OEIS Similars: A034851
↕ Type | ↕ Trait | ↕ Anum | ↕ Sequence |
---|---|---|---|
Std | TriangleT(n, k), 0 ≤ k ≤ n | A034851 | 1 1 1 1 1 1 1 2 2 1 1 2 4 2 1 1 3 6 6 3 1 1 3 9 10 9 3 1 1 4 12 19 19 12 4 1 1 4 16 28 38 28 16 4 1 |
Std | RevT(n, n - k), 0 ≤ k ≤ n | A034851 | 1 1 1 1 1 1 1 2 2 1 1 2 4 2 1 1 3 6 6 3 1 1 3 9 10 9 3 1 1 4 12 19 19 12 4 1 1 4 16 28 38 28 16 4 1 |
Std | InvT-1(n, k), 0 ≤ k ≤ n | A055138 | 1 -1 1 0 -1 1 1 0 -2 1 -1 2 0 -2 1 -1 -3 6 0 -3 1 4 -3 -7 8 0 -3 1 -1 18 -18 -13 17 0 -4 1 -19 -4 |
Std | RevInvT-1(n, n - k), 0 ≤ k ≤ n | missing | 1 1 -1 1 -1 0 1 -2 0 1 1 -2 0 2 -1 1 -3 0 6 -3 -1 1 -3 0 8 -7 -3 4 1 -4 0 17 -13 -18 18 -1 1 -4 0 |
Std | InvRev(T(n, n - k))-1, 0 ≤ k ≤ n | A055138 | 1 -1 1 0 -1 1 1 0 -2 1 -1 2 0 -2 1 -1 -3 6 0 -3 1 4 -3 -7 8 0 -3 1 -1 18 -18 -13 17 0 -4 1 -19 -4 |
Std | Accsee docs | missing | 1 1 2 1 2 3 1 3 5 6 1 3 7 9 10 1 4 10 16 19 20 1 4 13 23 32 35 36 1 5 17 36 55 67 71 72 1 5 21 49 |
Std | AccRevsee docs | missing | 1 1 2 1 2 3 1 3 5 6 1 3 7 9 10 1 4 10 16 19 20 1 4 13 23 32 35 36 1 5 17 36 55 67 71 72 1 5 21 49 |
Std | AntiDiagsee docs | A102541 | 1 1 1 1 1 1 1 2 1 1 2 2 1 3 4 1 1 3 6 2 1 4 9 6 1 1 4 12 10 3 1 5 16 19 9 1 1 5 20 28 19 3 1 6 25 |
Std | Diffx1T(n, k) (k+1) | missing | 1 1 2 1 2 3 1 4 6 4 1 4 12 8 5 1 6 18 24 15 6 1 6 27 40 45 18 7 1 8 36 76 95 72 28 8 1 8 48 112 190 |
Std | RowSum∑ k=0..n T(n, k) | A005418 | 1 2 3 6 10 20 36 72 136 272 528 1056 2080 4160 8256 16512 32896 65792 131328 262656 524800 1049600 |
Std | EvenSum∑ k=0..n T(n, k) even(k) | A005418 | 1 1 2 3 6 10 20 36 72 136 272 528 1056 2080 4160 8256 16512 32896 65792 131328 262656 524800 |
Std | OddSum∑ k=0..n T(n, k) odd(k) | A051437 | 0 1 1 3 4 10 16 36 64 136 256 528 1024 2080 4096 8256 16384 32896 65536 131328 262144 524800 |
Std | AltSum∑ k=0..n T(n, k) (-1)^k | A077957 | 1 0 1 0 2 0 4 0 8 0 16 0 32 0 64 0 128 0 256 0 512 0 1024 0 2048 0 4096 0 8192 0 16384 0 32768 0 |
Std | AbsSum∑ k=0..n | T(n, k) | | A005418 | 1 2 3 6 10 20 36 72 136 272 528 1056 2080 4160 8256 16512 32896 65792 131328 262656 524800 1049600 |
Std | DiagSum∑ k=0..n // 2 T(n - k, k) | A001224 | 1 1 2 2 4 5 9 12 21 30 51 76 127 195 322 504 826 1309 2135 3410 5545 8900 14445 23256 37701 60813 |
Std | AccSum∑ k=0..n ∑ j=0..k T(n, j) | missing | 1 3 6 15 30 70 144 324 680 1496 3168 6864 14560 31200 66048 140352 296064 625024 1313280 2757888 |
Std | AccRevSum∑ k=0..n ∑ j=0..k T(n, n - j) | missing | 1 3 6 15 30 70 144 324 680 1496 3168 6864 14560 31200 66048 140352 296064 625024 1313280 2757888 |
Std | RowLcmLcm k=0..n | T(n, k) | > 1 | missing | 1 1 1 2 4 6 90 228 2128 660 69300 60180 3971880 950460 190282092 53804520 1865223360 4887361080 |
Std | RowGcdGcd k=0..n | T(n, k) | > 1 | missing | 1 1 1 2 2 3 1 1 2 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Std | RowMaxMax k=0..n | T(n, k) | | A034872 | 1 1 1 2 4 6 10 19 38 66 126 236 472 868 1716 3235 6470 12190 24310 46252 92504 176484 352716 676270 |
