GAUSSQ2[0] 1
[1] 1, 1
[2] 1, 3, 1
[3] 1, 7, 7, 1
[4] 1, 15, 35, 15, 1
[5] 1, 31, 155, 155, 31, 1

      OEIS Similars: A022166

↕ Type↕ Trait↕ Anum↕ Sequence
StdTriangleT(n, k), 0 ≤ k ≤ nA0221661 1 1 1 3 1 1 7 7 1 1 15 35 15 1 1 31 155 155 31 1 1 63 651 1395 651 63 1 1 127 2667 11811 11811
StdRevT(n, n - k), 0 ≤ k ≤ nA0221661 1 1 1 3 1 1 7 7 1 1 15 35 15 1 1 31 155 155 31 1 1 63 651 1395 651 63 1 1 127 2667 11811 11811
StdInvT-1(n, k), 0 ≤ k ≤ nA1359501 -1 1 2 -3 1 -8 14 -7 1 64 -120 70 -15 1 -1024 1984 -1240 310 -31 1 32768 -64512 41664 -11160 1302
StdRevInvT-1(n, n - k), 0 ≤ k ≤ nA1584741 1 -1 1 -3 2 1 -7 14 -8 1 -15 70 -120 64 1 -31 310 -1240 1984 -1024 1 -63 1302 -11160 41664 -64512
StdInvRev(T(n, n - k))-1, 0 ≤ k ≤ nA1359501 -1 1 2 -3 1 -8 14 -7 1 64 -120 70 -15 1 -1024 1984 -1240 310 -31 1 32768 -64512 41664 -11160 1302
StdAccsee docsmissing1 1 2 1 4 5 1 8 15 16 1 16 51 66 67 1 32 187 342 373 374 1 64 715 2110 2761 2824 2825 1 128 2795
StdAccRevsee docsmissing1 1 2 1 4 5 1 8 15 16 1 16 51 66 67 1 32 187 342 373 374 1 64 715 2110 2761 2824 2825 1 128 2795
StdAntiDiagsee docsmissing1 1 1 1 1 3 1 7 1 1 15 7 1 31 35 1 1 63 155 15 1 127 651 155 1 1 255 2667 1395 31 1 511 10795 11811
StdDiffx1T(n, k) (k+1)missing1 1 2 1 6 3 1 14 21 4 1 30 105 60 5 1 62 465 620 155 6 1 126 1953 5580 3255 378 7 1 254 8001 47244
StdRowSum k=0..n T(n, k)A0061161 2 5 16 67 374 2825 29212 417199 8283458 229755605 8933488744 488176700923 37558989808526
StdEvenSum k=0..n T(n, k) even(k)A2895411 1 2 8 37 187 1304 14606 222379 4141729 107836478 4466744372 258501941713 18779494904263
StdOddSum k=0..n T(n, k) odd(k)missing0 1 3 8 30 187 1521 14606 194820 4141729 121919127 4466744372 229674759210 18779494904263
StdAltSum k=0..n T(n, k) (-1)^kA2909741 0 -1 0 7 0 -217 0 27559 0 -14082649 0 28827182503 0 -236123451882073 0 7737057147819885991 0
StdAbsSum k=0..n | T(n, k) |A0061161 2 5 16 67 374 2825 29212 417199 8283458 229755605 8933488744 488176700923 37558989808526
StdDiagSum k=0..n // 2 T(n - k, k)missing1 1 2 4 9 23 68 234 935 4349 23770 153488 1167789 10456867 110822848 1395804342 20827928659
StdAccSum k=0..n j=0..k T(n, j)missing1 3 10 40 201 1309 11300 131454 2085995 45559019 1378533630 58067676836 3417236906461
StdAccRevSum k=0..n j=0..k T(n, n - j)missing1 3 10 40 201 1309 11300 131454 2085995 45559019 1378533630 58067676836 3417236906461
StdRowLcmLcm k=0..n | T(n, k) | > 1missing1 1 3 7 105 155 9765 82677 3011805 16548735 16929355905 110013941389 450507089987955
StdRowGcdGcd k=0..n | T(n, k) | > 1A0193201 1 3 7 5 31 3 127 17 73 11 2047 13 8191 43 151 257 131071 57 524287 205 2359 683 8388607 241
StdRowMaxMax k=0..n | T(n, k) |A0060991 1 3 7 35 155 1395 11811 200787 3309747 109221651 3548836819 230674393235 14877590196755
StdColMiddleT(n, n // 2)A0060991 1 3 7 35 155 1395 11811 200787 3309747 109221651 3548836819 230674393235 14877590196755
