OEIS Similars: A354267, A105809, A228074
↕ Type | ↕ Trait | ↕ Anum | ↕ Sequence |
---|---|---|---|
Std | TriangleT(n, k), 0 ≤ k ≤ n | A354267 | 1 0 1 1 1 1 1 2 2 1 2 3 4 3 1 3 5 7 7 4 1 5 8 12 14 11 5 1 8 13 20 26 25 16 6 1 13 21 33 46 51 41 |
Std | RevT(n, n - k), 0 ≤ k ≤ n | missing | 1 1 0 1 1 1 1 2 2 1 1 3 4 3 2 1 4 7 7 5 3 1 5 11 14 12 8 5 1 6 16 25 26 20 13 8 1 7 22 41 51 46 33 |
Std | InvT-1(n, k), 0 ≤ k ≤ n | missing | 1 0 1 -1 -1 1 1 0 -2 1 -1 1 2 -3 1 1 -2 -1 5 -4 1 -1 3 -1 -6 9 -5 1 1 -4 4 5 -15 14 -6 1 -1 5 -8 -1 |
Std | RevInvT-1(n, n - k), 0 ≤ k ≤ n | missing | 1 1 0 1 -1 -1 1 -2 0 1 1 -3 2 1 -1 1 -4 5 -1 -2 1 1 -5 9 -6 -1 3 -1 1 -6 14 -15 5 4 -4 1 1 -7 20 |
Std | Accsee docs | missing | 1 0 1 1 2 3 1 3 5 6 2 5 9 12 13 3 8 15 22 26 27 5 13 25 39 50 55 56 8 21 41 67 92 108 114 115 13 34 |
Std | AccRevsee docs | missing | 1 1 1 1 2 3 1 3 5 6 1 4 8 11 13 1 5 12 19 24 27 1 6 17 31 43 51 56 1 7 23 48 74 94 107 115 1 8 30 |
Std | AntiDiagsee docs | missing | 1 0 1 1 1 1 2 2 1 3 3 2 5 5 4 1 8 8 7 3 13 13 12 7 1 21 21 20 14 4 34 34 33 26 11 1 55 55 54 46 25 |
Std | Diffx1T(n, k) (k+1) | missing | 1 0 2 1 2 3 1 4 6 4 2 6 12 12 5 3 10 21 28 20 6 5 16 36 56 55 30 7 8 26 60 104 125 96 42 8 13 42 99 |
Std | RowSum∑ k=0..n T(n, k) | A099036 | 1 1 3 6 13 27 56 115 235 478 969 1959 3952 7959 16007 32158 64549 129475 259560 520107 1041811 |
Std | EvenSum∑ k=0..n T(n, k) even(k) | missing | 1 0 2 3 7 14 29 59 120 243 491 990 1993 4007 8048 16151 32391 64926 130085 260547 521704 1044395 |
Std | OddSum∑ k=0..n T(n, k) odd(k) | A099036 | 0 1 1 3 6 13 27 56 115 235 478 969 1959 3952 7959 16007 32158 64549 129475 259560 520107 1041811 |
Std | AltSum∑ k=0..n T(n, k) (-1)^k | A000045 | 1 -1 1 0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181 6765 10946 17711 28657 46368 |
Std | AbsSum∑ k=0..n | T(n, k) | | A099036 | 1 1 3 6 13 27 56 115 235 478 969 1959 3952 7959 16007 32158 64549 129475 259560 520107 1041811 |
Std | DiagSum∑ k=0..n // 2 T(n - k, k) | A006367 | 1 0 2 2 5 8 15 26 46 80 139 240 413 708 1210 2062 3505 5944 10059 16990 28646 48220 81047 136032 |
Std | AccSum∑ k=0..n ∑ j=0..k T(n, j) | missing | 1 1 6 15 41 101 243 566 1292 2899 6419 14059 30519 65760 140814 299939 635997 1343329 2827723 |
Std | AccRevSum∑ k=0..n ∑ j=0..k T(n, n - j) | missing | 1 2 6 15 37 88 205 469 1058 2359 5209 11408 24809 53625 115298 246747 525885 1116696 2363477 |
Std | RowLcmLcm k=0..n | T(n, k) | > 1 | missing | 1 1 1 2 12 420 9240 15600 96282186 131378824584 1417223198160 3668311344589320 |