Std | ColMiddleT(n, n // 2) | A034872 | 1 1 1 2 4 6 10 19 38 66 126 236 472 868 1716 3235 6470 12190 24310 46252 92504 176484 352716 676270 |
Std | CentralET(2 n, n) | A032123 | 1 1 4 10 38 126 472 1716 6470 24310 92504 352716 1352540 5200300 20060016 77558760 300546630 |
Std | CentralOT(2 n + 1, n) | A005654 | 1 2 6 19 66 236 868 3235 12190 46252 176484 676270 2600612 10030008 38781096 150273315 583407990 |
Std | ColLeftT(n, 0) | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Std | ColRightT(n, n) | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Std | BinConv∑ k=0..n C(n, k) T(n, k) | missing | 1 2 4 14 42 152 508 1892 6758 25556 94704 361748 1369140 5266848 20185064 78054824 301491014 |
Std | InvBinConv∑ k=0..n C(n, k) T(n, n - k) (-1)^k | missing | 1 0 0 0 10 0 36 0 358 0 2200 0 17524 0 125048 0 957254 0 7160112 0 54696460 0 416637848 0 |
Std | TransNat0∑ k=0..n T(n, k) k | missing | 0 1 3 9 20 50 108 252 544 1224 2640 5808 12480 27040 57792 123840 263168 559232 1181952 2495232 |
Std | TransNat1∑ k=0..n T(n, k) (k + 1) | missing | 1 3 6 15 30 70 144 324 680 1496 3168 6864 14560 31200 66048 140352 296064 625024 1313280 2757888 |
Std | TransSqrs∑ k=0..n T(n, k) k^2 | missing | 0 1 5 19 52 154 384 1020 2464 6152 14560 34928 81216 189472 433664 991168 2237440 5034112 11229696 |
Std | PosHalf∑ k=0..n 2^n T(n, k) (1/2)^k | missing | 1 3 7 21 53 159 427 1281 3593 10779 31087 93261 273533 820599 2430547 7291641 21718673 65156019 |
Std | DiagRow1T(n + 1, n) | A004526 | 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13 14 14 15 15 16 16 17 17 18 18 19 19 20 |
Std | DiagRow2T(n + 2, n) | A002620 | 1 2 4 6 9 12 16 20 25 30 36 42 49 56 64 72 81 90 100 110 121 132 144 156 169 182 196 210 225 240 |
Std | DiagRow3T(n + 3, n) | A005993 | 1 2 6 10 19 28 44 60 85 110 146 182 231 280 344 408 489 570 670 770 891 1012 1156 1300 1469 1638 |
Std | DiagCol1T(n + 1, 1) | A004526 | 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13 14 14 15 15 16 16 17 17 18 18 19 19 20 |
Std | DiagCol2T(n + 2, 2) | A002620 | 1 2 4 6 9 12 16 20 25 30 36 42 49 56 64 72 81 90 100 110 121 132 144 156 169 182 196 210 225 240 |
Std | DiagCol3T(n + 3, 3) | A005993 | 1 2 6 10 19 28 44 60 85 110 146 182 231 280 344 408 489 570 670 770 891 1012 1156 1300 1469 1638 |
Std | Polysee docs | missing | 1 1 1 1 2 1 1 3 3 1 1 6 7 4 1 1 10 21 13 5 1 1 20 53 52 21 6 1 1 36 159 178 105 31 7 1 1 72 427 712 |
Std | PolyRow1∑ k=0..1 T(1, k) n^k | A000027 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
Std | PolyRow2∑ k=0..2 T(2, k) n^k | A002061 | 1 3 7 13 21 31 43 57 73 91 111 133 157 183 211 241 273 307 343 381 421 463 507 553 601 651 703 757 |
Std | PolyRow3∑ k=0..3 T(3, k) n^k | A069778 | 1 6 21 52 105 186 301 456 657 910 1221 1596 2041 2562 3165 3856 4641 5526 6517 7620 8841 10186 |
Std | PolyCol2∑ k=0..n T(n, k) 2^k | missing | 1 3 7 21 53 159 427 1281 3593 10779 31087 93261 273533 820599 2430547 7291641 21718673 65156019 |
Std | PolyCol3∑ k=0..n T(n, k) 3^k | missing | 1 4 13 52 178 712 2548 10192 37768 151072 574288 2297152 8888608 35554432 139217728 556870912 |
