OEIS Similars: A356546
↕ Type | ↕ Trait | ↕ Anum | ↕ Sequence |
---|---|---|---|
Std | TriangleT(n, k), 0 ≤ k ≤ n | A356546 | 1 2 2 6 12 6 20 60 60 20 70 280 420 280 70 252 1260 2520 2520 1260 252 924 5544 13860 18480 13860 |
Std | RevT(n, n - k), 0 ≤ k ≤ n | A356546 | 1 2 2 6 12 6 20 60 60 20 70 280 420 280 70 252 1260 2520 2520 1260 252 924 5544 13860 18480 13860 |
Std | Accsee docs | missing | 1 2 4 6 18 24 20 80 140 160 70 350 770 1050 1120 252 1512 4032 6552 7812 8064 924 6468 20328 38808 |
Std | AccRevsee docs | missing | 1 2 4 6 18 24 20 80 140 160 70 350 770 1050 1120 252 1512 4032 6552 7812 8064 924 6468 20328 38808 |
Std | AntiDiagsee docs | A008556 | 1 2 6 2 20 12 70 60 6 252 280 60 924 1260 420 20 3432 5544 2520 280 12870 24024 13860 2520 70 48620 |
Std | Diffx1T(n, k) (k+1) | missing | 1 2 4 6 24 18 20 120 180 80 70 560 1260 1120 350 252 2520 7560 10080 6300 1512 924 11088 41580 |
Std | RowSum∑ k=0..n T(n, k) | A059304 | 1 4 24 160 1120 8064 59136 439296 3294720 24893440 189190144 1444724736 11076222976 85201715200 |
Std | EvenSum∑ k=0..n T(n, k) even(k) | A069723 | 1 2 12 80 560 4032 29568 219648 1647360 12446720 94595072 722362368 5538111488 42600857600 |
Std | OddSum∑ k=0..n T(n, k) odd(k) | A069723 | 0 2 12 80 560 4032 29568 219648 1647360 12446720 94595072 722362368 5538111488 42600857600 |
Std | AltSum∑ k=0..n T(n, k) (-1)^k | A000007 | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Std | AbsSum∑ k=0..n | T(n, k) | | A059304 | 1 4 24 160 1120 8064 59136 439296 3294720 24893440 189190144 1444724736 11076222976 85201715200 |
Std | DiagSum∑ k=0..n // 2 T(n - k, k) | A006139 | 1 2 8 32 136 592 2624 11776 53344 243392 1116928 5149696 23835904 110690816 515483648 2406449152 |
Std | AccSum∑ k=0..n ∑ j=0..k T(n, j) | missing | 1 6 48 400 3360 28224 236544 1976832 16473600 136913920 1135140864 9390710784 77533560832 |
Std | AccRevSum∑ k=0..n ∑ j=0..k T(n, n - j) | missing | 1 6 48 400 3360 28224 236544 1976832 16473600 136913920 1135140864 9390710784 77533560832 |
Std | RowLcmLcm k=0..n | T(n, k) | > 1 | missing | 1 2 12 60 840 2520 55440 360360 3603600 12252240 465585120 1629547920 74959204320 267711444000 |
Std | RowGcdGcd k=0..n | T(n, k) | > 1 | A000984 | 1 2 6 20 70 252 924 3432 12870 48620 184756 705432 2704156 10400600 40116600 155117520 601080390 |
Std | RowMaxMax k=0..n | T(n, k) | | missing | 1 2 12 60 420 2520 18480 120120 900900 6126120 46558512 325909584 2498640144 17847429600 |
Std | ColMiddleT(n, n // 2) | missing | 1 2 12 60 420 2520 18480 120120 900900 6126120 46558512 325909584 2498640144 17847429600 |
Std | CentralET(2 n, n) | A000897 | 1 12 420 18480 900900 46558512 2498640144 137680171200 7735904619300 441233078286000 |
Std | CentralOT(2 n + 1, n) | missing | 2 60 2520 120120 6126120 325909584 17847429600 998181241200 56729967208200 3265124779316400 |
Std | ColLeftT(n, 0) | A000984 | 1 2 6 20 70 252 924 3432 12870 48620 184756 705432 2704156 10400600 40116600 155117520 601080390 |
