OEIS Similars: A131689, A019538, A090582, A278075
↕ Type | ↕ Trait | ↕ Anum | ↕ Sequence |
---|---|---|---|
Std | TriangleT(n, k), 0 ≤ k ≤ n | A131689 | 1 0 1 0 1 2 0 1 6 6 0 1 14 36 24 0 1 30 150 240 120 0 1 62 540 1560 1800 720 0 1 126 1806 8400 |
Std | RevT(n, n - k), 0 ≤ k ≤ n | missing | 1 1 0 2 1 0 6 6 1 0 24 36 14 1 0 120 240 150 30 1 0 720 1800 1560 540 62 1 0 5040 15120 16800 8400 |
Std | Accsee docs | missing | 1 0 1 0 1 3 0 1 7 13 0 1 15 51 75 0 1 31 181 421 541 0 1 63 603 2163 3963 4683 0 1 127 1933 10333 |
Std | AccRevsee docs | missing | 1 1 1 2 3 3 6 12 13 13 24 60 74 75 75 120 360 510 540 541 541 720 2520 4080 4620 4682 4683 4683 |
Std | AntiDiagsee docs | A344392 | 1 0 0 1 0 1 0 1 2 0 1 6 0 1 14 6 0 1 30 36 0 1 62 150 24 0 1 126 540 240 0 1 254 1806 1560 120 0 1 |
Std | Diffx1T(n, k) (k+1) | missing | 1 0 2 0 2 6 0 2 18 24 0 2 42 144 120 0 2 90 600 1200 720 0 2 186 2160 7800 10800 5040 0 2 378 7224 |
Std | RowSum∑ k=0..n T(n, k) | A000670 | 1 1 3 13 75 541 4683 47293 545835 7087261 102247563 1622632573 28091567595 526858348381 |
Std | EvenSum∑ k=0..n T(n, k) even(k) | A052841 | 1 0 2 6 38 270 2342 23646 272918 3543630 51123782 811316286 14045783798 263429174190 5320671485222 |
Std | OddSum∑ k=0..n T(n, k) odd(k) | A089677 | 0 1 1 7 37 271 2341 23647 272917 3543631 51123781 811316287 14045783797 263429174191 5320671485221 |
Std | AbsSum∑ k=0..n | T(n, k) | | A000670 | 1 1 3 13 75 541 4683 47293 545835 7087261 102247563 1622632573 28091567595 526858348381 |
Std | DiagSum∑ k=0..n // 2 T(n - k, k) | A105795 | 1 0 1 1 3 7 21 67 237 907 3741 16507 77517 385627 2024301 11174587 64673997 391392667 2470864941 |
Std | AccSum∑ k=0..n ∑ j=0..k T(n, j) | A120368 | 1 1 4 21 142 1175 11476 129073 1641802 23292459 364530688 6237123365 115806988342 2318774566303 |
Std | AccRevSum∑ k=0..n ∑ j=0..k T(n, n - j) | A005649 | 1 2 8 44 308 2612 25988 296564 3816548 54667412 862440068 14857100084 277474957988 5584100659412 |
Std | RowLcmLcm k=0..n | T(n, k) | > 1 | missing | 1 1 2 6 504 1200 4352400 6501600 31719676464000 3839514683558400 6734455286856081120000 |
Std | RowGcdGcd k=0..n | T(n, k) | > 1 | A027760 | 1 1 2 6 2 30 2 42 2 30 2 66 2 2730 2 6 2 510 2 798 2 330 2 138 2 2730 2 6 2 870 2 14322 2 510 2 6 2 |
Std | RowMaxMax k=0..n | T(n, k) | | A002869 | 1 1 2 6 36 240 1800 16800 191520 2328480 30240000 479001600 8083152000 142702560000 2731586457600 |
Std | ColMiddleT(n, n // 2) | A344397 | 1 0 1 1 14 30 540 1806 40824 186480 5103000 29607600 953029440 6711344640 248619571200 |
Std | CentralET(2 n, n) | A210029 | 1 1 14 540 40824 5103000 953029440 248619571200 86355926616960 38528927611574400 |
Std | CentralOT(2 n + 1, n) | A367392 | 0 1 30 1806 186480 29607600 6711344640 2060056318320 823172919528960 415357755774998400 |
