FUSSCATALAN[0] 1
[1] 0, 1
[2] 0, 1, 2
[3] 0, 1, 3, 5
[4] 0, 1, 4, 9, 14
[5] 0, 1, 5, 14, 28, 42

      OEIS Similars: A355173, A030237, A054445

↕ Type↕ Trait↕ Anum↕ Sequence
StdTriangleT(n, k), 0 ≤ k ≤ nA3551731 0 1 0 1 2 0 1 3 5 0 1 4 9 14 0 1 5 14 28 42 0 1 6 20 48 90 132 0 1 7 27 75 165 297 429 0 1 8 35
StdRevT(n, n - k), 0 ≤ k ≤ nmissing1 1 0 2 1 0 5 3 1 0 14 9 4 1 0 42 28 14 5 1 0 132 90 48 20 6 1 0 429 297 165 75 27 7 1 0 1430 1001
StdAccsee docsmissing1 0 1 0 1 3 0 1 4 9 0 1 5 14 28 0 1 6 20 48 90 0 1 7 27 75 165 297 0 1 8 35 110 275 572 1001 0 1 9
StdAccRevsee docsmissing1 1 1 2 3 3 5 8 9 9 14 23 27 28 28 42 70 84 89 90 90 132 222 270 290 296 297 297 429 726 891 966
StdAntiDiagsee docsA2898711 0 0 1 0 1 0 1 2 0 1 3 0 1 4 5 0 1 5 9 0 1 6 14 14 0 1 7 20 28 0 1 8 27 48 42 0 1 9 35 75 90 0 1
StdDiffx1T(n, k) (k+1)missing1 0 2 0 2 6 0 2 9 20 0 2 12 36 70 0 2 15 56 140 252 0 2 18 80 240 540 924 0 2 21 108 375 990 2079
StdRowSum k=0..n T(n, k)A0002451 1 3 9 28 90 297 1001 3432 11934 41990 149226 534888 1931540 7020405 25662825 94287120 347993910
StdEvenSum k=0..n T(n, k) even(k)missing1 0 2 3 18 33 186 379 2120 4596 25724 58082 325878 757259 4260282 10114131 57048048 137698584
StdOddSum k=0..n T(n, k) odd(k)missing0 1 1 6 10 57 111 622 1312 7338 16266 91144 209010 1174281 2760123 15548694 37239072 210295326
StdAltSum k=0..n T(n, k) (-1)^kA0009581 -1 1 -3 8 -24 75 -243 808 -2742 9458 -33062 116868 -417022 1500159 -5434563 19808976 -72596742
StdAbsSum k=0..n | T(n, k) |A0002451 1 3 9 28 90 297 1001 3432 11934 41990 149226 534888 1931540 7020405 25662825 94287120 347993910
StdDiagSum k=0..n // 2 T(n - k, k)A0379521 0 1 1 3 4 10 15 35 56 126 210 462 792 1716 3003 6435 11440 24310 43758 92378 167960 352716 646646
StdAccSum k=0..n j=0..k T(n, j)A0020571 1 4 14 48 165 572 2002 7072 25194 90440 326876 1188640 4345965 15967980 58929450 218349120
StdAccRevSum k=0..n j=0..k T(n, n - j)missing1 2 8 31 120 465 1804 7007 27248 106080 413440 1613062 6299792 24627135 96358500 377338575
StdRowLcmLcm k=0..n | T(n, k) | > 1missing1 1 2 15 252 420 7920 675675 200200 1225224 888844320 135795660 28830463200 34420042800 21416915520
StdRowGcdGcd k=0..n | T(n, k) | > 1A2973821 1 2 1 1 1 2 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
StdRowMaxMax k=0..n | T(n, k) |A0001081 1 2 5 14 42 132 429 1430 4862 16796 58786 208012 742900 2674440 9694845 35357670 129644790
StdColMiddleT(n, n // 2)missing1 0 1 1 4 5 20 27 110 154 637 910 3808 5508 23256 33915 144210 211508 904475 1332045 5722860
StdCentralET(2 n, n)A2623941 1 4 20 110 637 3808 23256 144210 904475 5722860 36463440 233646504 1504152860 9721421440
StdCentralOT(2 n + 1, n)missing0 1 5 27 154 910 5508 33915 211508 1332045 8454225 53993940 346618440 2234741392 14460614392
StdColLeftT(n, 0)A0000071 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
StdColRightT(n, n)A0001081 1 2 5 14 42 132 429 1430 4862 16796 58786 208012 742900 2674440 9694845 35357670 129644790
StdBinConv k=0..n C(n, k) T(n, k)missing1 1 4 17 78 377 1888 9697 50746 269393 1446300 7835313 42762822 234825801 1296205368 7186510785
StdInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kA0000271 1 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25