StdCentralET(2 n, n)A0060981 3 35 1395 200787 109221651 230674393235 1919209135381395 63379954960524853651
StdCentralOT(2 n + 1, n)A2184491 7 155 11811 3309747 3548836819 14877590196755 246614610741341843 16256896431763117598611
StdColLeftT(n, 0)A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
StdColRightT(n, n)A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
StdBinConv k=0..n C(n, k) T(n, k)missing1 2 8 44 332 3412 48188 940564 25545052 969582644 51635485244 3867743513812 408350633776412
StdInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kmissing1 0 -4 0 92 0 -9124 0 3774172 0 -6459170980 0 45480123143132 0 -1310657322035590052 0
StdTransNat0 k=0..n T(n, k) kmissing0 1 5 24 134 935 8475 102242 1668796 37275561 1148778025 49134188092 2929060205538 244133433755419
StdTransNat1 k=0..n T(n, k) (k + 1)missing1 3 10 40 201 1309 11300 131454 2085995 45559019 1378533630 58067676836 3417236906461
StdTransSqrs k=0..n T(n, k) k^2missing0 1 7 44 306 2567 27249 377366 6960476 173496553 5905329123 276564718960 17921946975414
StdPosHalf k=0..n 2^n T(n, k) (1/2)^kA1821761 3 11 51 307 2451 26387 387987 7866259 221472147 8703733139 479243212179 37070813107603
StdNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kmissing1 -1 -1 7 7 -217 -217 27559 27559 -14082649 -14082649 28827182503 28827182503 -236123451882073
StdDiagRow1T(n + 1, n)A0002251 3 7 15 31 63 127 255 511 1023 2047 4095 8191 16383 32767 65535 131071 262143 524287 1048575
StdDiagRow2T(n + 2, n)A0060951 7 35 155 651 2667 10795 43435 174251 698027 2794155 11180715 44731051 178940587 715795115
StdDiagRow3T(n + 3, n)A0060961 15 155 1395 11811 97155 788035 6347715 50955971 408345795 3269560515 26167664835 209386049731
StdDiagCol1T(n + 1, 1)A0002251 3 7 15 31 63 127 255 511 1023 2047 4095 8191 16383 32767 65535 131071 262143 524287 1048575
StdDiagCol2T(n + 2, 2)A0060951 7 35 155 651 2667 10795 43435 174251 698027 2794155 11180715 44731051 178940587 715795115
StdDiagCol3T(n + 3, 3)A0060961 15 155 1395 11811 97155 788035 6347715 50955971 408345795 3269560515 26167664835 209386049731
StdPolysee docsmissing1 1 1 1 2 1 1 5 3 1 1 16 11 4 1 1 67 51 19 5 1 1 374 307 112 29 6 1 1 2825 2451 847 205 41 7 1 1
StdPolyRow1 k=0..1 T(1, k) n^kA0000271 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
StdPolyRow2 k=0..2 T(2, k) n^kA0283871 5 11 19 29 41 55 71 89 109 131 155 181 209 239 271 305 341 379 419 461 505 551 599 649 701 755
StdPolyRow3 k=0..3 T(3, k) n^kmissing1 16 51 112 205 336 511 736 1017 1360 1771 2256 2821 3472 4215 5056 6001 7056 8227 9520 10941 12496
StdPolyCol2 k=0..n T(n, k) 2^kA1821761 3 11 51 307 2451 26387 387987 7866259 221472147 8703733139 479243212179 37070813107603
StdPolyCol3 k=0..n T(n, k) 3^kmissing1 4 19 112 847 8428 112483 2042824 51027319 1766869636 85292358571 5763692347168 546835143373183