Std | ColLeftT(n, 0) | A000007 | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Std | ColRightT(n, n) | A000142 | 1 1 2 6 24 120 720 5040 40320 362880 3628800 39916800 479001600 6227020800 87178291200 |
Std | BinConv∑ k=0..n C(n, k) T(n, k) | A000312 | 1 1 4 27 256 3125 46656 823543 16777216 387420489 10000000000 285311670611 8916100448256 |
Std | InvBinConv∑ k=0..n C(n, k) T(n, n - k) (-1)^k | A344053 | 1 1 0 -9 -40 125 3444 18571 -241872 -5796711 -24387220 1132278191 25132445832 8850583573 |
Std | TransNat0∑ k=0..n T(n, k) k | A069321 | 0 1 5 31 233 2071 21305 249271 3270713 47580151 760192505 13234467511 249383390393 5057242311031 |
Std | TransNat1∑ k=0..n T(n, k) (k + 1) | A005649 | 1 2 8 44 308 2612 25988 296564 3816548 54667412 862440068 14857100084 277474957988 5584100659412 |
Std | TransSqrs∑ k=0..n T(n, k) k^2 | A083411 | 0 1 9 79 765 8311 100989 1362439 20246445 328972471 5805917469 110645911399 2265191981325 |
Std | PosHalf∑ k=0..n 2^n T(n, k) (1/2)^k | A122704 | 1 1 4 22 160 1456 15904 202672 2951680 48361216 880405504 17630351872 385148108800 9114999832576 |
Std | NegHalf∑ k=0..n (-2)^n T(n, k) (-1/2)^k | A009006 | 1 1 0 -2 0 16 0 -272 0 7936 0 -353792 0 22368256 0 -1903757312 0 209865342976 0 -29088885112832 0 |
Std | DiagRow1T(n + 1, n) | A001286 | 0 1 6 36 240 1800 15120 141120 1451520 16329600 199584000 2634508800 37362124800 566658892800 |
Std | DiagRow2T(n + 2, n) | A037960 | 0 1 14 150 1560 16800 191520 2328480 30240000 419126400 6187104000 97037740800 1612798387200 |
Std | DiagRow3T(n + 3, n) | A037961 | 0 1 30 540 8400 126000 1905120 29635200 479001600 8083152000 142702560000 2637143308800 |
Std | DiagCol1T(n + 1, 1) | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Std | DiagCol2T(n + 2, 2) | A000918 | 2 6 14 30 62 126 254 510 1022 2046 4094 8190 16382 32766 65534 131070 262142 524286 1048574 2097150 |
Std | DiagCol3T(n + 3, 3) | A001117 | 6 36 150 540 1806 5796 18150 55980 171006 519156 1569750 4733820 14250606 42850116 128746950 |
Std | Polysee docs | A344499 | 1 0 1 0 1 1 0 3 2 1 0 13 10 3 1 0 75 74 21 4 1 0 541 730 219 36 5 1 0 4683 9002 3045 484 55 6 1 0 |
Std | PolyRow1∑ k=0..1 T(1, k) n^k | A000027 | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 |
Std | PolyRow2∑ k=0..2 T(2, k) n^k | A014105 | 0 3 10 21 36 55 78 105 136 171 210 253 300 351 406 465 528 595 666 741 820 903 990 1081 1176 1275 |
Std | PolyRow3∑ k=0..3 T(3, k) n^k | A094421 | 0 13 74 219 484 905 1518 2359 3464 4869 6610 8723 11244 14209 17654 21615 26128 31229 36954 43339 |
Std | PolyCol2∑ k=0..n T(n, k) 2^k | A004123 | 1 2 10 74 730 9002 133210 2299754 45375130 1007179562 24840104410 673895590634 19944372341530 |
Std | PolyCol3∑ k=0..n T(n, k) 3^k | A032033 | 1 3 21 219 3045 52923 1103781 26857659 746870565 23365498683 812198635941 31055758599099 |
Std | PolyDiag∑ k=0..n T(n, k) n^k | A094420 | 1 1 10 219 8676 544505 49729758 6232661239 1026912225160 215270320769109 55954905981282210 |
