OEIS Similars: A126198
↕ Type | ↕ Trait | ↕ Anum | ↕ Sequence |
---|---|---|---|
Std | TriangleT(n, k), 0 ≤ k ≤ n | missing | 1 0 1 0 1 2 0 1 3 4 0 1 5 7 8 0 1 8 13 15 16 0 1 13 24 29 31 32 0 1 21 44 56 61 63 64 0 1 34 81 108 |
Std | RevT(n, n - k), 0 ≤ k ≤ n | missing | 1 1 0 2 1 0 4 3 1 0 8 7 5 1 0 16 15 13 8 1 0 32 31 29 24 13 1 0 64 63 61 56 44 21 1 0 128 127 125 |
Std | Accsee docs | missing | 1 0 1 0 1 3 0 1 4 8 0 1 6 13 21 0 1 9 22 37 53 0 1 14 38 67 98 130 0 1 22 66 122 183 246 310 0 1 35 |
Std | AccRevsee docs | missing | 1 1 1 2 3 3 4 7 8 8 8 15 20 21 21 16 31 44 52 53 53 32 63 92 116 129 130 130 64 127 188 244 288 309 |
Std | AntiDiagsee docs | missing | 1 0 0 1 0 1 0 1 2 0 1 3 0 1 5 4 0 1 8 7 0 1 13 13 8 0 1 21 24 15 0 1 34 44 29 16 0 1 55 81 56 31 0 |
Std | Diffx1T(n, k) (k+1) | missing | 1 0 2 0 2 6 0 2 9 16 0 2 15 28 40 0 2 24 52 75 96 0 2 39 96 145 186 224 0 2 63 176 280 366 441 512 |
Std | RowSum∑ k=0..n T(n, k) | A039671 | 1 1 3 8 21 53 130 310 724 1661 3757 8398 18588 40800 88918 192592 414907 889631 1899554 4040864 |
Std | EvenSum∑ k=0..n T(n, k) even(k) | missing | 1 0 2 3 13 23 74 140 395 766 2003 3932 9780 19320 46396 91990 215265 427767 981431 1953113 4412062 |
Std | OddSum∑ k=0..n T(n, k) odd(k) | missing | 0 1 1 5 8 30 56 170 329 895 1754 4466 8808 21480 42522 100602 199642 461864 918123 2087751 4155280 |
Std | AltSum∑ k=0..n T(n, k) (-1)^k | missing | 1 -1 1 -2 5 -7 18 -30 66 -129 249 -534 972 -2160 3874 -8612 15623 -34097 63308 -134638 256782 |
Std | AbsSum∑ k=0..n | T(n, k) | | A039671 | 1 1 3 8 21 53 130 310 724 1661 3757 8398 18588 40800 88918 192592 414907 889631 1899554 4040864 |
Std | DiagSum∑ k=0..n // 2 T(n - k, k) | missing | 1 0 1 1 3 4 10 16 35 61 124 224 440 810 1564 2917 5591 10524 20132 38162 73050 139244 267042 511302 |
Std | AccSum∑ k=0..n ∑ j=0..k T(n, j) | missing | 1 1 4 13 41 122 348 950 2509 6437 16131 39628 95728 227930 535974 1246656 2871975 6560240 14871813 |
Std | AccRevSum∑ k=0..n ∑ j=0..k T(n, n - j) | missing | 1 2 8 27 85 249 692 1840 4731 11834 28953 69546 164504 384070 886714 2027408 4596351 10342749 |
Std | RowLcmLcm k=0..n | T(n, k) | > 1 | missing | 1 1 2 12 280 3120 1121952 2705472 2798064000 58511872024320 6967676101752221184 |
Std | RowGcdGcd k=0..n | T(n, k) | > 1 | A000012 | 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Std | RowMaxMax k=0..n | T(n, k) | | A000079 | 1 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 1048576 |
Std | ColMiddleT(n, n // 2) | A368484 | 1 0 1 1 5 8 24 44 108 208 464 912 1936 3840 7936 15808 32192 64256 129792 259328 521472 1042432 |
Std | CentralET(2 n, n) | A008464 | 1 1 5 24 108 464 1936 7936 32192 129792 521472 2091008 8375296 33525760 134156288 536739840 |
Std | CentralOT(2 n + 1, n) | A100575 | 0 1 8 44 208 912 3840 15808 64256 259328 1042432 4180992 16748544 67047424 268304384 1073463296 |
Std | ColLeftT(n, 0) | A000007 | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Std | ColRightT(n, n) | A000079 | 1 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 1048576 |