Std | PolyDiag∑ k=0..n T(n, k) n^k | missing | 1 2 7 52 457 5916 84151 1548576 30448673 726060880 18223762551 533666675136 16296099756553 |
Alt | TriangleT(n, k), 0 ≤ k ≤ n | A034851 | 1 1 -1 1 -1 1 1 -2 2 -1 1 -2 4 -2 1 1 -3 6 -6 3 -1 1 -3 9 -10 9 -3 1 1 -4 12 -19 19 -12 4 -1 1 -4 |
Alt | RevT(n, n - k), 0 ≤ k ≤ n | A034851 | 1 -1 1 1 -1 1 -1 2 -2 1 1 -2 4 -2 1 -1 3 -6 6 -3 1 1 -3 9 -10 9 -3 1 -1 4 -12 19 -19 12 -4 1 1 -4 |
Alt | InvT-1(n, k), 0 ≤ k ≤ n | missing | 1 -1 1 -2 1 1 1 0 -2 1 7 -2 -8 2 1 -7 3 6 0 -3 1 -60 21 61 -8 -18 3 1 61 -18 -70 13 17 0 -4 1 797 |
Alt | RevInvT-1(n, n - k), 0 ≤ k ≤ n | missing | 1 1 -1 1 1 -2 1 -2 0 1 1 2 -8 -2 7 1 -3 0 6 3 -7 1 3 -18 -8 61 21 -60 1 -4 0 17 13 -70 -18 61 1 4 |
Alt | InvRev(T(n, n - k))-1, 0 ≤ k ≤ n | A055138 | 1 1 1 0 1 1 -1 0 2 1 -1 -2 0 2 1 1 -3 -6 0 3 1 4 3 -7 -8 0 3 1 1 18 18 -13 -17 0 4 1 -19 4 56 28 |
Alt | Accsee docs | missing | 1 1 0 1 0 1 1 -1 1 0 1 -1 3 1 2 1 -2 4 -2 1 0 1 -2 7 -3 6 3 4 1 -3 9 -10 9 -3 1 0 1 -3 13 -15 23 -5 |
Alt | AccRevsee docs | missing | 1 -1 0 1 0 1 -1 1 -1 0 1 -1 3 1 2 -1 2 -4 2 -1 0 1 -2 7 -3 6 3 4 -1 3 -9 10 -9 3 -1 0 1 -3 13 -15 |
Alt | AntiDiagsee docs | A102541 | 1 1 1 -1 1 -1 1 -2 1 1 -2 2 1 -3 4 -1 1 -3 6 -2 1 -4 9 -6 1 1 -4 12 -10 3 1 -5 16 -19 9 -1 1 -5 20 |
Alt | Diffx1T(n, k) (k+1) | missing | 1 1 -2 1 -2 3 1 -4 6 -4 1 -4 12 -8 5 1 -6 18 -24 15 -6 1 -6 27 -40 45 -18 7 1 -8 36 -76 95 -72 28 |
Alt | RowSum∑ k=0..n T(n, k) | A077957 | 1 0 1 0 2 0 4 0 8 0 16 0 32 0 64 0 128 0 256 0 512 0 1024 0 2048 0 4096 0 8192 0 16384 0 32768 0 |
Alt | EvenSum∑ k=0..n T(n, k) even(k) | A005418 | 1 1 2 3 6 10 20 36 72 136 272 528 1056 2080 4160 8256 16512 32896 65792 131328 262656 524800 |
Alt | OddSum∑ k=0..n T(n, k) odd(k) | A051437 | 0 -1 -1 -3 -4 -10 -16 -36 -64 -136 -256 -528 -1024 -2080 -4096 -8256 -16384 -32896 -65536 -131328 |
Alt | AltSum∑ k=0..n T(n, k) (-1)^k | A005418 | 1 2 3 6 10 20 36 72 136 272 528 1056 2080 4160 8256 16512 32896 65792 131328 262656 524800 1049600 |
Alt | AbsSum∑ k=0..n | T(n, k) | | A005418 | 1 2 3 6 10 20 36 72 136 272 528 1056 2080 4160 8256 16512 32896 65792 131328 262656 524800 1049600 |
Alt | DiagSum∑ k=0..n // 2 T(n - k, k) | missing | 1 1 0 0 0 1 1 2 1 2 1 4 3 7 4 10 6 17 11 28 17 44 27 72 45 117 72 188 116 305 189 494 305 798 493 |
Alt | AccSum∑ k=0..n ∑ j=0..k T(n, j) | missing | 1 1 2 1 6 2 16 4 40 8 96 16 224 32 512 64 1152 128 2560 256 5632 512 12288 1024 26624 2048 57344 |
Alt | AccRevSum∑ k=0..n ∑ j=0..k T(n, n - j) | missing | 1 -1 2 -1 6 -2 16 -4 40 -8 96 -16 224 -32 512 -64 1152 -128 2560 -256 5632 -512 12288 -1024 26624 |
Alt | RowLcmLcm k=0..n | T(n, k) | > 1 | missing | 1 1 1 2 4 6 90 228 2128 660 69300 60180 3971880 950460 190282092 53804520 1865223360 4887361080 |
Alt | RowGcdGcd k=0..n | T(n, k) | > 1 | missing | 1 1 1 2 2 3 1 1 2 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Alt | RowMaxMax k=0..n | T(n, k) | | A034872 | 1 1 1 2 4 6 10 19 38 66 126 236 472 868 1716 3235 6470 12190 24310 46252 92504 176484 352716 676270 |