Std | RowGcdGcd k=0..n | T(n, k) | > 1 | A174965 | 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Std | RowMaxMax k=0..n | T(n, k) | | A027988 | 1 1 1 2 4 7 14 26 51 97 189 365 709 1383 2683 5270 10220 20175 39130 77533 150438 298925 580328 |
Std | ColMiddleT(n, n // 2) | missing | 1 0 1 2 4 7 14 26 51 97 189 365 709 1383 2683 5270 10220 20175 39130 77533 150438 298925 580328 |
Std | CentralET(2 n, n) | A371870 | 1 1 4 14 51 189 709 2683 10220 39130 150438 580328 2245004 8705686 33828704 131688362 513445147 |
Std | CentralOT(2 n + 1, n) | missing | 0 2 7 26 97 365 1383 5270 20175 77533 298925 1155661 4478413 17390359 67650909 263589730 1028483089 |
Std | ColLeftT(n, 0) | A000045 | 1 0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181 6765 10946 17711 28657 46368 |
Std | ColRightT(n, n) | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Std | BinConv∑ k=0..n C(n, k) T(n, k) | A371870 | 1 1 4 14 51 189 709 2683 10220 39130 150438 580328 2245004 8705686 33828704 131688362 513445147 |
Std | InvBinConv∑ k=0..n C(n, k) T(n, n - k) (-1)^k | missing | 1 1 0 0 3 3 -7 -7 28 28 -98 -98 364 364 -1352 -1352 5083 5083 -19227 -19227 73151 73151 -279565 |
Std | TransNat0∑ k=0..n T(n, k) k | A079282 | 0 1 3 9 24 61 149 354 823 1881 4240 9449 20857 45666 99291 214589 461336 987221 2103917 4467394 |
Std | TransNat1∑ k=0..n T(n, k) (k + 1) | missing | 1 2 6 15 37 88 205 469 1058 2359 5209 11408 24809 53625 115298 246747 525885 1116696 2363477 |
Std | TransSqrs∑ k=0..n T(n, k) k^2 | missing | 0 1 5 19 62 185 519 1392 3607 9095 22430 54309 129475 304616 708523 1631635 3724606 8436433 |
Std | PosHalf∑ k=0..n 2^n T(n, k) (1/2)^k | missing | 1 1 7 21 79 269 935 3189 10847 36637 123223 412677 1377295 4582445 15205511 50335125 166275263 |
Std | NegHalf∑ k=0..n (-2)^n T(n, k) (-1/2)^k | missing | 1 1 3 -3 19 -51 179 -563 1843 -5939 19251 -62259 201523 -652083 2110259 -6828851 22098739 -71512883 |
Std | DiagRow1T(n + 1, n) | A000027 | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 |
Std | DiagRow2T(n + 2, n) | A000124 | 1 2 4 7 11 16 22 29 37 46 56 67 79 92 106 121 137 154 172 191 211 232 254 277 301 326 352 379 407 |
Std | DiagRow3T(n + 3, n) | A004006 | 1 3 7 14 25 41 63 92 129 175 231 298 377 469 575 696 833 987 1159 1350 1561 1793 2047 2324 2625 |
Std | DiagCol1T(n + 1, 1) | A000045 | 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181 6765 10946 17711 28657 46368 75025 |
Std | DiagCol2T(n + 2, 2) | A000071 | 1 2 4 7 12 20 33 54 88 143 232 376 609 986 1596 2583 4180 6764 10945 17710 28656 46367 75024 121392 |
Std | DiagCol3T(n + 3, 3) | A001924 | 1 3 7 14 26 46 79 133 221 364 596 972 1581 2567 4163 6746 10926 17690 28635 46345 75001 121368 |