StdPolyDiag k=0..n T(n, k) n^kmissing1 2 11 112 1837 45906 1705375 93130192 7437830329 866657162890 147145207120331 36374221860116064
AltTriangleT(n, k), 0 ≤ k ≤ nA0221661 1 -1 1 -3 1 1 -7 7 -1 1 -15 35 -15 1 1 -31 155 -155 31 -1 1 -63 651 -1395 651 -63 1 1 -127 2667
AltRevT(n, n - k), 0 ≤ k ≤ nA0221661 -1 1 1 -3 1 -1 7 -7 1 1 -15 35 -15 1 -1 31 -155 155 -31 1 1 -63 651 -1395 651 -63 1 -1 127 -2667
AltInvT-1(n, k), 0 ≤ k ≤ nmissing1 -1 1 -4 3 1 20 -14 -7 1 424 -300 -140 15 1 -9456 6696 3100 -310 -31 1 -841312 595728 276024
AltRevInvT-1(n, n - k), 0 ≤ k ≤ nmissing1 1 -1 1 3 -4 1 -7 -14 20 1 15 -140 -300 424 1 -31 -310 3100 6696 -9456 1 63 -2604 -27900 276024
AltInvRev(T(n, n - k))-1, 0 ≤ k ≤ nA1359501 1 1 2 3 1 8 14 7 1 64 120 70 15 1 1024 1984 1240 310 31 1 32768 64512 41664 11160 1302 63 1
AltAccsee docsmissing1 1 0 1 -2 -1 1 -6 1 0 1 -14 21 6 7 1 -30 125 -30 1 0 1 -62 589 -806 -155 -218 -217 1 -126 2541
AltAccRevsee docsmissing1 -1 0 1 -2 -1 -1 6 -1 0 1 -14 21 6 7 -1 30 -125 30 -1 0 1 -62 589 -806 -155 -218 -217 -1 126 -2541
AltAntiDiagsee docsmissing1 1 1 -1 1 -3 1 -7 1 1 -15 7 1 -31 35 -1 1 -63 155 -15 1 -127 651 -155 1 1 -255 2667 -1395 31 1
AltDiffx1T(n, k) (k+1)missing1 1 -2 1 -6 3 1 -14 21 -4 1 -30 105 -60 5 1 -62 465 -620 155 -6 1 -126 1953 -5580 3255 -378 7 1
AltRowSum k=0..n T(n, k)A2909741 0 -1 0 7 0 -217 0 27559 0 -14082649 0 28827182503 0 -236123451882073 0 7737057147819885991 0
AltEvenSum k=0..n T(n, k) even(k)A2895411 1 2 8 37 187 1304 14606 222379 4141729 107836478 4466744372 258501941713 18779494904263
AltOddSum k=0..n T(n, k) odd(k)missing0 -1 -3 -8 -30 -187 -1521 -14606 -194820 -4141729 -121919127 -4466744372 -229674759210
AltAltSum k=0..n T(n, k) (-1)^kA0061161 2 5 16 67 374 2825 29212 417199 8283458 229755605 8933488744 488176700923 37558989808526
AltAbsSum k=0..n | T(n, k) |A0061161 2 5 16 67 374 2825 29212 417199 8283458 229755605 8933488744 488176700923 37558989808526
AltDiagSum k=0..n // 2 T(n - k, k)missing1 1 0 -2 -5 -7 4 78 371 1049 -876 -42994 -417709 -2441063 2275028 360636174 7190981587 86108697241
AltAccSum k=0..n j=0..k T(n, j)missing1 1 -2 -4 21 67 -868 -4438 137795 1159249 -84495894 -1199994376 201790277521 4942804152223
AltAccRevSum k=0..n j=0..k T(n, n - j)missing1 -1 -2 4 21 -67 -868 4438 137795 -1159249 -84495894 1199994376 201790277521 -4942804152223
AltRowLcmLcm k=0..n | T(n, k) | > 1missing1 1 3 7 105 155 9765 82677 3011805 16548735 16929355905 110013941389 450507089987955
AltRowGcdGcd k=0..n | T(n, k) | > 1A0193201 1 3 7 5 31 3 127 17 73 11 2047 13 8191 43 151 257 131071 57 524287 205 2359 683 8388607 241
AltRowMaxMax k=0..n | T(n, k) |A0060991 1 3 7 35 155 1395 11811 200787 3309747 109221651 3548836819 230674393235 14877590196755