Alt | ColMiddleT(n, n // 2) | A034872 | 1 1 -1 -2 4 6 -10 -19 38 66 -126 -236 472 868 -1716 -3235 6470 12190 -24310 -46252 92504 176484 |
Alt | CentralET(2 n, n) | A032123 | 1 -1 4 -10 38 -126 472 -1716 6470 -24310 92504 -352716 1352540 -5200300 20060016 -77558760 |
Alt | CentralOT(2 n + 1, n) | A005654 | 1 -2 6 -19 66 -236 868 -3235 12190 -46252 176484 -676270 2600612 -10030008 38781096 -150273315 |
Alt | ColLeftT(n, 0) | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Alt | BinConv∑ k=0..n C(n, k) T(n, k) | missing | 1 0 0 0 10 0 36 0 358 0 2200 0 17524 0 125048 0 957254 0 7160112 0 54696460 0 416637848 0 |
Alt | InvBinConv∑ k=0..n C(n, k) T(n, n - k) (-1)^k | missing | 1 -2 4 -14 42 -152 508 -1892 6758 -25556 94704 -361748 1369140 -5266848 20185064 -78054824 |
Alt | TransNat0∑ k=0..n T(n, k) k | missing | 0 -1 1 -1 4 -2 12 -4 32 -8 80 -16 192 -32 448 -64 1024 -128 2304 -256 5120 -512 11264 -1024 24576 |
Alt | TransNat1∑ k=0..n T(n, k) (k + 1) | missing | 1 -1 2 -1 6 -2 16 -4 40 -8 96 -16 224 -32 512 -64 1152 -128 2560 -256 5632 -512 12288 -1024 26624 |
Alt | TransSqrs∑ k=0..n T(n, k) k^2 | missing | 0 -1 3 -3 12 -10 48 -28 160 -72 480 -176 1344 -416 3584 -960 9216 -2176 23040 -4864 56320 -10752 |
Alt | PosHalf∑ k=0..n 2^n T(n, k) (1/2)^k | missing | 1 1 3 3 13 13 63 63 313 313 1563 1563 7813 7813 39063 39063 195313 195313 976563 976563 4882813 |
Alt | NegHalf∑ k=0..n (-2)^n T(n, k) (-1/2)^k | missing | 1 -3 7 -21 53 -159 427 -1281 3593 -10779 31087 -93261 273533 -820599 2430547 -7291641 21718673 |
Alt | DiagRow2T(n + 2, n) | A002620 | 1 -2 4 -6 9 -12 16 -20 25 -30 36 -42 49 -56 64 -72 81 -90 100 -110 121 -132 144 -156 169 -182 196 |
Alt | DiagRow3T(n + 3, n) | A005993 | 1 -2 6 -10 19 -28 44 -60 85 -110 146 -182 231 -280 344 -408 489 -570 670 -770 891 -1012 1156 -1300 |
Alt | DiagCol1T(n + 1, 1) | A004526 | -1 -1 -2 -2 -3 -3 -4 -4 -5 -5 -6 -6 -7 -7 -8 -8 -9 -9 -10 -10 -11 -11 -12 -12 -13 -13 -14 -14 -15 |
Alt | DiagCol2T(n + 2, 2) | A002620 | 1 2 4 6 9 12 16 20 25 30 36 42 49 56 64 72 81 90 100 110 121 132 144 156 169 182 196 210 225 240 |
Alt | DiagCol3T(n + 3, 3) | A005993 | -1 -2 -6 -10 -19 -28 -44 -60 -85 -110 -146 -182 -231 -280 -344 -408 -489 -570 -670 -770 -891 -1012 |
Alt | Polysee docs | missing | 1 1 1 1 0 1 1 1 -1 1 1 0 3 -2 1 1 2 -3 7 -3 1 1 0 13 -14 13 -4 1 1 4 -13 58 -39 21 -5 1 1 0 63 -116 |
Alt | PolyRow1∑ k=0..1 T(1, k) n^k | A000027 | 1 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25 -26 |
Alt | PolyRow2∑ k=0..2 T(2, k) n^k | A002061 | 1 1 3 7 13 21 31 43 57 73 91 111 133 157 183 211 241 273 307 343 381 421 463 507 553 601 651 703 |
Alt | PolyRow3∑ k=0..3 T(3, k) n^k | A027444 | 1 0 -3 -14 -39 -84 -155 -258 -399 -584 -819 -1110 -1463 -1884 -2379 -2954 -3615 -4368 -5219 -6174 |
Alt | PolyCol3∑ k=0..n T(n, k) 3^k | missing | 1 -2 7 -14 58 -116 532 -1064 5128 -10256 50512 -101024 502048 -1004096 5008192 -10016384 50032768 |
Alt | PolyDiag∑ k=0..n T(n, k) n^k | missing | 1 0 3 -14 185 -1864 33139 -514968 11807713 -247957568 6998442451 -185135408160 6216271383673 |