StdTransNat0 k=0..n T(n, k) kmissing0 1 5 22 92 375 1507 6006 23816 94146 371450 1463836 5764904 22695595 89338095 351675750 1384531920
StdTransNat1 k=0..n T(n, k) (k + 1)missing1 2 8 31 120 465 1804 7007 27248 106080 413440 1613062 6299792 24627135 96358500 377338575
StdTransSqrs k=0..n T(n, k) k^2missing0 1 9 58 322 1645 7975 37310 170144 761226 3355970 14624148 63131642 270444005 1151116995
StdPosHalf k=0..n 2^n T(n, k) (1/2)^kA0017911 1 4 15 56 210 792 3003 11440 43758 167960 646646 2496144 9657700 37442160 145422675 565722720
StdNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kmissing1 1 0 3 4 18 48 167 540 1854 6368 22302 78792 281252 1011744 3665583 13361676 48971142 180347904
StdDiagRow1T(n + 1, n)A0002450 1 3 9 28 90 297 1001 3432 11934 41990 149226 534888 1931540 7020405 25662825 94287120 347993910
StdDiagRow2T(n + 2, n)A0020570 1 4 14 48 165 572 2002 7072 25194 90440 326876 1188640 4345965 15967980 58929450 218349120
StdDiagRow3T(n + 3, n)A0003440 1 5 20 75 275 1001 3640 13260 48450 177650 653752 2414425 8947575 33266625 124062000 463991880
StdDiagCol1T(n + 1, 1)A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
StdDiagCol2T(n + 2, 2)A0000272 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
StdDiagCol3T(n + 3, 3)A0000965 9 14 20 27 35 44 54 65 77 90 104 119 135 152 170 189 209 230 252 275 299 324 350 377 405 434 464
StdPolysee docsmissing1 0 1 0 1 1 0 3 2 1 0 9 10 3 1 0 28 54 21 4 1 0 90 314 165 36 5 1 0 297 1926 1416 372 55 6 1 0 1001
StdPolyRow1 k=0..1 T(1, k) n^kA0000270 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
StdPolyRow2 k=0..2 T(2, k) n^kA0141050 3 10 21 36 55 78 105 136 171 210 253 300 351 406 465 528 595 666 741 820 903 990 1081 1176 1275
StdPolyRow3 k=0..3 T(3, k) n^kmissing0 9 54 165 372 705 1194 1869 2760 3897 5310 7029 9084 11505 14322 17565 21264 25449 30150 35397
StdPolyCol2 k=0..n T(n, k) 2^kmissing1 2 10 54 314 1926 12282 80646 541690 3704838 25714682 180674566 1282572282 9185067014 66279309306
StdPolyCol3 k=0..n T(n, k) 3^kmissing1 3 21 165 1416 12900 122583 1201701 12065160 123442194 1282411290 13491759162 143452633044
StdPolyDiag k=0..n T(n, k) n^kmissing1 1 10 165 4228 150630 6925182 391204541 26250094600 2041508615598 180639303835010
AltTriangleT(n, k), 0 ≤ k ≤ nA3551731 0 -1 0 -1 2 0 -1 3 -5 0 -1 4 -9 14 0 -1 5 -14 28 -42 0 -1 6 -20 48 -90 132 0 -1 7 -27 75 -165 297
AltRevT(n, n - k), 0 ≤ k ≤ nmissing1 -1 0 2 -1 0 -5 3 -1 0 14 -9 4 -1 0 -42 28 -14 5 -1 0 132 -90 48 -20 6 -1 0 -429 297 -165 75 -27 7
AltAccsee docsmissing1 0 -1 0 -1 1 0 -1 2 -3 0 -1 3 -6 8 0 -1 4 -10 18 -24 0 -1 5 -15 33 -57 75 0 -1 6 -21 54 -111 186
AltAccRevsee docsmissing1 -1 -1 2 1 1 -5 -2 -3 -3 14 5 9 8 8 -42 -14 -28 -23 -24 -24 132 42 90 70 76 75 75 -429 -132 -297
AltDiffx1T(n, k) (k+1)missing1 0 -2 0 -2 6 0 -2 9 -20 0 -2 12 -36 70 0 -2 15 -56 140 -252 0 -2 18 -80 240 -540 924 0 -2 21 -108
AltRowSum k=0..n T(n, k)A0009581 -1 1 -3 8 -24 75 -243 808 -2742 9458 -33062 116868 -417022 1500159 -5434563 19808976 -72596742
AltEvenSum k=0..n T(n, k) even(k)missing1 0 2 3 18 33 186 379 2120 4596 25724 58082 325878 757259 4260282 10114131 57048048 137698584
AltOddSum k=0..n T(n, k) odd(k)missing0 -1 -1 -6 -10 -57 -111 -622 -1312 -7338 -16266 -91144 -209010 -1174281 -2760123 -15548694