AltColMiddleT(n, n // 2)A0060991 1 -3 -7 35 155 -1395 -11811 200787 3309747 -109221651 -3548836819 230674393235 14877590196755
AltCentralET(2 n, n)A0060981 -3 35 -1395 200787 -109221651 230674393235 -1919209135381395 63379954960524853651
AltCentralOT(2 n + 1, n)A2184491 -7 155 -11811 3309747 -3548836819 14877590196755 -246614610741341843 16256896431763117598611
AltColLeftT(n, 0)A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
AltBinConv k=0..n C(n, k) T(n, k)missing1 0 -4 0 92 0 -9124 0 3774172 0 -6459170980 0 45480123143132 0 -1310657322035590052 0
AltInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kmissing1 -2 8 -44 332 -3412 48188 -940564 25545052 -969582644 51635485244 -3867743513812 408350633776412
AltTransNat0 k=0..n T(n, k) kmissing0 -1 -1 4 14 -67 -651 4438 110236 -1159249 -70413245 1199994376 172963095018 -4942804152223
AltTransNat1 k=0..n T(n, k) (k + 1)missing1 -1 -2 4 21 -67 -868 4438 137795 -1159249 -84495894 1199994376 201790277521 -4942804152223
AltTransSqrs k=0..n T(n, k) k^2missing0 -1 1 12 6 -335 -1137 31066 328436 -10433241 -292256139 13199938136 912947335314 -64256453978899
AltPosHalf k=0..n 2^n T(n, k) (1/2)^kmissing1 1 -1 -7 7 217 -217 -27559 27559 14082649 -14082649 -28827182503 28827182503 236123451882073
AltNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kA1821761 -3 11 -51 307 -2451 26387 -387987 7866259 -221472147 8703733139 -479243212179 37070813107603
AltDiagRow1T(n + 1, n)A0002251 -3 7 -15 31 -63 127 -255 511 -1023 2047 -4095 8191 -16383 32767 -65535 131071 -262143 524287
AltDiagRow2T(n + 2, n)A0060951 -7 35 -155 651 -2667 10795 -43435 174251 -698027 2794155 -11180715 44731051 -178940587 715795115
AltDiagRow3T(n + 3, n)A0060961 -15 155 -1395 11811 -97155 788035 -6347715 50955971 -408345795 3269560515 -26167664835
AltDiagCol1T(n + 1, 1)A000225-1 -3 -7 -15 -31 -63 -127 -255 -511 -1023 -2047 -4095 -8191 -16383 -32767 -65535 -131071 -262143
AltDiagCol2T(n + 2, 2)A0060951 7 35 155 651 2667 10795 43435 174251 698027 2794155 11180715 44731051 178940587 715795115
AltDiagCol3T(n + 3, 3)A006096-1 -15 -155 -1395 -11811 -97155 -788035 -6347715 -50955971 -408345795 -3269560515 -26167664835
AltPolysee docsmissing1 1 1 1 0 1 1 -1 -1 1 1 0 -1 -2 1 1 7 7 1 -3 1 1 0 7 16 5 -4 1 1 -217 -217 -53 21 11 -5 1 1 0 -217
AltPolyRow1 k=0..1 T(1, k) n^kA0000271 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25 -26
AltPolyRow2 k=0..2 T(2, k) n^kA0283871 -1 -1 1 5 11 19 29 41 55 71 89 109 131 155 181 209 239 271 305 341 379 419 461 505 551 599 649
AltPolyRow3 k=0..3 T(3, k) n^kmissing1 0 7 16 21 16 -5 -48 -119 -224 -369 -560 -803 -1104 -1469 -1904 -2415 -3008 -3689 -4464 -5339
AltPolyCol2 k=0..n T(n, k) 2^kmissing1 -1 -1 7 7 -217 -217 27559 27559 -14082649 -14082649 28827182503 28827182503 -236123451882073