Inv | TriangleT(n, k), 0 ≤ k ≤ n | A055138 | 1 -1 1 0 -1 1 1 0 -2 1 -1 2 0 -2 1 -1 -3 6 0 -3 1 4 -3 -7 8 0 -3 1 -1 18 -18 -13 17 0 -4 1 -19 -4 |
Inv | RevT(n, n - k), 0 ≤ k ≤ n | missing | 1 1 -1 1 -1 0 1 -2 0 1 1 -2 0 2 -1 1 -3 0 6 -3 -1 1 -3 0 8 -7 -3 4 1 -4 0 17 -13 -18 18 -1 1 -4 0 |
Inv | RevInvT-1(n, n - k), 0 ≤ k ≤ n | A034851 | 1 1 1 1 1 1 1 2 2 1 1 2 4 2 1 1 3 6 6 3 1 1 3 9 10 9 3 1 1 4 12 19 19 12 4 1 1 4 16 28 38 28 16 4 1 |
Inv | Accsee docs | missing | 1 -1 0 0 -1 0 1 1 -1 0 -1 1 1 -1 0 -1 -4 2 2 -1 0 4 1 -6 2 2 -1 0 -1 17 -1 -14 3 3 -1 0 -19 -23 33 |
Inv | AccRevsee docs | missing | 1 1 0 1 0 0 1 -1 -1 0 1 -1 -1 1 0 1 -2 -2 4 1 0 1 -2 -2 6 -1 -4 0 1 -3 -3 14 1 -17 1 0 1 -3 -3 17 |
Inv | AntiDiagsee docs | missing | 1 -1 0 1 1 -1 -1 0 1 -1 2 -2 4 -3 0 1 -1 -3 6 -2 -19 18 -7 0 1 31 -4 -18 8 -3 120 -127 56 -13 0 1 |
Inv | Diffx1T(n, k) (k+1) | missing | 1 -1 2 0 -2 3 1 0 -6 4 -1 4 0 -8 5 -1 -6 18 0 -15 6 4 -6 -21 32 0 -18 7 -1 36 -54 -52 85 0 -28 8 |
Inv | RowSum∑ k=0..n T(n, k) | A000007 | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Inv | EvenSum∑ k=0..n T(n, k) even(k) | missing | 1 -1 1 -1 0 2 -2 -6 16 24 -152 -88 1888 -752 -30416 49488 619264 -2029184 -15480192 86596736 |
Inv | OddSum∑ k=0..n T(n, k) odd(k) | missing | 0 1 -1 1 0 -2 2 6 -16 -24 152 88 -1888 752 30416 -49488 -619264 2029184 15480192 -86596736 |
Inv | AltSum∑ k=0..n T(n, k) (-1)^k | missing | 1 -2 2 -2 0 4 -4 -12 32 48 -304 -176 3776 -1504 -60832 98976 1238528 -4058368 -30960384 173193472 |
Inv | AbsSum∑ k=0..n | T(n, k) | | missing | 1 2 2 4 6 14 26 72 154 528 1384 5112 17482 77532 314132 1538680 7372260 38890280 227556344 |
Inv | DiagSum∑ k=0..n // 2 T(n - k, k) | missing | 1 -1 1 0 0 -1 2 0 -7 14 37 -274 -117 5409 -3923 -126708 218702 3599687 -9874814 -123534970 |
Inv | AccSum∑ k=0..n ∑ j=0..k T(n, j) | missing | 1 -1 -1 1 0 -2 2 6 -16 -24 152 88 -1888 752 30416 -49488 -619264 2029184 15480192 -86596736 |
Inv | AccRevSum∑ k=0..n ∑ j=0..k T(n, n - j) | missing | 1 1 1 -1 0 2 -2 -6 16 24 -152 -88 1888 -752 -30416 49488 619264 -2029184 -15480192 86596736 |
Inv | RowLcmLcm k=0..n | T(n, k) | > 1 | missing | 1 1 1 2 2 6 168 7956 58520 1180627560 599709600 3369603117819120 353784017275594040520 |
Inv | RowGcdGcd k=0..n | T(n, k) | > 1 | A087102 | 1 1 1 2 2 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Inv | RowMaxMax k=0..n | T(n, k) | | missing | 1 1 1 2 2 6 8 18 56 136 511 1603 6104 24328 94727 474145 1851152 11611376 54118183 349311143 |
Inv | ColMiddleT(n, n // 2) | missing | 1 -1 -1 0 0 6 8 -13 -22 -98 -126 548 968 4100 4808 -39301 -71858 -352990 -376198 4730312 8838320 |
Inv | CentralET(2 n, n) | missing | 1 -1 0 8 -22 -126 968 4808 -71858 -376198 8838320 50043168 -1644054252 -10101018188 431610578224 |
Inv | CentralOT(2 n + 1, n) | missing | -1 0 6 -13 -98 548 4100 -39301 -352990 4730312 51058660 -867789026 -11050351524 225683560824 |
Inv | ColLeftT(n, 0) | A055139 | 1 -1 0 1 -1 -1 4 -1 -19 31 120 -483 -933 8623 6748 -189589 41561 5147391 -6328400 -170622599 |