Std | BinConv∑ k=0..n C(n, k) T(n, k) | missing | 1 1 4 16 70 306 1334 5734 24420 102940 430360 1785829 7364042 30203057 123318368 501604024 |
Std | InvBinConv∑ k=0..n C(n, k) T(n, n - k) (-1)^k | missing | 1 1 0 -2 6 -4 -10 50 -140 310 -456 199 1298 -5953 19032 -51192 117356 -232678 407864 -590272 448571 |
Std | TransNat0∑ k=0..n T(n, k) k | missing | 0 1 5 19 64 196 562 1530 4007 10173 25196 61148 145916 343270 797796 1834816 4181444 9453118 |
Std | TransNat1∑ k=0..n T(n, k) (k + 1) | missing | 1 2 8 27 85 249 692 1840 4731 11834 28953 69546 164504 384070 886714 2027408 4596351 10342749 |
Std | TransSqrs∑ k=0..n T(n, k) k^2 | missing | 0 1 9 49 212 790 2660 8306 24509 69171 188414 498542 1287768 3259572 8108942 19873582 48076210 |
Std | PosHalf∑ k=0..n 2^n T(n, k) (1/2)^k | missing | 1 1 4 14 50 178 642 2322 8466 31026 114354 423666 1577202 5897586 22143346 83451506 315577970 |
Std | NegHalf∑ k=0..n (-2)^n T(n, k) (-1/2)^k | missing | 1 1 0 2 6 -10 70 -170 598 -1354 3382 -4490 -3978 88566 -530954 2598646 -11329802 46644470 |
Std | DiagRow1T(n + 1, n) | A000225 | 0 1 3 7 15 31 63 127 255 511 1023 2047 4095 8191 16383 32767 65535 131071 262143 524287 1048575 |
Std | DiagRow2T(n + 2, n) | A036563 | 0 1 5 13 29 61 125 253 509 1021 2045 4093 8189 16381 32765 65533 131069 262141 524285 1048573 |
Std | DiagRow3T(n + 3, n) | A159741 | 0 1 8 24 56 120 248 504 1016 2040 4088 8184 16376 32760 65528 131064 262136 524280 1048568 2097144 |
Std | DiagCol1T(n + 1, 1) | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Std | DiagCol2T(n + 2, 2) | A000045 | 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181 6765 10946 17711 28657 46368 75025 121393 |
Std | DiagCol3T(n + 3, 3) | A000073 | 4 7 13 24 44 81 149 274 504 927 1705 3136 5768 10609 19513 35890 66012 121415 223317 410744 755476 |
Std | Polysee docs | missing | 1 0 1 0 1 1 0 3 2 1 0 8 10 3 1 0 21 46 21 4 1 0 53 206 138 36 5 1 0 130 890 885 308 55 6 1 0 310 |
Std | PolyRow1∑ k=0..1 T(1, k) n^k | A000027 | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 |
Std | PolyRow2∑ k=0..2 T(2, k) n^k | A014105 | 0 3 10 21 36 55 78 105 136 171 210 253 300 351 406 465 528 595 666 741 820 903 990 1081 1176 1275 |
Std | PolyRow3∑ k=0..3 T(3, k) n^k | missing | 0 8 46 138 308 580 978 1526 2248 3168 4310 5698 7356 9308 11578 14190 17168 20536 24318 28538 33220 |
Std | PolyCol2∑ k=0..n T(n, k) 2^k | missing | 1 2 10 46 206 890 3750 15510 63378 256902 1036038 4164690 16708062 66948942 268068874 1072907998 |
Std | PolyCol3∑ k=0..n T(n, k) 3^k | missing | 1 3 21 138 885 5529 33978 206634 1249086 7524723 45245001 271774362 1631594172 9792490728 |
Std | PolyDiag∑ k=0..n T(n, k) n^k | missing | 1 1 10 138 2580 61205 1777290 61294450 2451008136 111513860901 5687482692910 321339842335578 |
Alt | TriangleT(n, k), 0 ≤ k ≤ n | missing | 1 0 -1 0 -1 2 0 -1 3 -4 0 -1 5 -7 8 0 -1 8 -13 15 -16 0 -1 13 -24 29 -31 32 0 -1 21 -44 56 -61 63 |
