OEIS Similars: A029635, A029653
↕ Type | ↕ Trait | ↕ Anum | ↕ Sequence |
---|---|---|---|
Std | TriangleT(n, k), 0 ≤ k ≤ n | A029635 | 2 1 2 1 3 2 1 4 5 2 1 5 9 7 2 1 6 14 16 9 2 1 7 20 30 25 11 2 1 8 27 50 55 36 13 2 1 9 35 77 105 91 |
Std | RevT(n, n - k), 0 ≤ k ≤ n | A029653 | 2 2 1 2 3 1 2 5 4 1 2 7 9 5 1 2 9 16 14 6 1 2 11 25 30 20 7 1 2 13 36 55 50 27 8 1 2 15 49 91 105 |
Std | Accsee docs | missing | 2 1 3 1 4 6 1 5 10 12 1 6 15 22 24 1 7 21 37 46 48 1 8 28 58 83 94 96 1 9 36 86 141 177 190 192 1 |
Std | AccRevsee docs | missing | 2 2 3 2 5 6 2 7 11 12 2 9 18 23 24 2 11 27 41 47 48 2 13 38 68 88 95 96 2 15 51 106 156 183 191 192 |
Std | AntiDiagsee docs | A034807 | 2 1 1 2 1 3 1 4 2 1 5 5 1 6 9 2 1 7 14 7 1 8 20 16 2 1 9 27 30 9 1 10 35 50 25 2 1 11 44 77 55 11 1 |
Std | Diffx1T(n, k) (k+1) | missing | 2 1 4 1 6 6 1 8 15 8 1 10 27 28 10 1 12 42 64 45 12 1 14 60 120 125 66 14 1 16 81 200 275 216 91 16 |
Std | RowSum∑ k=0..n T(n, k) | A007283 | 2 3 6 12 24 48 96 192 384 768 1536 3072 6144 12288 24576 49152 98304 196608 393216 786432 1572864 |
Std | EvenSum∑ k=0..n T(n, k) even(k) | A007283 | 2 1 3 6 12 24 48 96 192 384 768 1536 3072 6144 12288 24576 49152 98304 196608 393216 786432 1572864 |
Std | OddSum∑ k=0..n T(n, k) odd(k) | A007283 | 0 2 3 6 12 24 48 96 192 384 768 1536 3072 6144 12288 24576 49152 98304 196608 393216 786432 1572864 |
Std | AltSum∑ k=0..n T(n, k) (-1)^k | A039964 | 2 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Std | AbsSum∑ k=0..n | T(n, k) | | A007283 | 2 3 6 12 24 48 96 192 384 768 1536 3072 6144 12288 24576 49152 98304 196608 393216 786432 1572864 |
Std | DiagSum∑ k=0..n // 2 T(n - k, k) | A000032 | 2 1 3 4 7 11 18 29 47 76 123 199 322 521 843 1364 2207 3571 5778 9349 15127 24476 39603 64079 |
Std | AccSum∑ k=0..n ∑ j=0..k T(n, j) | A339252 | 2 4 11 28 68 160 368 832 1856 4096 8960 19456 41984 90112 192512 409600 868352 1835008 3866624 |
Std | AccRevSum∑ k=0..n ∑ j=0..k T(n, n - j) | A098156 | 2 5 13 32 76 176 400 896 1984 4352 9472 20480 44032 94208 200704 425984 901120 1900544 3997696 |
Std | RowLcmLcm k=0..n | T(n, k) | > 1 | missing | 2 2 6 20 630 1008 23100 772200 630630 38118080 2933186256 634888800 73620647100 407745122400 |
Std | RowGcdGcd k=0..n | T(n, k) | > 1 | A000012 | 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Std | RowMaxMax k=0..n | T(n, k) | | A050168 | 2 2 3 5 9 16 30 55 105 196 378 714 1386 2640 5148 9867 19305 37180 72930 140998 277134 537472 |
Std | ColMiddleT(n, n // 2) | missing | 2 1 3 4 9 14 30 50 105 182 378 672 1386 2508 5148 9438 19305 35750 72930 136136 277134 520676 |
Std | CentralET(2 n, n) | A029651 | 2 3 9 30 105 378 1386 5148 19305 72930 277134 1058148 4056234 15600900 60174900 232676280 901620585 |