Alt | Accsee docs | missing | 1 0 -1 0 -1 1 0 -1 5 -1 0 -1 13 -23 1 0 -1 29 -121 119 -1 0 -1 61 -479 1081 -719 1 0 -1 125 -1681 |
Alt | AccRevsee docs | missing | 1 -1 -1 2 1 1 -6 0 -1 -1 24 -12 2 1 1 -120 120 -30 0 -1 -1 720 -1080 480 -60 2 1 1 -5040 10080 |
Alt | AntiDiagsee docs | A344392 | 1 0 0 -1 0 -1 0 -1 2 0 -1 6 0 -1 14 -6 0 -1 30 -36 0 -1 62 -150 24 0 -1 126 -540 240 0 -1 254 -1806 |
Alt | Diffx1T(n, k) (k+1) | missing | 1 0 -2 0 -2 6 0 -2 18 -24 0 -2 42 -144 120 0 -2 90 -600 1200 -720 0 -2 186 -2160 7800 -10800 5040 0 |
Alt | EvenSum∑ k=0..n T(n, k) even(k) | A052841 | 1 0 2 6 38 270 2342 23646 272918 3543630 51123782 811316286 14045783798 263429174190 5320671485222 |
Alt | OddSum∑ k=0..n T(n, k) odd(k) | A089677 | 0 -1 -1 -7 -37 -271 -2341 -23647 -272917 -3543631 -51123781 -811316287 -14045783797 -263429174191 |
Alt | AltSum∑ k=0..n T(n, k) (-1)^k | A000670 | 1 1 3 13 75 541 4683 47293 545835 7087261 102247563 1622632573 28091567595 526858348381 |
Alt | AbsSum∑ k=0..n | T(n, k) | | A000670 | 1 1 3 13 75 541 4683 47293 545835 7087261 102247563 1622632573 28091567595 526858348381 |
Alt | DiagSum∑ k=0..n // 2 T(n - k, k) | missing | 1 0 -1 -1 1 5 7 -7 -65 -175 -113 1313 7615 21665 3967 -351967 -2337665 -8401375 -5391233 176760353 |
Alt | AccSum∑ k=0..n ∑ j=0..k T(n, j) | A000247 | 1 -1 0 3 -10 25 -56 119 -246 501 -1012 2035 -4082 8177 -16368 32751 -65518 131053 -262124 524267 |
Alt | AccRevSum∑ k=0..n ∑ j=0..k T(n, n - j) | A000079 | 1 -2 4 -8 16 -32 64 -128 256 -512 1024 -2048 4096 -8192 16384 -32768 65536 -131072 262144 -524288 |
Alt | RowLcmLcm k=0..n | T(n, k) | > 1 | missing | 1 1 2 6 504 1200 4352400 6501600 31719676464000 3839514683558400 6734455286856081120000 |
Alt | RowGcdGcd k=0..n | T(n, k) | > 1 | A027760 | 1 1 2 6 2 30 2 42 2 30 2 66 2 2730 2 6 2 510 2 798 2 330 2 138 2 2730 2 6 2 870 2 14322 2 510 2 6 2 |
Alt | RowMaxMax k=0..n | T(n, k) | | A002869 | 1 1 2 6 36 240 1800 16800 191520 2328480 30240000 479001600 8083152000 142702560000 2731586457600 |
Alt | ColMiddleT(n, n // 2) | A344397 | 1 0 -1 -1 14 30 -540 -1806 40824 186480 -5103000 -29607600 953029440 6711344640 -248619571200 |
Alt | CentralET(2 n, n) | A210029 | 1 -1 14 -540 40824 -5103000 953029440 -248619571200 86355926616960 -38528927611574400 |
Alt | CentralOT(2 n + 1, n) | A367392 | 0 -1 30 -1806 186480 -29607600 6711344640 -2060056318320 823172919528960 -415357755774998400 |
Alt | ColLeftT(n, 0) | A000007 | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Alt | ColRightT(n, n) | A000142 | 1 -1 2 -6 24 -120 720 -5040 40320 -362880 3628800 -39916800 479001600 -6227020800 87178291200 |
Alt | BinConv∑ k=0..n C(n, k) T(n, k) | A344053 | 1 -1 0 9 -40 -125 3444 -18571 -241872 5796711 -24387220 -1132278191 25132445832 -8850583573 |