Std | ColRightT(n, n) | A000984 | 1 2 6 20 70 252 924 3432 12870 48620 184756 705432 2704156 10400600 40116600 155117520 601080390 |
Std | BinConv∑ k=0..n C(n, k) T(n, k) | A002894 | 1 4 36 400 4900 63504 853776 11778624 165636900 2363904400 34134779536 497634306624 7312459672336 |
Std | InvBinConv∑ k=0..n C(n, k) T(n, n - k) (-1)^k | A000897 | 1 0 -12 0 420 0 -18480 0 900900 0 -46558512 0 2498640144 0 -137680171200 0 7735904619300 0 |
Std | TransNat0∑ k=0..n T(n, k) k | missing | 0 2 24 240 2240 20160 177408 1537536 13178880 112020480 945950720 7945986048 66457337856 |
Std | TransNat1∑ k=0..n T(n, k) (k + 1) | missing | 1 6 48 400 3360 28224 236544 1976832 16473600 136913920 1135140864 9390710784 77533560832 |
Std | TransSqrs∑ k=0..n T(n, k) k^2 | missing | 0 2 36 480 5600 60480 620928 6150144 59304960 560102400 5202728960 47675916288 431972696064 |
Std | PosHalf∑ k=0..n 2^n T(n, k) (1/2)^k | A098658 | 1 6 54 540 5670 61236 673596 7505784 84440070 956987460 10909657044 124965162504 1437099368796 |
Std | NegHalf∑ k=0..n (-2)^n T(n, k) (-1/2)^k | A000984 | 1 -2 6 -20 70 -252 924 -3432 12870 -48620 184756 -705432 2704156 -10400600 40116600 -155117520 |
Std | DiagRow1T(n + 1, n) | A005430 | 2 12 60 280 1260 5544 24024 102960 437580 1847560 7759752 32449872 135207800 561632400 2326762800 |
Std | DiagRow2T(n + 2, n) | A000911 | 6 60 420 2520 13860 72072 360360 1750320 8314020 38798760 178474296 811246800 3650610600 |
Std | DiagRow3T(n + 3, n) | missing | 20 280 2520 18480 120120 720720 4084080 22170720 116396280 594914320 2974571600 14602442400 |
Std | DiagCol1T(n + 1, 1) | A005430 | 2 12 60 280 1260 5544 24024 102960 437580 1847560 7759752 32449872 135207800 561632400 2326762800 |
Std | DiagCol2T(n + 2, 2) | A000911 | 6 60 420 2520 13860 72072 360360 1750320 8314020 38798760 178474296 811246800 3650610600 |
Std | DiagCol3T(n + 3, 3) | missing | 20 280 2520 18480 120120 720720 4084080 22170720 116396280 594914320 2974571600 14602442400 |
Std | Polysee docs | missing | 1 2 1 6 4 1 20 24 6 1 70 160 54 8 1 252 1120 540 96 10 1 924 8064 5670 1280 150 12 1 3432 59136 |
Std | PolyRow1∑ k=0..1 T(1, k) n^k | A005843 | 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 |
Std | PolyRow2∑ k=0..2 T(2, k) n^k | A033581 | 6 24 54 96 150 216 294 384 486 600 726 864 1014 1176 1350 1536 1734 1944 2166 2400 2646 2904 3174 |
Std | PolyRow3∑ k=0..3 T(3, k) n^k | missing | 20 160 540 1280 2500 4320 6860 10240 14580 20000 26620 34560 43940 54880 67500 81920 98260 116640 |
Std | PolyCol2∑ k=0..n T(n, k) 2^k | A098658 | 1 6 54 540 5670 61236 673596 7505784 84440070 956987460 10909657044 124965162504 1437099368796 |
Std | PolyCol3∑ k=0..n T(n, k) 3^k | A098430 | 1 8 96 1280 17920 258048 3784704 56229888 843448320 12745441280 193730707456 2958796259328 |
Std | PolyDiag∑ k=0..n T(n, k) n^k | missing | 1 4 54 1280 43750 1959552 108707676 7197425664 554011299270 48620000000000 4792094819582356 |