AltAltSum k=0..n T(n, k) (-1)^kA0002451 1 3 9 28 90 297 1001 3432 11934 41990 149226 534888 1931540 7020405 25662825 94287120 347993910
AltAbsSum k=0..n | T(n, k) |A0002451 1 3 9 28 90 297 1001 3432 11934 41990 149226 534888 1931540 7020405 25662825 94287120 347993910
AltDiagSum k=0..n // 2 T(n - k, k)A2083551 0 -1 -1 1 2 -2 -5 5 14 -14 -42 42 132 -132 -429 429 1430 -1430 -4862 4862 16796 -16796 -58786
AltAccSum k=0..n j=0..k T(n, j)A0656011 -1 0 -2 4 -13 40 -130 432 -1466 5056 -17672 62460 -222853 801592 -2903626 10582816 -38781310
AltAccRevSum k=0..n j=0..k T(n, n - j)missing1 -2 4 -13 44 -155 560 -2057 7648 -28696 108440 -412134 1573692 -6032477 23200952 -89483945
AltRowLcmLcm k=0..n | T(n, k) | > 1missing1 1 2 15 252 420 7920 675675 200200 1225224 888844320 135795660 28830463200 34420042800 21416915520
AltRowGcdGcd k=0..n | T(n, k) | > 1A2973821 1 2 1 1 1 2 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
AltRowMaxMax k=0..n | T(n, k) |A0001081 1 2 5 14 42 132 429 1430 4862 16796 58786 208012 742900 2674440 9694845 35357670 129644790
AltColMiddleT(n, n // 2)missing1 0 -1 -1 4 5 -20 -27 110 154 -637 -910 3808 5508 -23256 -33915 144210 211508 -904475 -1332045
AltCentralET(2 n, n)A2623941 -1 4 -20 110 -637 3808 -23256 144210 -904475 5722860 -36463440 233646504 -1504152860 9721421440
AltCentralOT(2 n + 1, n)missing0 -1 5 -27 154 -910 5508 -33915 211508 -1332045 8454225 -53993940 346618440 -2234741392 14460614392
AltColLeftT(n, 0)A0000071 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
AltColRightT(n, n)A0001081 -1 2 -5 14 -42 132 -429 1430 -4862 16796 -58786 208012 -742900 2674440 -9694845 35357670
AltBinConv k=0..n C(n, k) T(n, k)A0000271 -1 0 1 -2 3 -4 5 -6 7 -8 9 -10 11 -12 13 -14 15 -16 17 -18 19 -20 21 -22 23 -24 25 -26 27 -28 29
AltInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kmissing1 -1 4 -17 78 -377 1888 -9697 50746 -269393 1446300 -7835313 42762822 -234825801 1296205368
AltTransNat0 k=0..n T(n, k) kmissing0 -1 3 -10 36 -131 485 -1814 6840 -25954 98982 -379072 1456824 -5615455 21700793 -84049382
AltTransNat1 k=0..n T(n, k) (k + 1)missing1 -2 4 -13 44 -155 560 -2057 7648 -28696 108440 -412134 1573692 -6032477 23200952 -89483945
AltTransSqrs k=0..n T(n, k) k^2missing0 -1 7 -34 158 -709 3113 -13470 57664 -244858 1033118 -4336588 18126054 -75494221 313480717
AltPosHalf k=0..n 2^n T(n, k) (1/2)^kmissing1 -1 0 -3 4 -18 48 -167 540 -1854 6368 -22302 78792 -281252 1011744 -3665583 13361676 -48971142
AltNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kA0017911 -1 4 -15 56 -210 792 -3003 11440 -43758 167960 -646646 2496144 -9657700 37442160 -145422675
AltDiagRow1T(n + 1, n)A0002450 -1 3 -9 28 -90 297 -1001 3432 -11934 41990 -149226 534888 -1931540 7020405 -25662825 94287120
AltDiagRow2T(n + 2, n)A0020570 -1 4 -14 48 -165 572 -2002 7072 -25194 90440 -326876 1188640 -4345965 15967980 -58929450
AltDiagRow3T(n + 3, n)A0003440 -1 5 -20 75 -275 1001 -3640 13260 -48450 177650 -653752 2414425 -8947575 33266625 -124062000
AltDiagCol1T(n + 1, 1)A000012-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
AltDiagCol2T(n + 2, 2)A0000272 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