Alt | RevT(n, n - k), 0 ≤ k ≤ n | missing | 1 -1 0 2 -1 0 -4 3 -1 0 8 -7 5 -1 0 -16 15 -13 8 -1 0 32 -31 29 -24 13 -1 0 -64 63 -61 56 -44 21 -1 |
Alt | Accsee docs | missing | 1 0 -1 0 -1 1 0 -1 2 -2 0 -1 4 -3 5 0 -1 7 -6 9 -7 0 -1 12 -12 17 -14 18 0 -1 20 -24 32 -29 34 -30 |
Alt | AccRevsee docs | missing | 1 -1 -1 2 1 1 -4 -1 -2 -2 8 1 6 5 5 -16 -1 -14 -6 -7 -7 32 1 30 6 19 18 18 -64 -1 -62 -6 -50 -29 |
Alt | AntiDiagsee docs | missing | 1 0 0 -1 0 -1 0 -1 2 0 -1 3 0 -1 5 -4 0 -1 8 -7 0 -1 13 -13 8 0 -1 21 -24 15 0 -1 34 -44 29 -16 0 |
Alt | Diffx1T(n, k) (k+1) | missing | 1 0 -2 0 -2 6 0 -2 9 -16 0 -2 15 -28 40 0 -2 24 -52 75 -96 0 -2 39 -96 145 -186 224 0 -2 63 -176 |
Alt | RowSum∑ k=0..n T(n, k) | missing | 1 -1 1 -2 5 -7 18 -30 66 -129 249 -534 972 -2160 3874 -8612 15623 -34097 63308 -134638 256782 |
Alt | EvenSum∑ k=0..n T(n, k) even(k) | missing | 1 0 2 3 13 23 74 140 395 766 2003 3932 9780 19320 46396 91990 215265 427767 981431 1953113 4412062 |
Alt | OddSum∑ k=0..n T(n, k) odd(k) | missing | 0 -1 -1 -5 -8 -30 -56 -170 -329 -895 -1754 -4466 -8808 -21480 -42522 -100602 -199642 -461864 |
Alt | AltSum∑ k=0..n T(n, k) (-1)^k | A039671 | 1 1 3 8 21 53 130 310 724 1661 3757 8398 18588 40800 88918 192592 414907 889631 1899554 4040864 |
Alt | AbsSum∑ k=0..n | T(n, k) | | A039671 | 1 1 3 8 21 53 130 310 724 1661 3757 8398 18588 40800 88918 192592 414907 889631 1899554 4040864 |
Alt | DiagSum∑ k=0..n // 2 T(n - k, k) | missing | 1 0 -1 -1 1 2 0 0 7 11 2 -2 18 20 -46 -121 -151 -344 -976 -1940 -3236 -6058 -12112 -21928 -36979 |
Alt | AccSum∑ k=0..n ∑ j=0..k T(n, j) | missing | 1 -1 0 -1 5 2 20 2 53 -57 83 -448 -32 -2342 -858 -10116 -3685 -38836 -7919 -135965 15832 -436276 |
Alt | AccRevSum∑ k=0..n ∑ j=0..k T(n, n - j) | missing | 1 -2 4 -9 25 -51 124 -272 607 -1362 2905 -6494 13640 -30058 62842 -136288 284899 -609007 1274079 |
Alt | RowLcmLcm k=0..n | T(n, k) | > 1 | missing | 1 1 2 12 280 3120 1121952 2705472 2798064000 58511872024320 6967676101752221184 |
Alt | RowGcdGcd k=0..n | T(n, k) | > 1 | A000012 | 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Alt | RowMaxMax k=0..n | T(n, k) | | A000079 | 1 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 1048576 |
Alt | ColMiddleT(n, n // 2) | A368484 | 1 0 -1 -1 5 8 -24 -44 108 208 -464 -912 1936 3840 -7936 -15808 32192 64256 -129792 -259328 521472 |
Alt | CentralET(2 n, n) | A008464 | 1 -1 5 -24 108 -464 1936 -7936 32192 -129792 521472 -2091008 8375296 -33525760 134156288 -536739840 |
Alt | CentralOT(2 n + 1, n) | A100575 | 0 -1 8 -44 208 -912 3840 -15808 64256 -259328 1042432 -4180992 16748544 -67047424 268304384 |
Alt | ColLeftT(n, 0) | A000007 | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Alt | ColRightT(n, n) | A000079 | 1 -1 2 -4 8 -16 32 -64 128 -256 512 -1024 2048 -4096 8192 -16384 32768 -65536 131072 -262144 524288 |
Alt | BinConv∑ k=0..n C(n, k) T(n, k) | missing | 1 -1 0 2 6 4 -10 -50 -140 -310 -456 -199 1298 5953 19032 51192 117356 232678 407864 590272 448571 |