AltPolyCol3 k=0..n T(n, k) 3^kmissing1 -2 1 16 -53 -614 6157 103732 -2553281 -74248418 4062676609 219743041624 -25388383139117
AltPolyDiag k=0..n T(n, k) n^kmissing1 0 -1 16 -203 596 122203 -6269556 -98358071 58362339448 -3712118530129 -1822976642783240
InvTriangleT(n, k), 0 ≤ k ≤ nA1359501 -1 1 2 -3 1 -8 14 -7 1 64 -120 70 -15 1 -1024 1984 -1240 310 -31 1 32768 -64512 41664 -11160 1302
InvRevT(n, n - k), 0 ≤ k ≤ nA1584741 1 -1 1 -3 2 1 -7 14 -8 1 -15 70 -120 64 1 -31 310 -1240 1984 -1024 1 -63 1302 -11160 41664 -64512
InvRevInvT-1(n, n - k), 0 ≤ k ≤ nA0221661 1 1 1 3 1 1 7 7 1 1 15 35 15 1 1 31 155 155 31 1 1 63 651 1395 651 63 1 1 127 2667 11811 11811
InvAccsee docsmissing1 -1 0 2 -1 0 -8 6 -1 0 64 -56 14 -1 0 -1024 960 -280 30 -1 0 32768 -31744 9920 -1240 62 -1 0
InvAccRevsee docsmissing1 1 0 1 -2 0 1 -6 8 0 1 -14 56 -64 0 1 -30 280 -960 1024 0 1 -62 1240 -9920 31744 -32768 0 1 -126
InvAntiDiagsee docsmissing1 -1 2 1 -8 -3 64 14 1 -1024 -120 -7 32768 1984 70 1 -2097152 -64512 -1240 -15 268435456 4161536
InvDiffx1T(n, k) (k+1)missing1 -1 2 2 -6 3 -8 28 -21 4 64 -240 210 -60 5 -1024 3968 -3720 1240 -155 6 32768 -129024 124992
InvRowSum k=0..n T(n, k)A0000071 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
InvEvenSum k=0..n T(n, k) even(k)A0283621 -1 3 -15 135 -2295 75735 -4922775 635037975 -163204759575 83724041661975 -85817142703524375
InvOddSum k=0..n T(n, k) odd(k)A0283620 1 -3 15 -135 2295 -75735 4922775 -635037975 163204759575 -83724041661975 85817142703524375
InvAltSum k=0..n T(n, k) (-1)^kA0283611 -2 6 -30 270 -4590 151470 -9845550 1270075950 -326409519150 167448083323950 -171634285407048750
InvAbsSum k=0..n | T(n, k) |A0283611 2 6 30 270 4590 151470 9845550 1270075950 326409519150 167448083323950 171634285407048750
InvDiagSum k=0..n // 2 T(n - k, k)missing1 -1 3 -11 79 -1151 34823 -2162919 272638967 -69256992695 35321897094615 -36099188233043287
InvAccSum k=0..n j=0..k T(n, j)A0053291 -1 1 -3 21 -315 9765 -615195 78129765 -19923090075 10180699028325 -10414855105976475
InvAccRevSum k=0..n j=0..k T(n, n - j)A0053291 1 -1 3 -21 315 -9765 615195 -78129765 19923090075 -10180699028325 10414855105976475
InvRowLcmLcm k=0..n | T(n, k) | > 1missing1 1 6 56 6720 158720 319979520 173386235904 808475248558080 1137220409842728960
InvRowGcdGcd k=0..n | T(n, k) | > 1A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
InvRowMaxMax k=0..n | T(n, k) |A1278501 1 3 14 120 1984 64512 4161536 534773760 137170518016 70300024700928 72022409665839104
InvColMiddleT(n, n // 2)missing1 -1 -3 14 70 -1240 -11160 755904 12850368 -3389180928 -111842970624 116288284884992
InvCentralET(2 n, n)A1359511 -3 70 -11160 12850368 -111842970624 7558738517524480 -4024873276683363287040
InvCentralOT(2 n + 1, n)missing-1 14 -1240 755904 -3389180928 116288284884992 -31200568036305141760 66200105490614595677585408