Std | Polysee docs | missing | 1 0 1 1 1 1 1 3 2 1 2 6 7 3 1 3 13 21 13 4 1 5 27 64 52 21 5 1 8 56 193 209 105 31 6 1 13 115 581 |
Std | PolyRow1∑ k=0..1 T(1, k) n^k | A000027 | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 |
Std | PolyRow2∑ k=0..2 T(2, k) n^k | A002061 | 1 3 7 13 21 31 43 57 73 91 111 133 157 183 211 241 273 307 343 381 421 463 507 553 601 651 703 757 |
Std | PolyRow3∑ k=0..3 T(3, k) n^k | A069778 | 1 6 21 52 105 186 301 456 657 910 1221 1596 2041 2562 3165 3856 4641 5526 6517 7620 8841 10186 |
Std | PolyCol2∑ k=0..n T(n, k) 2^k | missing | 1 2 7 21 64 193 581 1746 5243 15737 47224 141693 425113 1275394 3826271 11478957 34437104 103311689 |
Std | PolyCol3∑ k=0..n T(n, k) 3^k | missing | 1 3 13 52 209 837 3350 13403 53617 214476 857917 3431689 13726790 54907215 219628949 878515940 |
Std | PolyDiag∑ k=0..n T(n, k) n^k | missing | 1 1 7 52 526 6703 103301 1868371 38802677 910112358 23795802384 686290174449 21644672629913 |
Alt | TriangleT(n, k), 0 ≤ k ≤ n | A354267 | 1 0 -1 1 -1 1 1 -2 2 -1 2 -3 4 -3 1 3 -5 7 -7 4 -1 5 -8 12 -14 11 -5 1 8 -13 20 -26 25 -16 6 -1 13 |
Alt | RevT(n, n - k), 0 ≤ k ≤ n | missing | 1 -1 0 1 -1 1 -1 2 -2 1 1 -3 4 -3 2 -1 4 -7 7 -5 3 1 -5 11 -14 12 -8 5 -1 6 -16 25 -26 20 -13 8 1 |
Alt | InvT-1(n, k), 0 ≤ k ≤ n | missing | 1 0 1 -1 1 1 1 0 -2 1 5 -1 -10 3 1 -9 2 19 -5 -4 1 -79 17 165 -44 -31 5 1 243 -52 -508 135 97 -14 |
Alt | RevInvT-1(n, n - k), 0 ≤ k ≤ n | missing | 1 1 0 1 1 -1 1 -2 0 1 1 3 -10 -1 5 1 -4 -5 19 2 -9 1 5 -31 -44 165 17 -79 1 -6 -14 97 135 -508 -52 |
Alt | Accsee docs | missing | 1 0 -1 1 0 1 1 -1 1 0 2 -1 3 0 1 3 -2 5 -2 2 1 5 -3 9 -5 6 1 2 8 -5 15 -11 14 -2 4 3 13 -8 25 -21 |
Alt | AccRevsee docs | missing | 1 -1 -1 1 0 1 -1 1 -1 0 1 -2 2 -1 1 -1 3 -4 3 -2 1 1 -4 7 -7 5 -3 2 -1 5 -11 14 -12 8 -5 3 1 -6 16 |
Alt | AntiDiagsee docs | missing | 1 0 1 -1 1 -1 2 -2 1 3 -3 2 5 -5 4 -1 8 -8 7 -3 13 -13 12 -7 1 21 -21 20 -14 4 34 -34 33 -26 11 -1 |
Alt | Diffx1T(n, k) (k+1) | missing | 1 0 -2 1 -2 3 1 -4 6 -4 2 -6 12 -12 5 3 -10 21 -28 20 -6 5 -16 36 -56 55 -30 7 8 -26 60 -104 125 |
Alt | RowSum∑ k=0..n T(n, k) | A000045 | 1 -1 1 0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181 6765 10946 17711 28657 46368 |
Alt | EvenSum∑ k=0..n T(n, k) even(k) | missing | 1 0 2 3 7 14 29 59 120 243 491 990 1993 4007 8048 16151 32391 64926 130085 260547 521704 1044395 |
Alt | OddSum∑ k=0..n T(n, k) odd(k) | A099036 | 0 -1 -1 -3 -6 -13 -27 -56 -115 -235 -478 -969 -1959 -3952 -7959 -16007 -32158 -64549 -129475 |