AltDiagCol3T(n + 3, 3)A000096-5 -9 -14 -20 -27 -35 -44 -54 -65 -77 -90 -104 -119 -135 -152 -170 -189 -209 -230 -252 -275 -299
AltPolysee docsmissing1 0 1 0 -1 1 0 1 -2 1 0 -3 6 -3 1 0 8 -30 15 -4 1 0 -24 166 -111 28 -5 1 0 75 -990 924 -276 45 -6 1
AltPolyRow1 k=0..1 T(1, k) n^kA0000270 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25 -26
AltPolyRow2 k=0..2 T(2, k) n^kA0003840 1 6 15 28 45 66 91 120 153 190 231 276 325 378 435 496 561 630 703 780 861 946 1035 1128 1225
AltPolyRow3 k=0..3 T(3, k) n^kmissing0 -3 -30 -111 -276 -555 -978 -1575 -2376 -3411 -4710 -6303 -8220 -10491 -13146 -16215 -19728 -23715
AltPolyCol2 k=0..n T(n, k) 2^kmissing1 -2 6 -30 166 -990 6198 -40174 267270 -1814526 12520790 -87554958 619088934 -4418872990
AltPolyCol3 k=0..n T(n, k) 3^kmissing1 -3 15 -111 924 -8274 77757 -756399 7551240 -76922922 796383582 -8355067014 88631134872
AltPolyDiag k=0..n T(n, k) n^kmissing1 -1 6 -111 3068 -115380 5516850 -320960199 22033538040 -1744969955526 156698376326990
RevTriangleT(n, k), 0 ≤ k ≤ nmissing1 1 0 2 1 0 5 3 1 0 14 9 4 1 0 42 28 14 5 1 0 132 90 48 20 6 1 0 429 297 165 75 27 7 1 0 1430 1001
RevAccsee docsmissing1 1 1 2 3 3 5 8 9 9 14 23 27 28 28 42 70 84 89 90 90 132 222 270 290 296 297 297 429 726 891 966
RevAccRevsee docsmissing1 0 1 0 1 3 0 1 4 9 0 1 5 14 28 0 1 6 20 48 90 0 1 7 27 75 165 297 0 1 8 35 110 275 572 1001 0 1 9
RevAntiDiagsee docsmissing1 1 2 0 5 1 14 3 0 42 9 1 132 28 4 0 429 90 14 1 1430 297 48 5 0 4862 1001 165 20 1 16796 3432 572
RevDiffx1T(n, k) (k+1)missing1 1 0 2 2 0 5 6 3 0 14 18 12 4 0 42 56 42 20 5 0 132 180 144 80 30 6 0 429 594 495 300 135 42 7 0
RevRowSum k=0..n T(n, k)A0002451 1 3 9 28 90 297 1001 3432 11934 41990 149226 534888 1931540 7020405 25662825 94287120 347993910
RevEvenSum k=0..n T(n, k) even(k)A0009571 1 2 6 18 57 186 622 2120 7338 25724 91144 325878 1174281 4260282 15548694 57048048 210295326
RevOddSum k=0..n T(n, k) odd(k)A0015580 0 1 3 10 33 111 379 1312 4596 16266 58082 209010 757259 2760123 10114131 37239072 137698584
RevAltSum k=0..n T(n, k) (-1)^kA0009581 1 1 3 8 24 75 243 808 2742 9458 33062 116868 417022 1500159 5434563 19808976 72596742 267343374
RevAbsSum k=0..n | T(n, k) |A0002451 1 3 9 28 90 297 1001 3432 11934 41990 149226 534888 1931540 7020405 25662825 94287120 347993910
RevDiagSum k=0..n // 2 T(n - k, k)missing1 1 2 6 17 52 164 534 1780 6049 20881 73025 258192 921425 3314828 12008581 43770386 160405503
RevAccSum k=0..n j=0..k T(n, j)missing1 2 8 31 120 465 1804 7007 27248 106080 413440 1613062 6299792 24627135 96358500 377338575
RevAccRevSum k=0..n j=0..k T(n, n - j)A0020571 1 4 14 48 165 572 2002 7072 25194 90440 326876 1188640 4345965 15967980 58929450 218349120
RevRowLcmLcm k=0..n | T(n, k) | > 1missing1 1 2 15 252 420 7920 675675 200200 1225224 888844320 135795660 28830463200 34420042800 21416915520
RevRowGcdGcd k=0..n | T(n, k) | > 1A2973821 1 2 1 1 1 2 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
RevRowMaxMax k=0..n | T(n, k) |A0001081 1 2 5 14 42 132 429 1430 4862 16796 58786 208012 742900 2674440 9694845 35357670 129644790
RevColMiddleT(n, n // 2)missing1 1 1 3 4 14 20 75 110 429 637 2548 3808 15504 23256 95931 144210 600875 904475 3798795 5722860
RevCentralET(2 n, n)A2623941 1 4 20 110 637 3808 23256 144210 904475 5722860 36463440 233646504 1504152860 9721421440