Alt | InvBinConv∑ k=0..n C(n, k) T(n, n - k) (-1)^k | missing | 1 -1 4 -16 70 -306 1334 -5734 24420 -102940 430360 -1785829 7364042 -30203057 123318368 -501604024 |
Alt | TransNat0∑ k=0..n T(n, k) k | missing | 0 -1 3 -7 20 -44 106 -242 541 -1233 2656 -5960 12668 -27898 58968 -127676 269276 -574910 1210771 |
Alt | TransNat1∑ k=0..n T(n, k) (k + 1) | missing | 1 -2 4 -9 25 -51 124 -272 607 -1362 2905 -6494 13640 -30058 62842 -136288 284899 -609007 1274079 |
Alt | TransSqrs∑ k=0..n T(n, k) k^2 | missing | 0 -1 7 -25 84 -246 676 -1810 4603 -11579 28106 -67734 159576 -373068 859850 -1966358 4456910 |
Alt | PosHalf∑ k=0..n 2^n T(n, k) (1/2)^k | missing | 1 -1 0 -2 6 10 70 170 598 1354 3382 4490 -3978 -88566 -530954 -2598646 -11329802 -46644470 |
Alt | NegHalf∑ k=0..n (-2)^n T(n, k) (-1/2)^k | missing | 1 -1 4 -14 50 -178 642 -2322 8466 -31026 114354 -423666 1577202 -5897586 22143346 -83451506 |
Alt | DiagRow1T(n + 1, n) | A000225 | 0 -1 3 -7 15 -31 63 -127 255 -511 1023 -2047 4095 -8191 16383 -32767 65535 -131071 262143 -524287 |
Alt | DiagRow2T(n + 2, n) | A036563 | 0 -1 5 -13 29 -61 125 -253 509 -1021 2045 -4093 8189 -16381 32765 -65533 131069 -262141 524285 |
Alt | DiagRow3T(n + 3, n) | A159741 | 0 -1 8 -24 56 -120 248 -504 1016 -2040 4088 -8184 16376 -32760 65528 -131064 262136 -524280 1048568 |
Alt | DiagCol1T(n + 1, 1) | A000012 | -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 |
Alt | DiagCol2T(n + 2, 2) | A000045 | 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181 6765 10946 17711 28657 46368 75025 121393 |
Alt | DiagCol3T(n + 3, 3) | A000073 | -4 -7 -13 -24 -44 -81 -149 -274 -504 -927 -1705 -3136 -5768 -10609 -19513 -35890 -66012 -121415 |
Alt | Polysee docs | missing | 1 0 1 0 -1 1 0 1 -2 1 0 -2 6 -3 1 0 5 -22 15 -4 1 0 -7 90 -84 28 -5 1 0 18 -346 501 -212 45 -6 1 0 |
Alt | PolyRow1∑ k=0..1 T(1, k) n^k | A000027 | 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25 -26 |
Alt | PolyRow2∑ k=0..2 T(2, k) n^k | A000384 | 0 1 6 15 28 45 66 91 120 153 190 231 276 325 378 435 496 561 630 703 780 861 946 1035 1128 1225 |
Alt | PolyRow3∑ k=0..3 T(3, k) n^k | missing | 0 -2 -22 -84 -212 -430 -762 -1232 -1864 -2682 -3710 -4972 -6492 -8294 -10402 -12840 -15632 -18802 |
Alt | PolyCol2∑ k=0..n T(n, k) 2^k | missing | 1 -2 6 -22 90 -346 1378 -5486 21886 -87502 349666 -1398578 5593002 -22371462 89481094 -357920678 |
Alt | PolyCol3∑ k=0..n T(n, k) 3^k | missing | 1 -3 15 -84 501 -2955 17610 -105330 630888 -3782343 22684173 -136077330 816378252 -4898015688 |
Alt | PolyDiag∑ k=0..n T(n, k) n^k | missing | 1 -1 6 -84 1676 -42055 1284798 -46199706 1910384248 -89293700169 4655309344890 -267832813598834 |
Rev | TriangleT(n, k), 0 ≤ k ≤ n | missing | 1 1 0 2 1 0 4 3 1 0 8 7 5 1 0 16 15 13 8 1 0 32 31 29 24 13 1 0 64 63 61 56 44 21 1 0 128 127 125 |
Rev | Accsee docs | missing | 1 1 1 2 3 3 4 7 8 8 8 15 20 21 21 16 31 44 52 53 53 32 63 92 116 129 130 130 64 127 188 244 288 309 |