Inv | ColRightT(n, n) | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Inv | BinConv∑ k=0..n C(n, k) T(n, k) | missing | 1 0 -1 -4 0 30 24 -140 -502 -1180 11334 71568 -273592 -2290348 5847400 60070648 -16955314 |
Inv | InvBinConv∑ k=0..n C(n, k) T(n, n - k) (-1)^k | missing | 1 2 3 6 0 -58 -224 -516 522 13176 42878 -113740 -1343160 -3650572 21802616 304212568 575793230 |
Inv | TransNat0∑ k=0..n T(n, k) k | missing | 0 1 1 -1 0 2 -2 -6 16 24 -152 -88 1888 -752 -30416 49488 619264 -2029184 -15480192 86596736 |
Inv | TransNat1∑ k=0..n T(n, k) (k + 1) | missing | 1 1 1 -1 0 2 -2 -6 16 24 -152 -88 1888 -752 -30416 49488 619264 -2029184 -15480192 86596736 |
Inv | TransSqrs∑ k=0..n T(n, k) k^2 | missing | 0 1 3 1 0 -2 2 6 -16 -24 152 88 -1888 752 30416 -49488 -619264 2029184 15480192 -86596736 |
Inv | PosHalf∑ k=0..n 2^n T(n, k) (1/2)^k | missing | 1 -1 -1 5 -3 -37 107 369 -2887 -3657 99671 -71011 -4576843 14787859 272568899 -1851714807 |
Inv | NegHalf∑ k=0..n (-2)^n T(n, k) (-1/2)^k | missing | 1 3 3 -3 -27 -57 183 1521 -375 -45045 -80277 1800357 7427181 -96072369 -683228769 6607346841 |
Inv | DiagRow1T(n + 1, n) | A004526 | -1 -1 -2 -2 -3 -3 -4 -4 -5 -5 -6 -6 -7 -7 -8 -8 -9 -9 -10 -10 -11 -11 -12 -12 -13 -13 -14 -14 -15 |
Inv | DiagRow3T(n + 3, n) | missing | 1 2 6 8 17 20 36 40 65 70 106 112 161 168 232 240 321 330 430 440 561 572 716 728 897 910 1106 1120 |
Inv | DiagCol1T(n + 1, 1) | missing | 1 -1 0 2 -3 -3 18 -4 -127 163 1212 -3154 -15427 67553 251198 -1737128 -4989983 54118183 113792344 |
Inv | DiagCol2T(n + 2, 2) | missing | 1 -2 0 6 -7 -18 56 60 -511 -58 6104 -5998 -94727 231350 1851152 -8350344 -43987263 335148526 |
Inv | DiagCol3T(n + 3, 3) | missing | 1 -2 0 8 -13 -28 136 80 -1603 690 24328 -35848 -474145 1263336 11611376 -47348704 -349311143 |
Inv | Polysee docs | missing | 1 -1 1 0 0 1 1 0 1 1 -1 0 2 2 1 -1 0 1 6 3 1 4 0 3 10 12 4 1 -1 0 1 32 33 20 5 1 -19 0 2 44 135 76 |
Inv | PolyRow1∑ k=0..1 T(1, k) n^k | A000027 | -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 |
Inv | PolyRow2∑ k=0..2 T(2, k) n^k | A002378 | 0 0 2 6 12 20 30 42 56 72 90 110 132 156 182 210 240 272 306 342 380 420 462 506 552 600 650 702 |
Inv | PolyRow3∑ k=0..3 T(3, k) n^k | A081437 | 1 0 1 10 33 76 145 246 385 568 801 1090 1441 1860 2353 2926 3585 4336 5185 6138 7201 8380 9681 |
Inv | PolyCol2∑ k=0..n T(n, k) 2^k | missing | 1 1 2 1 3 1 2 3 5 -15 2 181 -169 -2623 5474 49383 -169783 -1167775 5970306 33831145 -245056341 |
Inv | PolyCol3∑ k=0..n T(n, k) 3^k | missing | 1 2 6 10 32 44 148 188 608 784 2544 2928 9792 15712 42016 -19744 197120 2072832 -2222336 -60660992 |
Inv | PolyDiag∑ k=0..n T(n, k) n^k | missing | 1 0 2 10 135 1384 24790 388548 8943053 188771008 5340310650 141757919920 4767229396611 |
Inv:Rev | TriangleT(n, k), 0 ≤ k ≤ n | missing | 1 1 -1 1 -1 0 1 -2 0 1 1 -2 0 2 -1 1 -3 0 6 -3 -1 1 -3 0 8 -7 -3 4 1 -4 0 17 -13 -18 18 -1 1 -4 0 |
Inv:Rev | RevT(n, n - k), 0 ≤ k ≤ n | A055138 | 1 -1 1 0 -1 1 1 0 -2 1 -1 2 0 -2 1 -1 -3 6 0 -3 1 4 -3 -7 8 0 -3 1 -1 18 -18 -13 17 0 -4 1 -19 -4 |