Alt | InvBinConv∑ k=0..n C(n, k) T(n, n - k) (-1)^k | A000312 | 1 -1 4 -27 256 -3125 46656 -823543 16777216 -387420489 10000000000 -285311670611 8916100448256 |
Alt | TransNat0∑ k=0..n T(n, k) k | A000225 | 0 -1 3 -7 15 -31 63 -127 255 -511 1023 -2047 4095 -8191 16383 -32767 65535 -131071 262143 -524287 |
Alt | TransNat1∑ k=0..n T(n, k) (k + 1) | A000079 | 1 -2 4 -8 16 -32 64 -128 256 -512 1024 -2048 4096 -8192 16384 -32768 65536 -131072 262144 -524288 |
Alt | TransSqrs∑ k=0..n T(n, k) k^2 | A091344 | 0 -1 7 -31 115 -391 1267 -3991 12355 -37831 115027 -348151 1050595 -3164071 9516787 -28599511 |
Alt | PosHalf∑ k=0..n 2^n T(n, k) (1/2)^k | A009006 | 1 -1 0 2 0 -16 0 272 0 -7936 0 353792 0 -22368256 0 1903757312 0 -209865342976 0 29088885112832 0 |
Alt | NegHalf∑ k=0..n (-2)^n T(n, k) (-1/2)^k | A122704 | 1 -1 4 -22 160 -1456 15904 -202672 2951680 -48361216 880405504 -17630351872 385148108800 |
Alt | DiagRow1T(n + 1, n) | A001286 | 0 -1 6 -36 240 -1800 15120 -141120 1451520 -16329600 199584000 -2634508800 37362124800 |
Alt | DiagRow2T(n + 2, n) | A037960 | 0 -1 14 -150 1560 -16800 191520 -2328480 30240000 -419126400 6187104000 -97037740800 1612798387200 |
Alt | DiagRow3T(n + 3, n) | A037961 | 0 -1 30 -540 8400 -126000 1905120 -29635200 479001600 -8083152000 142702560000 -2637143308800 |
Alt | DiagCol1T(n + 1, 1) | A000012 | -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 |
Alt | DiagCol2T(n + 2, 2) | A000918 | 2 6 14 30 62 126 254 510 1022 2046 4094 8190 16382 32766 65534 131070 262142 524286 1048574 2097150 |
Alt | DiagCol3T(n + 3, 3) | A001117 | -6 -36 -150 -540 -1806 -5796 -18150 -55980 -171006 -519156 -1569750 -4733820 -14250606 -42850116 |
Alt | Polysee docs | missing | 1 0 1 0 -1 1 0 1 -2 1 0 -1 6 -3 1 0 1 -26 15 -4 1 0 -1 150 -111 28 -5 1 0 1 -1082 1095 -292 45 -6 1 |
Alt | PolyRow1∑ k=0..1 T(1, k) n^k | A000027 | 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25 -26 |
Alt | PolyRow2∑ k=0..2 T(2, k) n^k | A000384 | 0 1 6 15 28 45 66 91 120 153 190 231 276 325 378 435 496 561 630 703 780 861 946 1035 1128 1225 |
Alt | PolyRow3∑ k=0..3 T(3, k) n^k | missing | 0 -1 -26 -111 -292 -605 -1086 -1771 -2696 -3897 -5410 -7271 -9516 -12181 -15302 -18915 -23056 |
Alt | PolyCol2∑ k=0..n T(n, k) 2^k | A000629 | 1 -2 6 -26 150 -1082 9366 -94586 1091670 -14174522 204495126 -3245265146 56183135190 -1053716696762 |
Alt | PolyCol3∑ k=0..n T(n, k) 3^k | A201339 | 1 -3 15 -111 1095 -13503 199815 -3449631 68062695 -1510769343 37260156615 -1010843385951 |
Alt | PolyDiag∑ k=0..n T(n, k) n^k | missing | 1 -1 6 -111 4060 -243005 21502866 -2634606331 426748573560 -88276603008249 22701981269322190 |
Rev | TriangleT(n, k), 0 ≤ k ≤ n | missing | 1 1 0 2 1 0 6 6 1 0 24 36 14 1 0 120 240 150 30 1 0 720 1800 1560 540 62 1 0 5040 15120 16800 8400 |
Rev | Accsee docs | missing | 1 1 1 2 3 3 6 12 13 13 24 60 74 75 75 120 360 510 540 541 541 720 2520 4080 4620 4682 4683 4683 |