Std | CentralOT(2 n + 1, n) | A051924 | 1 4 14 50 182 672 2508 9438 35750 136136 520676 1998724 7696444 29716000 115000920 445962870 |
Std | ColLeftT(n, 0) | A000012 | 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Std | ColRightT(n, n) | A055642 | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 |
Std | BinConv∑ k=0..n C(n, k) T(n, k) | A029651 | 2 3 9 30 105 378 1386 5148 19305 72930 277134 1058148 4056234 15600900 60174900 232676280 901620585 |
Std | InvBinConv∑ k=0..n C(n, k) T(n, n - k) (-1)^k | missing | 2 1 -3 -2 9 6 -30 -20 105 70 -378 -252 1386 924 -5148 -3432 19305 12870 -72930 -48620 277134 184756 |
Std | TransNat0∑ k=0..n T(n, k) k | A066373 | 0 2 7 20 52 128 304 704 1600 3584 7936 17408 37888 81920 176128 376832 802816 1703936 3604480 |
Std | TransNat1∑ k=0..n T(n, k) (k + 1) | A098156 | 2 5 13 32 76 176 400 896 1984 4352 9472 20480 44032 94208 200704 425984 901120 1900544 3997696 |
Std | TransSqrs∑ k=0..n T(n, k) k^2 | A089658 | 0 2 11 42 136 400 1104 2912 7424 18432 44800 107008 251904 585728 1347584 3072000 6946816 15597568 |
Std | PosHalf∑ k=0..n 2^n T(n, k) (1/2)^k | A003946 | 2 4 12 36 108 324 972 2916 8748 26244 78732 236196 708588 2125764 6377292 19131876 57395628 |
Std | NegHalf∑ k=0..n (-2)^n T(n, k) (-1/2)^k | A000038 | 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Std | DiagRow1T(n + 1, n) | A005408 | 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 |
Std | DiagRow2T(n + 2, n) | A000290 | 1 4 9 16 25 36 49 64 81 100 121 144 169 196 225 256 289 324 361 400 441 484 529 576 625 676 729 784 |
Std | DiagRow3T(n + 3, n) | A000330 | 1 5 14 30 55 91 140 204 285 385 506 650 819 1015 1240 1496 1785 2109 2470 2870 3311 3795 4324 4900 |
Std | DiagCol1T(n + 1, 1) | A000027 | 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 |
Std | DiagCol2T(n + 2, 2) | A000096 | 2 5 9 14 20 27 35 44 54 65 77 90 104 119 135 152 170 189 209 230 252 275 299 324 350 377 405 434 |
Std | DiagCol3T(n + 3, 3) | A005581 | 2 7 16 30 50 77 112 156 210 275 352 442 546 665 800 952 1122 1311 1520 1750 2002 2277 2576 2900 |
Std | Polysee docs | missing | 2 1 2 1 3 2 1 6 5 2 1 12 15 7 2 1 24 45 28 9 2 1 48 135 112 45 11 2 1 96 405 448 225 66 13 2 1 192 |
Std | PolyRow1∑ k=0..1 T(1, k) n^k | A005408 | 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 |
Std | PolyRow2∑ k=0..2 T(2, k) n^k | A000384 | 1 6 15 28 45 66 91 120 153 190 231 276 325 378 435 496 561 630 703 780 861 946 1035 1128 1225 1326 |
Std | PolyRow3∑ k=0..3 T(3, k) n^k | A015237 | 1 12 45 112 225 396 637 960 1377 1900 2541 3312 4225 5292 6525 7936 9537 11340 13357 15600 18081 |
Std | PolyCol2∑ k=0..n T(n, k) 2^k | A005030 | 2 5 15 45 135 405 1215 3645 10935 32805 98415 295245 885735 2657205 7971615 23914845 71744535 |
