Rev:InvRowGcdGcd k=0..n | T(n, k) | > 1missing1 1 1 3 2 10 5 7 14 6 3 11 66 26 13 1 2 34 17 19 38 2 1 23 46 10 5 3 6 58 435 155 62 2 1 1 6 222 37
Rev:InvRowMaxMax k=0..n | T(n, k) |missing1 1 1 3 6 20 60 245 980 4914 24570 148302 889812 6316596 44216172 361627695 2893021560 26803501010
Rev:InvColMiddleT(n, n // 2)missing1 0 0 -3 -6 0 0 140 280 0 0 -16170 -32340 0 0 3513510 7027020 0 0 -1245440196 -2490880392 0 0
Rev:InvCentralET(2 n, n)missing1 0 -6 0 280 0 -32340 0 7027020 0 -2490880392 0 1313927767152 0 -967151572615800 0
Rev:InvCentralOT(2 n + 1, n)missing0 -3 0 140 0 -16170 0 3513510 0 -1245440196 0 656963883576 0 -483575786307900 0 473854671778123350
Rev:InvColLeftT(n, 0)A2383901 0 -1 0 4 0 -35 0 546 0 -13482 0 485892 0 -24108513 0 1576676530 0 -131451399794 0 13609184032808
Rev:InvColRightT(n, n)A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Rev:InvBinConv k=0..n C(n, k) T(n, k)missing1 1 0 -8 -31 1 641 2745 -8077 -140525 -276956 6195564 46635535 -217304593 -4897212020 -4673293612
Rev:InvInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kmissing1 1 0 -8 -31 1 641 2745 -8077 -140525 -276956 6195564 46635535 -217304593 -4897212020 -4673293612
Rev:InvTransNat0 k=0..n T(n, k) kmissing0 1 2 0 -8 -5 66 77 -1000 -1629 24430 49874 -877392 -2132975 43486366 122259360 -2843033440
Rev:InvTransNat1 k=0..n T(n, k) (k + 1)missing1 2 2 -2 -9 6 77 -48 -1181 814 28964 -23242 -1041467 973194 51636990 -55430230 -3376264985
Rev:InvTransSqrs k=0..n T(n, k) k^2missing0 1 4 6 -8 -45 36 539 -384 -10629 8140 318604 -278904 -13539071 13624716 774554850 -886883680
Rev:InvPosHalf k=0..n 2^n T(n, k) (1/2)^kmissing1 1 -3 -11 41 281 -1339 -13523 81425 1077745 -7972787 -129812187 1146196921 22100478089
Rev:InvNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kmissing1 1 -3 -11 41 281 -1339 -13523 81425 1077745 -7972787 -129812187 1146196921 22100478089
Rev:InvDiagRow2T(n + 2, n)A000217-1 -3 -6 -10 -15 -21 -28 -36 -45 -55 -66 -78 -91 -105 -120 -136 -153 -171 -190 -210 -231 -253 -276
Rev:InvDiagCol1T(n + 1, 1)missing1 0 -3 0 20 0 -245 0 4914 0 -148302 0 6316596 0 -361627695 0 26803501010 0 -2497576596086 0
Rev:InvDiagCol2T(n + 2, 2)missing1 0 -6 0 60 0 -980 0 24570 0 -889812 0 44216172 0 -2893021560 0 241231509090 0 -24975765960860 0
Rev:InvDiagCol3T(n + 3, 3)missing1 0 -10 0 140 0 -2940 0 90090 0 -3855852 0 221080860 0 -16393788840 0 1527799557570 0
Rev:InvPolysee docsmissing1 0 1 -1 1 1 0 0 2 1 4 -2 3 3 1 0 -1 2 8 4 1 -35 11 -4 18 15 5 1 0 11 -8 31 52 24 6 1 546 -125 29
Rev:InvPolyRow1 k=0..1 T(1, k) n^kA0000270 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
Rev:InvPolyRow2 k=0..2 T(2, k) n^kA005563-1 0 3 8 15 24 35 48 63 80 99 120 143 168 195 224 255 288 323 360 399 440 483 528 575 624 675 728
Rev:InvPolyRow3 k=0..3 T(3, k) n^kA0587940 -2 2 18 52 110 198 322 488 702 970 1298 1692 2158 2702 3330 4048 4862 5778 6802 7940 9198 10582
Rev:InvPolyCol2 k=0..n T(n, k) 2^kmissing1 2 3 2 -4 -8 29 86 -430 -1660 10462 49524 -375404 -2102072 18602159 120219586 -1216092718
Rev:InvPolyCol3 k=0..n T(n, k) 3^kmissing1 3 8 18 31 33 19 129 555 -1215 -11538 39636 418581 -1682613 -20740776 96338214 1356035527
Rev:InvPolyDiag k=0..n T(n, k) n^kmissing1 1 3 18 164 1975 29341 516901 10521890 242895267 6268943518 178861697124 5589828116676
 << TableSourceSimilarsIndex >> 

Note: The A-numbers are based on a finite number of numerical comparisons. They ignore the sign and the OEIS-offset. Sometimes they differ in the first few values. In such cases, we consider our version to be the better one because it has a common formula as a root. Since the offset of all triangles is 0 also the offset of all sequences is 0.