Alt | AltSum∑ k=0..n T(n, k) (-1)^k | A099036 | 1 1 3 6 13 27 56 115 235 478 969 1959 3952 7959 16007 32158 64549 129475 259560 520107 1041811 |
Alt | AbsSum∑ k=0..n | T(n, k) | | A099036 | 1 1 3 6 13 27 56 115 235 478 969 1959 3952 7959 16007 32158 64549 129475 259560 520107 1041811 |
Alt | DiagSum∑ k=0..n // 2 T(n - k, k) | A106511 | 1 0 0 0 1 2 3 4 6 10 17 28 45 72 116 188 305 494 799 1292 2090 3382 5473 8856 14329 23184 37512 |
Alt | AccSum∑ k=0..n ∑ j=0..k T(n, j) | missing | 1 -1 2 1 5 7 15 26 48 85 151 265 463 804 1390 2393 4105 7019 11967 20350 34524 58445 98747 166541 |
Alt | AccRevSum∑ k=0..n ∑ j=0..k T(n, n - j) | A039834 | 1 -2 2 -1 1 0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181 6765 10946 17711 28657 |
Alt | RowLcmLcm k=0..n | T(n, k) | > 1 | missing | 1 1 1 2 12 420 9240 15600 96282186 131378824584 1417223198160 3668311344589320 |
Alt | RowGcdGcd k=0..n | T(n, k) | > 1 | A174965 | 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Alt | RowMaxMax k=0..n | T(n, k) | | A027988 | 1 1 1 2 4 7 14 26 51 97 189 365 709 1383 2683 5270 10220 20175 39130 77533 150438 298925 580328 |
Alt | ColMiddleT(n, n // 2) | missing | 1 0 -1 -2 4 7 -14 -26 51 97 -189 -365 709 1383 -2683 -5270 10220 20175 -39130 -77533 150438 298925 |
Alt | CentralET(2 n, n) | A371870 | 1 -1 4 -14 51 -189 709 -2683 10220 -39130 150438 -580328 2245004 -8705686 33828704 -131688362 |
Alt | CentralOT(2 n + 1, n) | missing | 0 -2 7 -26 97 -365 1383 -5270 20175 -77533 298925 -1155661 4478413 -17390359 67650909 -263589730 |
Alt | ColLeftT(n, 0) | A000045 | 1 0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181 6765 10946 17711 28657 46368 |
Alt | InvBinConv∑ k=0..n C(n, k) T(n, n - k) (-1)^k | A371870 | 1 -1 4 -14 51 -189 709 -2683 10220 -39130 150438 -580328 2245004 -8705686 33828704 -131688362 |
Alt | TransNat0∑ k=0..n T(n, k) k | A212804 | 0 -1 1 -1 0 -1 -1 -2 -3 -5 -8 -13 -21 -34 -55 -89 -144 -233 -377 -610 -987 -1597 -2584 -4181 -6765 |
Alt | TransNat1∑ k=0..n T(n, k) (k + 1) | A039834 | 1 -2 2 -1 1 0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181 6765 10946 17711 28657 |
Alt | TransSqrs∑ k=0..n T(n, k) k^2 | missing | 0 -1 3 -3 2 -1 1 0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181 6765 10946 17711 |
Alt | PosHalf∑ k=0..n 2^n T(n, k) (1/2)^k | missing | 1 -1 3 3 19 51 179 563 1843 5939 19251 62259 201523 652083 2110259 6828851 22098739 71512883 |
Alt | NegHalf∑ k=0..n (-2)^n T(n, k) (-1/2)^k | missing | 1 -1 7 -21 79 -269 935 -3189 10847 -36637 123223 -412677 1377295 -4582445 15205511 -50335125 |