Alt | TriangleT(n, k), 0 ≤ k ≤ n | A356546 | 1 2 -2 6 -12 6 20 -60 60 -20 70 -280 420 -280 70 252 -1260 2520 -2520 1260 -252 924 -5544 13860 |
Alt | RevT(n, n - k), 0 ≤ k ≤ n | A356546 | 1 -2 2 6 -12 6 -20 60 -60 20 70 -280 420 -280 70 -252 1260 -2520 2520 -1260 252 924 -5544 13860 |
Alt | Accsee docs | missing | 1 2 0 6 -6 0 20 -40 20 0 70 -210 210 -70 0 252 -1008 1512 -1008 252 0 924 -4620 9240 -9240 4620 |
Alt | AccRevsee docs | missing | 1 -2 0 6 -6 0 -20 40 -20 0 70 -210 210 -70 0 -252 1008 -1512 1008 -252 0 924 -4620 9240 -9240 4620 |
Alt | AntiDiagsee docs | A008556 | 1 2 6 -2 20 -12 70 -60 6 252 -280 60 924 -1260 420 -20 3432 -5544 2520 -280 12870 -24024 13860 |
Alt | Diffx1T(n, k) (k+1) | missing | 1 2 -4 6 -24 18 20 -120 180 -80 70 -560 1260 -1120 350 252 -2520 7560 -10080 6300 -1512 924 -11088 |
Alt | RowSum∑ k=0..n T(n, k) | A000007 | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Alt | EvenSum∑ k=0..n T(n, k) even(k) | A069723 | 1 2 12 80 560 4032 29568 219648 1647360 12446720 94595072 722362368 5538111488 42600857600 |
Alt | OddSum∑ k=0..n T(n, k) odd(k) | A069723 | 0 -2 -12 -80 -560 -4032 -29568 -219648 -1647360 -12446720 -94595072 -722362368 -5538111488 |
Alt | AltSum∑ k=0..n T(n, k) (-1)^k | A059304 | 1 4 24 160 1120 8064 59136 439296 3294720 24893440 189190144 1444724736 11076222976 85201715200 |
Alt | AbsSum∑ k=0..n | T(n, k) | | A059304 | 1 4 24 160 1120 8064 59136 439296 3294720 24893440 189190144 1444724736 11076222976 85201715200 |
Alt | DiagSum∑ k=0..n // 2 T(n - k, k) | A000079 | 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 1048576 |
Alt | AccSum∑ k=0..n ∑ j=0..k T(n, j) | A130706 | 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Alt | AccRevSum∑ k=0..n ∑ j=0..k T(n, n - j) | A130706 | 1 -2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Alt | RowLcmLcm k=0..n | T(n, k) | > 1 | missing | 1 2 12 60 840 2520 55440 360360 3603600 12252240 465585120 1629547920 74959204320 267711444000 |
Alt | RowGcdGcd k=0..n | T(n, k) | > 1 | A000984 | 1 2 6 20 70 252 924 3432 12870 48620 184756 705432 2704156 10400600 40116600 155117520 601080390 |
Alt | RowMaxMax k=0..n | T(n, k) | | missing | 1 2 12 60 420 2520 18480 120120 900900 6126120 46558512 325909584 2498640144 17847429600 |
Alt | ColMiddleT(n, n // 2) | missing | 1 2 -12 -60 420 2520 -18480 -120120 900900 6126120 -46558512 -325909584 2498640144 17847429600 |
Alt | CentralET(2 n, n) | A000897 | 1 -12 420 -18480 900900 -46558512 2498640144 -137680171200 7735904619300 -441233078286000 |
Alt | CentralOT(2 n + 1, n) | missing | 2 -60 2520 -120120 6126120 -325909584 17847429600 -998181241200 56729967208200 -3265124779316400 |
Alt | ColLeftT(n, 0) | A000984 | 1 2 6 20 70 252 924 3432 12870 48620 184756 705432 2704156 10400600 40116600 155117520 601080390 |
Alt | ColRightT(n, n) | A000984 | 1 -2 6 -20 70 -252 924 -3432 12870 -48620 184756 -705432 2704156 -10400600 40116600 -155117520 |
Alt | BinConv∑ k=0..n C(n, k) T(n, k) | A000897 | 1 0 -12 0 420 0 -18480 0 900900 0 -46558512 0 2498640144 0 -137680171200 0 7735904619300 0 |