Rev | AccRevsee docs | missing | 1 0 1 0 1 3 0 1 7 13 0 1 15 51 75 0 1 31 181 421 541 0 1 63 603 2163 3963 4683 0 1 127 1933 10333 |
Rev | AntiDiagsee docs | missing | 1 1 2 0 6 1 24 6 0 120 36 1 720 240 14 0 5040 1800 150 1 40320 15120 1560 30 0 362880 141120 16800 |
Rev | Diffx1T(n, k) (k+1) | missing | 1 1 0 2 2 0 6 12 3 0 24 72 42 4 0 120 480 450 120 5 0 720 3600 4680 2160 310 6 0 5040 30240 50400 |
Rev | RowSum∑ k=0..n T(n, k) | A000670 | 1 1 3 13 75 541 4683 47293 545835 7087261 102247563 1622632573 28091567595 526858348381 |
Rev | EvenSum∑ k=0..n T(n, k) even(k) | A032109 | 1 1 2 7 38 271 2342 23647 272918 3543631 51123782 811316287 14045783798 263429174191 5320671485222 |
Rev | OddSum∑ k=0..n T(n, k) odd(k) | missing | 0 0 1 6 37 270 2341 23646 272917 3543630 51123781 811316286 14045783797 263429174190 5320671485221 |
Rev | AltSum∑ k=0..n T(n, k) (-1)^k | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Rev | AbsSum∑ k=0..n | T(n, k) | | A000670 | 1 1 3 13 75 541 4683 47293 545835 7087261 102247563 1622632573 28091567595 526858348381 |
Rev | DiagSum∑ k=0..n // 2 T(n - k, k) | missing | 1 1 2 7 30 157 974 6991 57030 521341 5280302 58702687 710771670 9311131117 131223143774 |
Rev | AccSum∑ k=0..n ∑ j=0..k T(n, j) | A005649 | 1 2 8 44 308 2612 25988 296564 3816548 54667412 862440068 14857100084 277474957988 5584100659412 |
Rev | AccRevSum∑ k=0..n ∑ j=0..k T(n, n - j) | A120368 | 1 1 4 21 142 1175 11476 129073 1641802 23292459 364530688 6237123365 115806988342 2318774566303 |
Rev | RowLcmLcm k=0..n | T(n, k) | > 1 | missing | 1 1 2 6 504 1200 4352400 6501600 31719676464000 3839514683558400 6734455286856081120000 |
Rev | RowGcdGcd k=0..n | T(n, k) | > 1 | A027760 | 1 1 2 6 2 30 2 42 2 30 2 66 2 2730 2 6 2 510 2 798 2 330 2 138 2 2730 2 6 2 870 2 14322 2 510 2 6 2 |
Rev | RowMaxMax k=0..n | T(n, k) | | A002869 | 1 1 2 6 36 240 1800 16800 191520 2328480 30240000 479001600 8083152000 142702560000 2731586457600 |
Rev | ColMiddleT(n, n // 2) | missing | 1 1 1 6 14 150 540 8400 40824 834120 5103000 129230640 953029440 28805736960 248619571200 |
Rev | CentralET(2 n, n) | A210029 | 1 1 14 540 40824 5103000 953029440 248619571200 86355926616960 38528927611574400 |
Rev | CentralOT(2 n + 1, n) | A233734 | 1 6 150 8400 834120 129230640 28805736960 8734434508800 3457819037312640 1732015476199008000 |
Rev | ColLeftT(n, 0) | A000142 | 1 1 2 6 24 120 720 5040 40320 362880 3628800 39916800 479001600 6227020800 87178291200 |
Rev | ColRightT(n, n) | A000007 | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Rev | BinConv∑ k=0..n C(n, k) T(n, k) | A000312 | 1 1 4 27 256 3125 46656 823543 16777216 387420489 10000000000 285311670611 8916100448256 |
Rev | InvBinConv∑ k=0..n C(n, k) T(n, n - k) (-1)^k | A344053 | 1 -1 0 9 -40 -125 3444 -18571 -241872 5796711 -24387220 -1132278191 25132445832 -8850583573 |