Std | PolyCol3∑ k=0..n T(n, k) 3^k | A002042 | 2 7 28 112 448 1792 7168 28672 114688 458752 1835008 7340032 29360128 117440512 469762048 |
Std | PolyDiag∑ k=0..n T(n, k) n^k | A089945 | 2 3 15 112 1125 14256 218491 3932160 81310473 1900000000 49516901511 1424099377152 44804009850925 |
Alt | TriangleT(n, k), 0 ≤ k ≤ n | A029635 | 2 1 -2 1 -3 2 1 -4 5 -2 1 -5 9 -7 2 1 -6 14 -16 9 -2 1 -7 20 -30 25 -11 2 1 -8 27 -50 55 -36 13 -2 |
Alt | RevT(n, n - k), 0 ≤ k ≤ n | missing | 2 -2 1 2 -3 1 -2 5 -4 1 2 -7 9 -5 1 -2 9 -16 14 -6 1 2 -11 25 -30 20 -7 1 -2 13 -36 55 -50 27 -8 1 |
Alt | Accsee docs | missing | 2 1 -1 1 -2 0 1 -3 2 0 1 -4 5 -2 0 1 -5 9 -7 2 0 1 -6 14 -16 9 -2 0 1 -7 20 -30 25 -11 2 0 1 -8 27 |
Alt | AntiDiagsee docs | A034807 | 2 1 1 -2 1 -3 1 -4 2 1 -5 5 1 -6 9 -2 1 -7 14 -7 1 -8 20 -16 2 1 -9 27 -30 9 1 -10 35 -50 25 -2 1 |
Alt | RowSum∑ k=0..n T(n, k) | A039964 | 2 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Alt | EvenSum∑ k=0..n T(n, k) even(k) | A007283 | 2 1 3 6 12 24 48 96 192 384 768 1536 3072 6144 12288 24576 49152 98304 196608 393216 786432 1572864 |
Alt | OddSum∑ k=0..n T(n, k) odd(k) | A007283 | 0 -2 -3 -6 -12 -24 -48 -96 -192 -384 -768 -1536 -3072 -6144 -12288 -24576 -49152 -98304 -196608 |
Alt | AltSum∑ k=0..n T(n, k) (-1)^k | A007283 | 2 3 6 12 24 48 96 192 384 768 1536 3072 6144 12288 24576 49152 98304 196608 393216 786432 1572864 |
Alt | AbsSum∑ k=0..n | T(n, k) | | A007283 | 2 3 6 12 24 48 96 192 384 768 1536 3072 6144 12288 24576 49152 98304 196608 393216 786432 1572864 |
Alt | AccSum∑ k=0..n ∑ j=0..k T(n, j) | A355627 | 2 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Alt | RowLcmLcm k=0..n | T(n, k) | > 1 | missing | 2 2 6 20 630 1008 23100 772200 630630 38118080 2933186256 634888800 73620647100 407745122400 |
Alt | RowGcdGcd k=0..n | T(n, k) | > 1 | A000012 | 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Alt | RowMaxMax k=0..n | T(n, k) | | A050168 | 2 2 3 5 9 16 30 55 105 196 378 714 1386 2640 5148 9867 19305 37180 72930 140998 277134 537472 |
Alt | ColMiddleT(n, n // 2) | missing | 2 1 -3 -4 9 14 -30 -50 105 182 -378 -672 1386 2508 -5148 -9438 19305 35750 -72930 -136136 277134 |
Alt | CentralET(2 n, n) | A029651 | 2 -3 9 -30 105 -378 1386 -5148 19305 -72930 277134 -1058148 4056234 -15600900 60174900 -232676280 |
Alt | CentralOT(2 n + 1, n) | A051924 | 1 -4 14 -50 182 -672 2508 -9438 35750 -136136 520676 -1998724 7696444 -29716000 115000920 |
Alt | ColLeftT(n, 0) | A000012 | 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Alt | BinConv∑ k=0..n C(n, k) T(n, k) | missing | 2 -1 -3 2 9 -6 -30 20 105 -70 -378 252 1386 -924 -5148 3432 19305 -12870 -72930 48620 277134 |
Alt | InvBinConv∑ k=0..n C(n, k) T(n, n - k) (-1)^k | A029651 | 2 -3 9 -30 105 -378 1386 -5148 19305 -72930 277134 -1058148 4056234 -15600900 60174900 -232676280 |