Alt | DiagRow1T(n + 1, n) | A000027 | 0 -1 2 -3 4 -5 6 -7 8 -9 10 -11 12 -13 14 -15 16 -17 18 -19 20 -21 22 -23 24 -25 26 -27 28 -29 30 |
Alt | DiagRow2T(n + 2, n) | A000124 | 1 -2 4 -7 11 -16 22 -29 37 -46 56 -67 79 -92 106 -121 137 -154 172 -191 211 -232 254 -277 301 -326 |
Alt | DiagRow3T(n + 3, n) | A004006 | 1 -3 7 -14 25 -41 63 -92 129 -175 231 -298 377 -469 575 -696 833 -987 1159 -1350 1561 -1793 2047 |
Alt | DiagCol1T(n + 1, 1) | A000045 | -1 -1 -2 -3 -5 -8 -13 -21 -34 -55 -89 -144 -233 -377 -610 -987 -1597 -2584 -4181 -6765 -10946 |
Alt | DiagCol2T(n + 2, 2) | A000071 | 1 2 4 7 12 20 33 54 88 143 232 376 609 986 1596 2583 4180 6764 10945 17710 28656 46367 75024 121392 |
Alt | DiagCol3T(n + 3, 3) | A001924 | -1 -3 -7 -14 -26 -46 -79 -133 -221 -364 -596 -972 -1581 -2567 -4163 -6746 -10926 -17690 -28635 |
Alt | Polysee docs | missing | 1 0 1 1 -1 1 1 1 -2 1 2 0 3 -3 1 3 1 -3 7 -4 1 5 1 4 -14 13 -5 1 8 2 -3 29 -39 21 -6 1 13 3 5 -57 |
Alt | PolyRow1∑ k=0..1 T(1, k) n^k | A000027 | 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25 -26 |
Alt | PolyRow2∑ k=0..2 T(2, k) n^k | A002061 | 1 1 3 7 13 21 31 43 57 73 91 111 133 157 183 211 241 273 307 343 381 421 463 507 553 601 651 703 |
Alt | PolyRow3∑ k=0..3 T(3, k) n^k | A027444 | 1 0 -3 -14 -39 -84 -155 -258 -399 -584 -819 -1110 -1463 -1884 -2379 -2954 -3615 -4368 -5219 -6174 |
Alt | PolyCol2∑ k=0..n T(n, k) 2^k | A113312 | 1 -2 3 -3 4 -3 5 -2 7 1 12 9 25 30 59 85 148 229 381 606 991 1593 2588 4177 6769 10942 17715 28653 |
Alt | PolyCol3∑ k=0..n T(n, k) 3^k | missing | 1 -3 7 -14 29 -57 116 -229 463 -918 1849 -3677 7388 -14721 29531 -58918 118069 -235761 472132 |
Alt | PolyDiag∑ k=0..n T(n, k) n^k | missing | 1 -1 3 -14 118 -1347 19397 -334557 6708133 -153121632 3917735284 -111009174309 3449875467545 |
Rev | TriangleT(n, k), 0 ≤ k ≤ n | missing | 1 1 0 1 1 1 1 2 2 1 1 3 4 3 2 1 4 7 7 5 3 1 5 11 14 12 8 5 1 6 16 25 26 20 13 8 1 7 22 41 51 46 33 |
Rev | InvRev(T(n, n - k))-1, 0 ≤ k ≤ n | missing | 1 0 1 -1 -1 1 1 0 -2 1 -1 1 2 -3 1 1 -2 -1 5 -4 1 -1 3 -1 -6 9 -5 1 1 -4 4 5 -15 14 -6 1 -1 5 -8 -1 |
Rev | Accsee docs | missing | 1 1 1 1 2 3 1 3 5 6 1 4 8 11 13 1 5 12 19 24 27 1 6 17 31 43 51 56 1 7 23 48 74 94 107 115 1 8 30 |
Rev | AccRevsee docs | missing | 1 0 1 1 2 3 1 3 5 6 2 5 9 12 13 3 8 15 22 26 27 5 13 25 39 50 55 56 8 21 41 67 92 108 114 115 13 34 |
Rev | AntiDiagsee docs | missing | 1 1 1 0 1 1 1 2 1 1 3 2 1 4 4 1 1 5 7 3 1 6 11 7 2 1 7 16 14 5 1 8 22 25 12 3 1 9 29 41 26 8 1 10 |
Rev | Diffx1T(n, k) (k+1) | missing | 1 1 0 1 2 3 1 4 6 4 1 6 12 12 10 1 8 21 28 25 18 1 10 33 56 60 48 35 1 12 48 100 130 120 91 64 1 14 |