Rev | TransNat0∑ k=0..n T(n, k) k | missing | 0 0 1 8 67 634 6793 81780 1095967 16205198 262283125 4614490792 87715420747 1791916217922 |
Rev | TransNat1∑ k=0..n T(n, k) (k + 1) | A120368 | 1 1 4 21 142 1175 11476 129073 1641802 23292459 364530688 6237123365 115806988342 2318774566303 |
Rev | TransSqrs∑ k=0..n T(n, k) k^2 | missing | 0 0 1 10 101 1126 13917 190002 2848477 46597894 826823669 15826167490 325176345573 7140551306214 |
Rev | PosHalf∑ k=0..n 2^n T(n, k) (1/2)^k | A004123 | 1 2 10 74 730 9002 133210 2299754 45375130 1007179562 24840104410 673895590634 19944372341530 |
Rev | NegHalf∑ k=0..n (-2)^n T(n, k) (-1/2)^k | A000629 | 1 -2 6 -26 150 -1082 9366 -94586 1091670 -14174522 204495126 -3245265146 56183135190 -1053716696762 |
Rev | DiagRow1T(n + 1, n) | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Rev | DiagRow2T(n + 2, n) | A000918 | 2 6 14 30 62 126 254 510 1022 2046 4094 8190 16382 32766 65534 131070 262142 524286 1048574 2097150 |
Rev | DiagRow3T(n + 3, n) | A001117 | 6 36 150 540 1806 5796 18150 55980 171006 519156 1569750 4733820 14250606 42850116 128746950 |
Rev | DiagCol1T(n + 1, 1) | A001286 | 0 1 6 36 240 1800 15120 141120 1451520 16329600 199584000 2634508800 37362124800 566658892800 |
Rev | DiagCol2T(n + 2, 2) | A037960 | 0 1 14 150 1560 16800 191520 2328480 30240000 419126400 6187104000 97037740800 1612798387200 |
Rev | DiagCol3T(n + 3, 3) | A037961 | 0 1 30 540 8400 126000 1905120 29635200 479001600 8083152000 142702560000 2637143308800 |
Rev | Polysee docs | missing | 1 1 1 2 1 1 6 3 1 1 24 13 4 1 1 120 75 22 5 1 1 720 541 160 33 6 1 1 5040 4683 1456 285 46 7 1 1 |
Rev | PolyRow1∑ k=0..1 T(1, k) n^k | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Rev | PolyRow2∑ k=0..2 T(2, k) n^k | A000027 | 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 |
Rev | PolyRow3∑ k=0..3 T(3, k) n^k | A028872 | 6 13 22 33 46 61 78 97 118 141 166 193 222 253 286 321 358 397 438 481 526 573 622 673 726 781 838 |
Rev | PolyCol2∑ k=0..n T(n, k) 2^k | A122704 | 1 1 4 22 160 1456 15904 202672 2951680 48361216 880405504 17630351872 385148108800 9114999832576 |
Rev | PolyCol3∑ k=0..n T(n, k) 3^k | A255927 | 1 1 5 33 285 3081 40005 606033 10491885 204343641 4422082005 105265315233 2733583519485 |
Rev | PolyDiag∑ k=0..n T(n, k) n^k | A331690 | 1 1 4 33 456 9445 272448 10386817 503758720 30202999821 2189000524800 188349613075393 |
<< | Table | Source | Similars | Index | >> |
Note: The A-numbers are based on a finite number of numerical comparisons. They ignore the sign and the OEIS-offset. Sometimes they differ in the first few values. In such cases, we consider our version to be the better one because it has a common formula as a root. Since the offset of all triangles is 0 also the offset of all sequences is 0.