Alt | TransNat0∑ k=0..n T(n, k) k | A006996 | 0 -2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Alt | TransSqrs∑ k=0..n T(n, k) k^2 | A000038 | 0 -2 5 -2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Alt | PosHalf∑ k=0..n 2^n T(n, k) (1/2)^k | A000038 | 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Alt | NegHalf∑ k=0..n (-2)^n T(n, k) (-1/2)^k | A003946 | 2 -4 12 -36 108 -324 972 -2916 8748 -26244 78732 -236196 708588 -2125764 6377292 -19131876 57395628 |
Alt | DiagRow1T(n + 1, n) | A005408 | 1 -3 5 -7 9 -11 13 -15 17 -19 21 -23 25 -27 29 -31 33 -35 37 -39 41 -43 45 -47 49 -51 53 -55 57 -59 |
Alt | DiagRow2T(n + 2, n) | A000290 | 1 -4 9 -16 25 -36 49 -64 81 -100 121 -144 169 -196 225 -256 289 -324 361 -400 441 -484 529 -576 625 |
Alt | DiagRow3T(n + 3, n) | A000330 | 1 -5 14 -30 55 -91 140 -204 285 -385 506 -650 819 -1015 1240 -1496 1785 -2109 2470 -2870 3311 -3795 |
Alt | DiagCol1T(n + 1, 1) | A000027 | -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25 -26 -27 -28 |
Alt | DiagCol2T(n + 2, 2) | A000096 | 2 5 9 14 20 27 35 44 54 65 77 90 104 119 135 152 170 189 209 230 252 275 299 324 350 377 405 434 |
Alt | DiagCol3T(n + 3, 3) | A005581 | -2 -7 -16 -30 -50 -77 -112 -156 -210 -275 -352 -442 -546 -665 -800 -952 -1122 -1311 -1520 -1750 |
Alt | Polysee docs | missing | 2 1 2 1 -1 2 1 0 -3 2 1 0 3 -5 2 1 0 -3 10 -7 2 1 0 3 -20 21 -9 2 1 0 -3 40 -63 36 -11 2 1 0 3 -80 |
Alt | PolyRow1∑ k=0..1 T(1, k) n^k | A005408 | 1 -1 -3 -5 -7 -9 -11 -13 -15 -17 -19 -21 -23 -25 -27 -29 -31 -33 -35 -37 -39 -41 -43 -45 -47 -49 |
Alt | PolyRow2∑ k=0..2 T(2, k) n^k | A014105 | 1 0 3 10 21 36 55 78 105 136 171 210 253 300 351 406 465 528 595 666 741 820 903 990 1081 1176 1275 |
Alt | PolyRow3∑ k=0..3 T(3, k) n^k | A099721 | 1 0 -3 -20 -63 -144 -275 -468 -735 -1088 -1539 -2100 -2783 -3600 -4563 -5684 -6975 -8448 -10115 |
Alt | PolyCol2∑ k=0..n T(n, k) 2^k | A010701 | 2 -3 3 -3 3 -3 3 -3 3 -3 3 -3 3 -3 3 -3 3 -3 3 -3 3 -3 3 -3 3 -3 3 -3 3 -3 3 -3 3 -3 3 -3 3 -3 3 -3 |
Alt | PolyCol3∑ k=0..n T(n, k) 3^k | A020714 | 2 -5 10 -20 40 -80 160 -320 640 -1280 2560 -5120 10240 -20480 40960 -81920 163840 -327680 655360 |
Alt | PolyDiag∑ k=0..n T(n, k) n^k | A176043 | 2 -1 3 -20 189 -2304 34375 -606528 12353145 -285212672 7360989291 -210000000000 6562168424053 |
Rev | TriangleT(n, k), 0 ≤ k ≤ n | A029653 | 2 2 1 2 3 1 2 5 4 1 2 7 9 5 1 2 9 16 14 6 1 2 11 25 30 20 7 1 2 13 36 55 50 27 8 1 2 15 49 91 105 |
Rev | Accsee docs | missing | 2 2 3 2 5 6 2 7 11 12 2 9 18 23 24 2 11 27 41 47 48 2 13 38 68 88 95 96 2 15 51 106 156 183 191 192 |
Rev | AccRevsee docs | missing | 2 1 3 1 4 6 1 5 10 12 1 6 15 22 24 1 7 21 37 46 48 1 8 28 58 83 94 96 1 9 36 86 141 177 190 192 1 |