Inv:Rev | InvRev(T(n, n - k))-1, 0 ≤ k ≤ n | A034851 | 1 1 1 1 1 1 1 2 2 1 1 2 4 2 1 1 3 6 6 3 1 1 3 9 10 9 3 1 1 4 12 19 19 12 4 1 1 4 16 28 38 28 16 4 1 |
Inv:Rev | Accsee docs | missing | 1 1 0 1 0 0 1 -1 -1 0 1 -1 -1 1 0 1 -2 -2 4 1 0 1 -2 -2 6 -1 -4 0 1 -3 -3 14 1 -17 1 0 1 -3 -3 17 |
Inv:Rev | AccRevsee docs | missing | 1 -1 0 0 -1 0 1 1 -1 0 -1 1 1 -1 0 -1 -4 2 2 -1 0 4 1 -6 2 2 -1 0 -1 17 -1 -14 3 3 -1 0 -19 -23 33 |
Inv:Rev | AntiDiagsee docs | missing | 1 1 1 -1 1 -1 1 -2 0 1 -2 0 1 -3 0 1 1 -3 0 2 1 -4 0 6 -1 1 -4 0 8 -3 1 -5 0 17 -7 -1 1 -5 0 20 -13 |
Inv:Rev | Diffx1T(n, k) (k+1) | missing | 1 1 -2 1 -2 0 1 -4 0 4 1 -4 0 8 -5 1 -6 0 24 -15 -6 1 -6 0 32 -35 -18 28 1 -8 0 68 -65 -108 126 -8 |
Inv:Rev | RowSum∑ k=0..n T(n, k) | A000007 | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Inv:Rev | EvenSum∑ k=0..n T(n, k) even(k) | missing | 1 1 1 1 0 -2 -2 6 16 -24 -152 88 1888 752 -30416 -49488 619264 2029184 -15480192 -86596736 |
Inv:Rev | OddSum∑ k=0..n T(n, k) odd(k) | missing | 0 -1 -1 -1 0 2 2 -6 -16 24 152 -88 -1888 -752 30416 49488 -619264 -2029184 15480192 86596736 |
Inv:Rev | AltSum∑ k=0..n T(n, k) (-1)^k | missing | 1 2 2 2 0 -4 -4 12 32 -48 -304 176 3776 1504 -60832 -98976 1238528 4058368 -30960384 -173193472 |
Inv:Rev | AbsSum∑ k=0..n | T(n, k) | | missing | 1 2 2 4 6 14 26 72 154 528 1384 5112 17482 77532 314132 1538680 7372260 38890280 227556344 |
Inv:Rev | DiagSum∑ k=0..n // 2 T(n - k, k) | missing | 1 1 0 0 -1 -1 -1 0 2 2 5 0 -5 -9 -34 0 -3 85 319 32 522 -1306 -3761 -1760 -15571 26853 48300 79392 |
Inv:Rev | AccSum∑ k=0..n ∑ j=0..k T(n, j) | missing | 1 1 1 -1 0 2 -2 -6 16 24 -152 -88 1888 -752 -30416 49488 619264 -2029184 -15480192 86596736 |
Inv:Rev | AccRevSum∑ k=0..n ∑ j=0..k T(n, n - j) | missing | 1 -1 -1 1 0 -2 2 6 -16 -24 152 88 -1888 752 30416 -49488 -619264 2029184 15480192 -86596736 |
Inv:Rev | RowLcmLcm k=0..n | T(n, k) | > 1 | missing | 1 1 1 2 2 6 168 7956 58520 1180627560 599709600 3369603117819120 353784017275594040520 |
Inv:Rev | RowGcdGcd k=0..n | T(n, k) | > 1 | A087102 | 1 1 1 2 2 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Inv:Rev | RowMaxMax k=0..n | T(n, k) | | missing | 1 1 1 2 2 6 8 18 56 136 511 1603 6104 24328 94727 474145 1851152 11611376 54118183 349311143 |
Inv:Rev | ColMiddleT(n, n // 2) | missing | 1 1 -1 -2 0 0 8 17 -22 -34 -126 -336 968 1608 4808 15777 -71858 -125562 -376198 -1427860 8838320 |
Inv:Rev | CentralET(2 n, n) | missing | 1 -1 0 8 -22 -126 968 4808 -71858 -376198 8838320 50043168 -1644054252 -10101018188 431610578224 |
Inv:Rev | CentralOT(2 n + 1, n) | missing | 1 -2 0 17 -34 -336 1608 15777 -125562 -1427860 15955664 210948682 -3033012724 -46060191984 |
Inv:Rev | ColLeftT(n, 0) | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Inv:Rev | ColRightT(n, n) | A055139 | 1 -1 0 1 -1 -1 4 -1 -19 31 120 -483 -933 8623 6748 -189589 41561 5147391 -6328400 -170622599 |
Inv:Rev | BinConv∑ k=0..n C(n, k) T(n, k) | missing | 1 0 -1 -4 0 30 24 -140 -502 -1180 11334 71568 -273592 -2290348 5847400 60070648 -16955314 |