Rev | RowSum∑ k=0..n T(n, k) | A099036 | 1 1 3 6 13 27 56 115 235 478 969 1959 3952 7959 16007 32158 64549 129475 259560 520107 1041811 |
Rev | EvenSum∑ k=0..n T(n, k) even(k) | missing | 1 1 2 3 7 13 29 56 120 235 491 969 1993 3952 8048 16007 32391 64549 130085 259560 521704 1041811 |
Rev | OddSum∑ k=0..n T(n, k) odd(k) | missing | 0 0 1 3 6 14 27 59 115 243 478 990 1959 4007 7959 16151 32158 64926 129475 260547 520107 1044395 |
Rev | AltSum∑ k=0..n T(n, k) (-1)^k | A000045 | 1 1 1 0 1 -1 2 -3 5 -8 13 -21 34 -55 89 -144 233 -377 610 -987 1597 -2584 4181 -6765 10946 -17711 |
Rev | AbsSum∑ k=0..n | T(n, k) | | A099036 | 1 1 3 6 13 27 56 115 235 478 969 1959 3952 7959 16007 32158 64549 129475 259560 520107 1041811 |
Rev | DiagSum∑ k=0..n // 2 T(n - k, k) | missing | 1 1 1 2 4 6 10 16 27 43 71 114 187 301 491 792 1288 2080 3376 5456 8845 14301 23167 37468 60669 |
Rev | AccSum∑ k=0..n ∑ j=0..k T(n, j) | missing | 1 2 6 15 37 88 205 469 1058 2359 5209 11408 24809 53625 115298 246747 525885 1116696 2363477 |
Rev | AccRevSum∑ k=0..n ∑ j=0..k T(n, n - j) | missing | 1 1 6 15 41 101 243 566 1292 2899 6419 14059 30519 65760 140814 299939 635997 1343329 2827723 |
Rev | RowLcmLcm k=0..n | T(n, k) | > 1 | missing | 1 1 1 2 12 420 9240 15600 96282186 131378824584 1417223198160 3668311344589320 |
Rev | RowGcdGcd k=0..n | T(n, k) | > 1 | A174965 | 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Rev | RowMaxMax k=0..n | T(n, k) | | A027988 | 1 1 1 2 4 7 14 26 51 97 189 365 709 1383 2683 5270 10220 20175 39130 77533 150438 298925 580328 |
Rev | ColMiddleT(n, n // 2) | missing | 1 1 1 2 4 7 14 25 51 92 189 344 709 1300 2683 4950 10220 18955 39130 72905 150438 281403 580328 |
Rev | CentralET(2 n, n) | A371870 | 1 1 4 14 51 189 709 2683 10220 39130 150438 580328 2245004 8705686 33828704 131688362 513445147 |
Rev | CentralOT(2 n + 1, n) | A108081 | 1 2 7 25 92 344 1300 4950 18955 72905 281403 1089343 4227273 16438345 64037453 249855417 976205516 |
Rev | ColLeftT(n, 0) | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Rev | ColRightT(n, n) | A000045 | 1 0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181 6765 10946 17711 28657 46368 |
Rev | BinConv∑ k=0..n C(n, k) T(n, k) | A371870 | 1 1 4 14 51 189 709 2683 10220 39130 150438 580328 2245004 8705686 33828704 131688362 513445147 |
Rev | TransNat0∑ k=0..n T(n, k) k | missing | 0 0 3 9 28 74 187 451 1057 2421 5450 12100 26567 57801 124807 267781 571448 1213854 2568163 5414639 |
Rev | TransNat1∑ k=0..n T(n, k) (k + 1) | missing | 1 1 6 15 41 101 243 566 1292 2899 6419 14059 30519 65760 140814 299939 635997 1343329 2827723 |