Rev | AntiDiagsee docs | A129710 | 2 2 2 1 2 3 2 5 1 2 7 4 2 9 9 1 2 11 16 5 2 13 25 14 1 2 15 36 30 6 2 17 49 55 20 1 2 19 64 91 50 7 |
Rev | Diffx1T(n, k) (k+1) | missing | 2 2 2 2 6 3 2 10 12 4 2 14 27 20 5 2 18 48 56 30 6 2 22 75 120 100 42 7 2 26 108 220 250 162 56 8 2 |
Rev | RowSum∑ k=0..n T(n, k) | A007283 | 2 3 6 12 24 48 96 192 384 768 1536 3072 6144 12288 24576 49152 98304 196608 393216 786432 1572864 |
Rev | EvenSum∑ k=0..n T(n, k) even(k) | A007283 | 2 2 3 6 12 24 48 96 192 384 768 1536 3072 6144 12288 24576 49152 98304 196608 393216 786432 1572864 |
Rev | OddSum∑ k=0..n T(n, k) odd(k) | A007283 | 0 1 3 6 12 24 48 96 192 384 768 1536 3072 6144 12288 24576 49152 98304 196608 393216 786432 1572864 |
Rev | AltSum∑ k=0..n T(n, k) (-1)^k | A039964 | 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Rev | AbsSum∑ k=0..n | T(n, k) | | A007283 | 2 3 6 12 24 48 96 192 384 768 1536 3072 6144 12288 24576 49152 98304 196608 393216 786432 1572864 |
Rev | DiagSum∑ k=0..n // 2 T(n - k, k) | A000045 | 2 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181 6765 10946 17711 28657 46368 75025 |
Rev | AccSum∑ k=0..n ∑ j=0..k T(n, j) | A098156 | 2 5 13 32 76 176 400 896 1984 4352 9472 20480 44032 94208 200704 425984 901120 1900544 3997696 |
Rev | AccRevSum∑ k=0..n ∑ j=0..k T(n, n - j) | A339252 | 2 4 11 28 68 160 368 832 1856 4096 8960 19456 41984 90112 192512 409600 868352 1835008 3866624 |
Rev | RowLcmLcm k=0..n | T(n, k) | > 1 | missing | 2 2 6 20 630 1008 23100 772200 630630 38118080 2933186256 634888800 73620647100 407745122400 |
Rev | RowGcdGcd k=0..n | T(n, k) | > 1 | A000012 | 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Rev | RowMaxMax k=0..n | T(n, k) | | A050168 | 2 2 3 5 9 16 30 55 105 196 378 714 1386 2640 5148 9867 19305 37180 72930 140998 277134 537472 |
Rev | ColMiddleT(n, n // 2) | A050168 | 2 2 3 5 9 16 30 55 105 196 378 714 1386 2640 5148 9867 19305 37180 72930 140998 277134 537472 |
Rev | CentralET(2 n, n) | A029651 | 2 3 9 30 105 378 1386 5148 19305 72930 277134 1058148 4056234 15600900 60174900 232676280 901620585 |
Rev | CentralOT(2 n + 1, n) | A051960 | 2 5 16 55 196 714 2640 9867 37180 140998 537472 2057510 7904456 30458900 117675360 455657715 |
Rev | ColLeftT(n, 0) | A055642 | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 |
Rev | ColRightT(n, n) | A000012 | 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Rev | BinConv∑ k=0..n C(n, k) T(n, k) | A029651 | 2 3 9 30 105 378 1386 5148 19305 72930 277134 1058148 4056234 15600900 60174900 232676280 901620585 |
Rev | InvBinConv∑ k=0..n C(n, k) T(n, n - k) (-1)^k | missing | 2 -1 -3 2 9 -6 -30 20 105 -70 -378 252 1386 -924 -5148 3432 19305 -12870 -72930 48620 277134 |
Rev | TransNat0∑ k=0..n T(n, k) k | A053220 | 0 1 5 16 44 112 272 640 1472 3328 7424 16384 35840 77824 167936 360448 770048 1638400 3473408 |