InvColLeftT(n, 0)A0061251 -1 2 -8 64 -1024 32768 -2097152 268435456 -68719476736 35184372088832 -36028797018963968
InvColRightT(n, n)A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
InvBinConv k=0..n C(n, k) T(n, k)missing1 0 -3 14 -55 -558 66609 -7056882 1180047537 -345215150910 181970174430825 -172524467631059058
InvInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kmissing1 2 9 72 1025 26600 1287909 118455696 20965995297 7205821917296 4839261283120341
InvTransNat0 k=0..n T(n, k) kA0053290 1 -1 3 -21 315 -9765 615195 -78129765 19923090075 -10180699028325 10414855105976475
InvTransNat1 k=0..n T(n, k) (k + 1)A0053291 1 -1 3 -21 315 -9765 615195 -78129765 19923090075 -10180699028325 10414855105976475
InvTransSqrs k=0..n T(n, k) k^2missing0 1 1 -5 41 -657 20997 -1342341 171707697 -43941722265 22494066257565 -23031791179545645
InvPosHalf k=0..n 2^n T(n, k) (1/2)^kA0053291 -1 3 -21 315 -9765 615195 -78129765 19923090075 -10180699028325 10414855105976475
InvNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kA0283621 3 15 135 2295 75735 4922775 635037975 163204759575 83724041661975 85817142703524375
InvDiagRow1T(n + 1, n)A000225-1 -3 -7 -15 -31 -63 -127 -255 -511 -1023 -2047 -4095 -8191 -16383 -32767 -65535 -131071 -262143
InvDiagRow2T(n + 2, n)A2032412 14 70 310 1302 5334 21590 86870 348502 1396054 5588310 22361430 89462102 357881174 1431590230
InvDiagRow3T(n + 3, n)missing-8 -120 -1240 -11160 -94488 -777240 -6304280 -50781720 -407647768 -3266766360 -26156484120
InvDiagCol1T(n + 1, 1)A1278501 -3 14 -120 1984 -64512 4161536 -534773760 137170518016 -70300024700928 72022409665839104
InvDiagCol2T(n + 2, 2)missing1 -7 70 -1240 41664 -2731008 353730560 -91089797120 46775146643456 -47968050187599872
InvDiagCol3T(n + 3, 3)missing1 -15 310 -11160 755904 -99486720 25822330880 -13312123207680 13678389311307776
InvPolysee docsmissing1 -1 1 2 0 1 -8 0 1 1 64 0 0 2 1 -1024 0 0 2 3 1 32768 0 0 -2 6 4 1 -2097152 0 0 10 0 12 5 1
InvPolyRow1 k=0..1 T(1, k) n^kA000027-1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
InvPolyRow2 k=0..2 T(2, k) n^kA0023782 0 0 2 6 12 20 30 42 56 72 90 110 132 156 182 210 240 272 306 342 380 420 462 506 552 600 650 702
InvPolyRow3 k=0..3 T(3, k) n^kmissing-8 0 0 -2 0 12 40 90 168 280 432 630 880 1188 1560 2002 2520 3120 3808 4590 5472 6460 7560 8778
InvPolyCol2 k=0..n T(n, k) 2^kA0195901 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
InvPolyCol3 k=0..n T(n, k) 3^kmissing1 2 2 -2 10 -130 3770 -229970 28746250 -7272801250 3701855836250 -3779594808811250
InvPolyDiag k=0..n T(n, k) n^kmissing1 0 0 -2 0 396 -20800 1154250 0 -72877004200 89743347505152 -153012210826088250
Inv:RevTriangleT(n, k), 0 ≤ k ≤ nA1584741 1 -1 1 -3 2 1 -7 14 -8 1 -15 70 -120 64 1 -31 310 -1240 1984 -1024 1 -63 1302 -11160 41664 -64512