Rev | TransSqrs∑ k=0..n T(n, k) k^2 | missing | 0 0 5 19 78 250 747 2071 5479 13955 34530 83470 197995 462371 1065747 2429515 5486398 12289194 |
Rev | PosHalf∑ k=0..n 2^n T(n, k) (1/2)^k | missing | 1 2 7 21 64 193 581 1746 5243 15737 47224 141693 425113 1275394 3826271 11478957 34437104 103311689 |
Rev | NegHalf∑ k=0..n (-2)^n T(n, k) (-1/2)^k | A113312 | 1 -2 3 -3 4 -3 5 -2 7 1 12 9 25 30 59 85 148 229 381 606 991 1593 2588 4177 6769 10942 17715 28653 |
Rev | DiagRow1T(n + 1, n) | A000045 | 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181 6765 10946 17711 28657 46368 75025 |
Rev | DiagRow2T(n + 2, n) | A000071 | 1 2 4 7 12 20 33 54 88 143 232 376 609 986 1596 2583 4180 6764 10945 17710 28656 46367 75024 121392 |
Rev | DiagRow3T(n + 3, n) | A001924 | 1 3 7 14 26 46 79 133 221 364 596 972 1581 2567 4163 6746 10926 17690 28635 46345 75001 121368 |
Rev | DiagCol1T(n + 1, 1) | A000027 | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 |
Rev | DiagCol2T(n + 2, 2) | A000124 | 1 2 4 7 11 16 22 29 37 46 56 67 79 92 106 121 137 154 172 191 211 232 254 277 301 326 352 379 407 |
Rev | DiagCol3T(n + 3, 3) | A004006 | 1 3 7 14 25 41 63 92 129 175 231 298 377 469 575 696 833 987 1159 1350 1561 1793 2047 2324 2625 |
Rev | Polysee docs | missing | 1 1 1 1 1 1 1 3 1 1 1 6 7 1 1 1 13 21 13 1 1 1 27 79 52 21 1 1 1 56 269 289 105 31 1 1 1 115 935 |
Rev | PolyRow1∑ k=0..1 T(1, k) n^k | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Rev | PolyRow2∑ k=0..2 T(2, k) n^k | A002061 | 1 3 7 13 21 31 43 57 73 91 111 133 157 183 211 241 273 307 343 381 421 463 507 553 601 651 703 757 |
Rev | PolyRow3∑ k=0..3 T(3, k) n^k | A069778 | 1 6 21 52 105 186 301 456 657 910 1221 1596 2041 2562 3165 3856 4641 5526 6517 7620 8841 10186 |
Rev | PolyCol2∑ k=0..n T(n, k) 2^k | missing | 1 1 7 21 79 269 935 3189 10847 36637 123223 412677 1377295 4582445 15205511 50335125 166275263 |
Rev | PolyCol3∑ k=0..n T(n, k) 3^k | missing | 1 1 13 52 289 1399 7054 34777 171913 845116 4148101 20312491 99318958 484963597 2365538629 |
Rev | PolyDiag∑ k=0..n T(n, k) n^k | missing | 1 1 7 52 781 13571 314491 8525749 272533433 9906062662 405326545791 18391859856459 917023446989125 |
<< | Table | Source | Similars | Index | >> |
Note: The A-numbers are based on a finite number of numerical comparisons. They ignore the sign and the OEIS-offset. Sometimes they differ in the first few values. In such cases, we consider our version to be the better one because it has a common formula as a root. Since the offset of all triangles is 0 also the offset of all sequences is 0.