Rev | TransNat1∑ k=0..n T(n, k) (k + 1) | A339252 | 2 4 11 28 68 160 368 832 1856 4096 8960 19456 41984 90112 192512 409600 868352 1835008 3866624 |
Rev | TransSqrs∑ k=0..n T(n, k) k^2 | A276289 | 0 1 7 30 104 320 912 2464 6400 16128 39680 95744 227328 532480 1232896 2826240 6422528 14483456 |
Rev | PosHalf∑ k=0..n 2^n T(n, k) (1/2)^k | A005030 | 2 5 15 45 135 405 1215 3645 10935 32805 98415 295245 885735 2657205 7971615 23914845 71744535 |
Rev | NegHalf∑ k=0..n (-2)^n T(n, k) (-1/2)^k | A010701 | 2 -3 3 -3 3 -3 3 -3 3 -3 3 -3 3 -3 3 -3 3 -3 3 -3 3 -3 3 -3 3 -3 3 -3 3 -3 3 -3 3 -3 3 -3 3 -3 3 -3 |
Rev | DiagRow1T(n + 1, n) | A000027 | 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 |
Rev | DiagRow2T(n + 2, n) | A000096 | 2 5 9 14 20 27 35 44 54 65 77 90 104 119 135 152 170 189 209 230 252 275 299 324 350 377 405 434 |
Rev | DiagRow3T(n + 3, n) | A005581 | 2 7 16 30 50 77 112 156 210 275 352 442 546 665 800 952 1122 1311 1520 1750 2002 2277 2576 2900 |
Rev | DiagCol1T(n + 1, 1) | A005408 | 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 |
Rev | DiagCol2T(n + 2, 2) | A000290 | 1 4 9 16 25 36 49 64 81 100 121 144 169 196 225 256 289 324 361 400 441 484 529 576 625 676 729 784 |
Rev | DiagCol3T(n + 3, 3) | A000330 | 1 5 14 30 55 91 140 204 285 385 506 650 819 1015 1240 1496 1785 2109 2470 2870 3311 3795 4324 4900 |
Rev | Polysee docs | missing | 2 2 2 2 3 2 2 6 4 2 2 12 12 5 2 2 24 36 20 6 2 2 48 108 80 30 7 2 2 96 324 320 150 42 8 2 2 192 972 |
Rev | PolyRow1∑ k=0..1 T(1, k) n^k | A000027 | 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 |
Rev | PolyRow2∑ k=0..2 T(2, k) n^k | A002378 | 2 6 12 20 30 42 56 72 90 110 132 156 182 210 240 272 306 342 380 420 462 506 552 600 650 702 756 |
Rev | PolyRow3∑ k=0..3 T(3, k) n^k | A011379 | 2 12 36 80 150 252 392 576 810 1100 1452 1872 2366 2940 3600 4352 5202 6156 7220 8400 9702 11132 |
Rev | PolyCol2∑ k=0..n T(n, k) 2^k | A003946 | 2 4 12 36 108 324 972 2916 8748 26244 78732 236196 708588 2125764 6377292 19131876 57395628 |
Rev | PolyCol3∑ k=0..n T(n, k) 3^k | A003947 | 2 5 20 80 320 1280 5120 20480 81920 327680 1310720 5242880 20971520 83886080 335544320 1342177280 |
Rev | PolyDiag∑ k=0..n T(n, k) n^k | A373395 | 2 3 12 80 750 9072 134456 2359296 47829690 1100000000 28295372292 804925734912 25090245516518 |
<< | Table | Source | Similars | Index | >> |
Note: The A-numbers are based on a finite number of numerical comparisons. They ignore the sign and the OEIS-offset. Sometimes they differ in the first few values. In such cases, we consider our version to be the better one because it has a common formula as a root. Since the offset of all triangles is 0 also the offset of all sequences is 0.