Inv:RevRevT(n, n - k), 0 ≤ k ≤ nA1359501 -1 1 2 -3 1 -8 14 -7 1 64 -120 70 -15 1 -1024 1984 -1240 310 -31 1 32768 -64512 41664 -11160 1302
Inv:RevInvRev(T(n, n - k))-1, 0 ≤ k ≤ nA0221661 1 1 1 3 1 1 7 7 1 1 15 35 15 1 1 31 155 155 31 1 1 63 651 1395 651 63 1 1 127 2667 11811 11811
Inv:RevAccsee docsmissing1 1 0 1 -2 0 1 -6 8 0 1 -14 56 -64 0 1 -30 280 -960 1024 0 1 -62 1240 -9920 31744 -32768 0 1 -126
Inv:RevAccRevsee docsmissing1 -1 0 2 -1 0 -8 6 -1 0 64 -56 14 -1 0 -1024 960 -280 30 -1 0 32768 -31744 9920 -1240 62 -1 0
Inv:RevAntiDiagsee docsmissing1 1 1 -1 1 -3 1 -7 2 1 -15 14 1 -31 70 -8 1 -63 310 -120 1 -127 1302 -1240 64 1 -255 5334 -11160
Inv:RevDiffx1T(n, k) (k+1)missing1 1 -2 1 -6 6 1 -14 42 -32 1 -30 210 -480 320 1 -62 930 -4960 9920 -6144 1 -126 3906 -44640 208320
Inv:RevRowSum k=0..n T(n, k)A0000071 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Inv:RevEvenSum k=0..n T(n, k) even(k)A0283621 1 3 15 135 2295 75735 4922775 635037975 163204759575 83724041661975 85817142703524375
Inv:RevOddSum k=0..n T(n, k) odd(k)A0283620 -1 -3 -15 -135 -2295 -75735 -4922775 -635037975 -163204759575 -83724041661975 -85817142703524375
Inv:RevAltSum k=0..n T(n, k) (-1)^kA0283611 2 6 30 270 4590 151470 9845550 1270075950 326409519150 167448083323950 171634285407048750
Inv:RevAbsSum k=0..n | T(n, k) |A0283611 2 6 30 270 4590 151470 9845550 1270075950 326409519150 167448083323950 171634285407048750
Inv:RevDiagSum k=0..n // 2 T(n - k, k)missing1 1 0 -2 -4 0 32 128 0 -4096 -32768 0 4194304 67108864 0 -34359738368 -1099511627776 0
Inv:RevAccSum k=0..n j=0..k T(n, j)A0053291 1 -1 3 -21 315 -9765 615195 -78129765 19923090075 -10180699028325 10414855105976475
Inv:RevAccRevSum k=0..n j=0..k T(n, n - j)A0053291 -1 1 -3 21 -315 9765 -615195 78129765 -19923090075 10180699028325 -10414855105976475
Inv:RevRowLcmLcm k=0..n | T(n, k) | > 1missing1 1 6 56 6720 158720 319979520 173386235904 808475248558080 1137220409842728960
Inv:RevRowGcdGcd k=0..n | T(n, k) | > 1A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Inv:RevRowMaxMax k=0..n | T(n, k) |A1278501 1 3 14 120 1984 64512 4161536 534773760 137170518016 70300024700928 72022409665839104
Inv:RevColMiddleT(n, n // 2)missing1 1 -3 -7 70 310 -11160 -94488 12850368 211823808 -111842970624 -3634008902656 7558738517524480
Inv:RevCentralET(2 n, n)A1359511 -3 70 -11160 12850368 -111842970624 7558738517524480 -4024873276683363287040
Inv:RevCentralOT(2 n + 1, n)missing1 -7 310 -94488 211823808 -3634008902656 487508875567267840 -517188324145426528731136
Inv:RevColLeftT(n, 0)A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Inv:RevColRightT(n, n)A0061251 -1 2 -8 64 -1024 32768 -2097152 268435456 -68719476736 35184372088832 -36028797018963968
Inv:RevBinConv k=0..n C(n, k) T(n, k)missing1 0 -3 14 -55 -558 66609 -7056882 1180047537 -345215150910 181970174430825 -172524467631059058