RevCentralOT(2 n + 1, n)A0260041 3 14 75 429 2548 15504 95931 600875 3798795 24192090 154969620 997490844 6446369400 41802112192
RevColLeftT(n, 0)A0001081 1 2 5 14 42 132 429 1430 4862 16796 58786 208012 742900 2674440 9694845 35357670 129644790
RevColRightT(n, n)A0000071 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RevBinConv k=0..n C(n, k) T(n, k)missing1 1 4 17 78 377 1888 9697 50746 269393 1446300 7835313 42762822 234825801 1296205368 7186510785
RevInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kA0000271 -1 0 1 -2 3 -4 5 -6 7 -8 9 -10 11 -12 13 -14 15 -16 17 -18 19 -20 21 -22 23 -24 25 -26 27 -28 29
RevTransNat0 k=0..n T(n, k) kA0003440 0 1 5 20 75 275 1001 3640 13260 48450 177650 653752 2414425 8947575 33266625 124062000 463991880
RevTransNat1 k=0..n T(n, k) (k + 1)A0020571 1 4 14 48 165 572 2002 7072 25194 90440 326876 1188640 4345965 15967980 58929450 218349120
RevTransSqrs k=0..n T(n, k) k^2missing0 0 1 7 34 145 583 2275 8736 33252 125970 476102 1797818 6788795 25649715 96998475 367223520
RevPosHalf k=0..n 2^n T(n, k) (1/2)^kmissing1 2 10 54 314 1926 12282 80646 541690 3704838 25714682 180674566 1282572282 9185067014 66279309306
RevNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kmissing1 -2 6 -30 166 -990 6198 -40174 267270 -1814526 12520790 -87554958 619088934 -4418872990
RevDiagRow1T(n + 1, n)A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
RevDiagRow2T(n + 2, n)A0000272 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
RevDiagRow3T(n + 3, n)A0000965 9 14 20 27 35 44 54 65 77 90 104 119 135 152 170 189 209 230 252 275 299 324 350 377 405 434 464
RevDiagCol1T(n + 1, 1)A0002450 1 3 9 28 90 297 1001 3432 11934 41990 149226 534888 1931540 7020405 25662825 94287120 347993910
RevDiagCol2T(n + 2, 2)A0020570 1 4 14 48 165 572 2002 7072 25194 90440 326876 1188640 4345965 15967980 58929450 218349120
RevDiagCol3T(n + 3, 3)A0003440 1 5 20 75 275 1001 3640 13260 48450 177650 653752 2414425 8947575 33266625 124062000 463991880
RevPolysee docsmissing1 1 1 2 1 1 5 3 1 1 14 9 4 1 1 42 28 15 5 1 1 132 90 56 23 6 1 1 429 297 210 104 33 7 1 1 1430 1001
RevPolyRow1 k=0..1 T(1, k) n^kA0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
RevPolyRow2 k=0..2 T(2, k) n^kA0000272 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
RevPolyRow3 k=0..3 T(3, k) n^kA0276885 9 15 23 33 45 59 75 93 113 135 159 185 213 243 275 309 345 383 423 465 509 555 603 653 705 759
RevPolyCol2 k=0..n T(n, k) 2^kA0017911 1 4 15 56 210 792 3003 11440 43758 167960 646646 2496144 9657700 37442160 145422675 565722720
RevPolyCol3 k=0..n T(n, k) 3^kmissing1 1 5 23 104 468 2103 9447 42440 190694 857018 3852382 17319892 77880082 350237499 1575232983
RevPolyDiag k=0..n T(n, k) n^kmissing1 1 4 23 178 1782 22272 336443 5978590 122312702 2832563336 73262469326 2093400432004
 << TableSourceSimilarsIndex >> 

Note: The A-numbers are based on a finite number of numerical comparisons. They ignore the sign and the OEIS-offset. Sometimes they differ in the first few values. In such cases, we consider our version to be the better one because it has a common formula as a root. Since the offset of all triangles is 0 also the offset of all sequences is 0.