Inv:Rev | InvBinConv∑ k=0..n C(n, k) T(n, n - k) (-1)^k | missing | 1 -2 3 -6 0 58 -224 516 522 -13176 42878 113740 -1343160 3650572 21802616 -304212568 575793230 |
Inv:Rev | TransNat0∑ k=0..n T(n, k) k | missing | 0 -1 -1 1 0 -2 2 6 -16 -24 152 88 -1888 752 30416 -49488 -619264 2029184 15480192 -86596736 |
Inv:Rev | TransNat1∑ k=0..n T(n, k) (k + 1) | missing | 1 -1 -1 1 0 -2 2 6 -16 -24 152 88 -1888 752 30416 -49488 -619264 2029184 15480192 -86596736 |
Inv:Rev | TransSqrs∑ k=0..n T(n, k) k^2 | missing | 0 -1 -1 7 0 -22 26 90 -272 -456 3192 2024 -47200 20304 882064 -1534128 -20435712 71021440 572767104 |
Inv:Rev | PosHalf∑ k=0..n 2^n T(n, k) (1/2)^k | missing | 1 1 2 1 3 1 2 3 5 -15 2 181 -169 -2623 5474 49383 -169783 -1167775 5970306 33831145 -245056341 |
Inv:Rev | NegHalf∑ k=0..n (-2)^n T(n, k) (-1/2)^k | missing | 1 -3 6 -15 27 -51 78 -117 213 -531 1014 -267 -2433 -13683 91806 105471 -1975575 -1055523 57489894 |
Inv:Rev | DiagRow1T(n + 1, n) | missing | 1 -1 0 2 -3 -3 18 -4 -127 163 1212 -3154 -15427 67553 251198 -1737128 -4989983 54118183 113792344 |
Inv:Rev | DiagRow2T(n + 2, n) | missing | 1 -2 0 6 -7 -18 56 60 -511 -58 6104 -5998 -94727 231350 1851152 -8350344 -43987263 335148526 |
Inv:Rev | DiagRow3T(n + 3, n) | missing | 1 -2 0 8 -13 -28 136 80 -1603 690 24328 -35848 -474145 1263336 11611376 -47348704 -349311143 |
Inv:Rev | DiagCol1T(n + 1, 1) | A004526 | -1 -1 -2 -2 -3 -3 -4 -4 -5 -5 -6 -6 -7 -7 -8 -8 -9 -9 -10 -10 -11 -11 -12 -12 -13 -13 -14 -14 -15 |
Inv:Rev | DiagCol3T(n + 3, 3) | missing | 1 2 6 8 17 20 36 40 65 70 106 112 161 168 232 240 321 330 430 440 561 572 716 728 897 910 1106 1120 |
Inv:Rev | Polysee docs | missing | 1 1 1 1 0 1 1 0 -1 1 1 0 -1 -2 1 1 0 5 -2 -3 1 1 0 -3 22 -3 -4 1 1 0 -37 -32 57 -4 -5 1 1 0 107 |
Inv:Rev | PolyRow1∑ k=0..1 T(1, k) n^k | A000027 | 1 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25 -26 |
Inv:Rev | PolyRow2∑ k=0..2 T(2, k) n^k | A000027 | 1 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25 -26 |
Inv:Rev | PolyRow3∑ k=0..3 T(3, k) n^k | A033445 | 1 0 5 22 57 116 205 330 497 712 981 1310 1705 2172 2717 3346 4065 4880 5797 6822 7961 9220 10605 |
Inv:Rev | PolyCol2∑ k=0..n T(n, k) 2^k | missing | 1 -1 -1 5 -3 -37 107 369 -2887 -3657 99671 -71011 -4576843 14787859 272568899 -1851714807 |
Inv:Rev | PolyCol3∑ k=0..n T(n, k) 3^k | missing | 1 -2 -2 22 -32 -332 1828 5956 -100640 -18320 7292848 -23743088 -705224384 5738455456 87508486816 |
Inv:Rev | PolyDiag∑ k=0..n T(n, k) n^k | missing | 1 0 -1 22 -135 -4264 155935 966204 -313473055 6896372032 1312974939951 -106834615142320 |
<< | Table | Source | Similars | Index | >> |
Note: The A-numbers are based on a finite number of numerical comparisons. They ignore the sign and the OEIS-offset. Sometimes they differ in the first few values. In such cases, we consider our version to be the better one because it has a common formula as a root. Since the offset of all triangles is 0 also the offset of all sequences is 0.