Inv:RevInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kmissing1 -2 9 -72 1025 -26600 1287909 -118455696 20965995297 -7205821917296 4839261283120341
Inv:RevTransNat0 k=0..n T(n, k) kA0053290 -1 1 -3 21 -315 9765 -615195 78129765 -19923090075 10180699028325 -10414855105976475
Inv:RevTransNat1 k=0..n T(n, k) (k + 1)A0053291 -1 1 -3 21 -315 9765 -615195 78129765 -19923090075 10180699028325 -10414855105976475
Inv:RevTransSqrs k=0..n T(n, k) k^2missing0 -1 5 -23 209 -3807 138177 -9955071 1421783937 -402557343615 226108046824065 -252158603511028095
Inv:RevPosHalf k=0..n 2^n T(n, k) (1/2)^kA0195901 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Inv:RevNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kA1394861 -3 12 -72 720 -12960 440640 -29082240 3780691200 -975418329600 501365021414400
Inv:RevDiagRow1T(n + 1, n)A1278501 -3 14 -120 1984 -64512 4161536 -534773760 137170518016 -70300024700928 72022409665839104
Inv:RevDiagRow2T(n + 2, n)missing1 -7 70 -1240 41664 -2731008 353730560 -91089797120 46775146643456 -47968050187599872
Inv:RevDiagRow3T(n + 3, n)missing1 -15 310 -11160 755904 -99486720 25822330880 -13312123207680 13678389311307776
Inv:RevDiagCol1T(n + 1, 1)A000225-1 -3 -7 -15 -31 -63 -127 -255 -511 -1023 -2047 -4095 -8191 -16383 -32767 -65535 -131071 -262143
Inv:RevDiagCol2T(n + 2, 2)A2032412 14 70 310 1302 5334 21590 86870 348502 1396054 5588310 22361430 89462102 357881174 1431590230
Inv:RevDiagCol3T(n + 3, 3)missing-8 -120 -1240 -11160 -94488 -777240 -6304280 -50781720 -407647768 -3266766360 -26156484120
Inv:RevPolysee docsmissing1 1 1 1 0 1 1 0 -1 1 1 0 3 -2 1 1 0 -21 10 -3 1 1 0 315 -110 21 -4 1 1 0 -9765 2530 -315 36 -5 1 1
Inv:RevPolyRow1 k=0..1 T(1, k) n^kA0000271 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25 -26
Inv:RevPolyRow2 k=0..2 T(2, k) n^kA0141051 0 3 10 21 36 55 78 105 136 171 210 253 300 351 406 465 528 595 666 741 820 903 990 1081 1176 1275
Inv:RevPolyRow3 k=0..3 T(3, k) n^kmissing1 0 -21 -110 -315 -684 -1265 -2106 -3255 -4760 -6669 -9030 -11891 -15300 -19305 -23954 -29295
Inv:RevPolyCol2 k=0..n T(n, k) 2^kA0053291 -1 3 -21 315 -9765 615195 -78129765 19923090075 -10180699028325 10414855105976475
Inv:RevPolyCol3 k=0..n T(n, k) 3^kmissing1 -2 10 -110 2530 -118910 11296450 -2157621950 826369206850 -633825181653950 972921653838813250
Inv:RevPolyDiag k=0..n T(n, k) n^kmissing1 0 3 -110 9765 -2107404 1078810975 -1281611575530 3471618368658825 -21140747635478471000
 << TableSourceSimilarsIndex >> 

Note: The A-numbers are based on a finite number of numerical comparisons. They ignore the sign and the OEIS-offset. Sometimes they differ in the first few values. In such cases, we consider our version to be the better one because it has a common formula as a root. Since the offset of all triangles is 0 also the offset of all sequences is 0.