Alt | InvBinConv∑ k=0..n C(n, k) T(n, n - k) (-1)^k | A002894 | 1 -4 36 -400 4900 -63504 853776 -11778624 165636900 -2363904400 34134779536 -497634306624 |
Alt | TransNat0∑ k=0..n T(n, k) k | A335462 | 0 -2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Alt | TransNat1∑ k=0..n T(n, k) (k + 1) | A130706 | 1 -2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Alt | TransSqrs∑ k=0..n T(n, k) k^2 | missing | 0 -2 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Alt | PosHalf∑ k=0..n 2^n T(n, k) (1/2)^k | A000984 | 1 2 6 20 70 252 924 3432 12870 48620 184756 705432 2704156 10400600 40116600 155117520 601080390 |
Alt | NegHalf∑ k=0..n (-2)^n T(n, k) (-1/2)^k | A098658 | 1 -6 54 -540 5670 -61236 673596 -7505784 84440070 -956987460 10909657044 -124965162504 |
Alt | DiagRow1T(n + 1, n) | A005430 | 2 -12 60 -280 1260 -5544 24024 -102960 437580 -1847560 7759752 -32449872 135207800 -561632400 |
Alt | DiagRow2T(n + 2, n) | A000911 | 6 -60 420 -2520 13860 -72072 360360 -1750320 8314020 -38798760 178474296 -811246800 3650610600 |
Alt | DiagRow3T(n + 3, n) | missing | 20 -280 2520 -18480 120120 -720720 4084080 -22170720 116396280 -594914320 2974571600 -14602442400 |
Alt | DiagCol1T(n + 1, 1) | A005430 | -2 -12 -60 -280 -1260 -5544 -24024 -102960 -437580 -1847560 -7759752 -32449872 -135207800 |
Alt | DiagCol2T(n + 2, 2) | A000911 | 6 60 420 2520 13860 72072 360360 1750320 8314020 38798760 178474296 811246800 3650610600 |
Alt | DiagCol3T(n + 3, 3) | missing | -20 -280 -2520 -18480 -120120 -720720 -4084080 -22170720 -116396280 -594914320 -2974571600 |
Alt | Polysee docs | missing | 1 2 1 6 0 1 20 0 -2 1 70 0 6 -4 1 252 0 -20 24 -6 1 924 0 70 -160 54 -8 1 3432 0 -252 1120 -540 96 |
Alt | PolyRow1∑ k=0..1 T(1, k) n^k | A005843 | 2 0 -2 -4 -6 -8 -10 -12 -14 -16 -18 -20 -22 -24 -26 -28 -30 -32 -34 -36 -38 -40 -42 -44 -46 -48 -50 |
Alt | PolyRow2∑ k=0..2 T(2, k) n^k | A033581 | 6 0 6 24 54 96 150 216 294 384 486 600 726 864 1014 1176 1350 1536 1734 1944 2166 2400 2646 2904 |
Alt | PolyRow3∑ k=0..3 T(3, k) n^k | missing | 20 0 -20 -160 -540 -1280 -2500 -4320 -6860 -10240 -14580 -20000 -26620 -34560 -43940 -54880 -67500 |
Alt | PolyCol2∑ k=0..n T(n, k) 2^k | A000984 | 1 -2 6 -20 70 -252 924 -3432 12870 -48620 184756 -705432 2704156 -10400600 40116600 -155117520 |
Alt | PolyCol3∑ k=0..n T(n, k) 3^k | A059304 | 1 -4 24 -160 1120 -8064 59136 -439296 3294720 -24893440 189190144 -1444724736 11076222976 |
Alt | PolyDiag∑ k=0..n T(n, k) n^k | missing | 1 0 6 -160 5670 -258048 14437500 -960740352 74192988870 -6525665935360 644204338791156 |
<< | Table | Source | Similars | Index | >> |
Note: The A-numbers are based on a finite number of numerical comparisons. They ignore the sign and the OEIS-offset. Sometimes they differ in the first few values. In such cases, we consider our version to be the better one because it has a common formula as a root. Since the offset of all triangles is 0 also the offset of all sequences is 0.