Rev | AccRevsee docs | missing | 1 0 1 0 1 3 0 1 4 8 0 1 6 13 21 0 1 9 22 37 53 0 1 14 38 67 98 130 0 1 22 66 122 183 246 310 0 1 35 |
Rev | AntiDiagsee docs | missing | 1 1 2 0 4 1 8 3 0 16 7 1 32 15 5 0 64 31 13 1 128 63 29 8 0 256 127 61 24 1 512 255 125 56 13 0 |
Rev | Diffx1T(n, k) (k+1) | missing | 1 1 0 2 2 0 4 6 3 0 8 14 15 4 0 16 30 39 32 5 0 32 62 87 96 65 6 0 64 126 183 224 220 126 7 0 128 |
Rev | RowSum∑ k=0..n T(n, k) | A039671 | 1 1 3 8 21 53 130 310 724 1661 3757 8398 18588 40800 88918 192592 414907 889631 1899554 4040864 |
Rev | EvenSum∑ k=0..n T(n, k) even(k) | missing | 1 1 2 5 13 30 74 170 395 895 2003 4466 9780 21480 46396 100602 215265 461864 981431 2087751 4412062 |
Rev | OddSum∑ k=0..n T(n, k) odd(k) | missing | 0 0 1 3 8 23 56 140 329 766 1754 3932 8808 19320 42522 91990 199642 427767 918123 1953113 4155280 |
Rev | AltSum∑ k=0..n T(n, k) (-1)^k | missing | 1 1 1 2 5 7 18 30 66 129 249 534 972 2160 3874 8612 15623 34097 63308 134638 256782 531606 1040340 |
Rev | AbsSum∑ k=0..n | T(n, k) | | A039671 | 1 1 3 8 21 53 130 310 724 1661 3757 8398 18588 40800 88918 192592 414907 889631 1899554 4040864 |
Rev | DiagSum∑ k=0..n // 2 T(n - k, k) | missing | 1 1 2 5 11 24 52 109 228 469 961 1953 3957 7986 16082 32326 64888 130131 260766 522298 1045666 |
Rev | AccSum∑ k=0..n ∑ j=0..k T(n, j) | missing | 1 2 8 27 85 249 692 1840 4731 11834 28953 69546 164504 384070 886714 2027408 4596351 10342749 |
Rev | AccRevSum∑ k=0..n ∑ j=0..k T(n, n - j) | missing | 1 1 4 13 41 122 348 950 2509 6437 16131 39628 95728 227930 535974 1246656 2871975 6560240 14871813 |
Rev | RowLcmLcm k=0..n | T(n, k) | > 1 | missing | 1 1 2 12 280 3120 1121952 2705472 2798064000 58511872024320 6967676101752221184 |
Rev | RowGcdGcd k=0..n | T(n, k) | > 1 | A000012 | 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Rev | RowMaxMax k=0..n | T(n, k) | | A000079 | 1 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 1048576 |
Rev | ColMiddleT(n, n // 2) | A336103 | 1 1 1 3 5 13 24 56 108 236 464 976 1936 3984 7936 16128 32192 64960 129792 260864 521472 1045760 |
Rev | CentralET(2 n, n) | A008464 | 1 1 5 24 108 464 1936 7936 32192 129792 521472 2091008 8375296 33525760 134156288 536739840 |
Rev | CentralOT(2 n + 1, n) | missing | 1 3 13 56 236 976 3984 16128 64960 260864 1045760 4188160 16763904 67080192 268374016 1073610752 |
Rev | ColLeftT(n, 0) | A000079 | 1 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 1048576 |
Rev | ColRightT(n, n) | A000007 | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Rev | BinConv∑ k=0..n C(n, k) T(n, k) | missing | 1 1 4 16 70 306 1334 5734 24420 102940 430360 1785829 7364042 30203057 123318368 501604024 |
Rev | InvBinConv∑ k=0..n C(n, k) T(n, n - k) (-1)^k | missing | 1 -1 0 2 6 4 -10 -50 -140 -310 -456 -199 1298 5953 19032 51192 117356 232678 407864 590272 448571 |
Rev | TransNat0∑ k=0..n T(n, k) k | missing | 0 0 1 5 20 69 218 640 1785 4776 12374 31230 77140 187130 447056 1054064 2457068 5670609 12972259 |
Rev | TransNat1∑ k=0..n T(n, k) (k + 1) | missing | 1 1 4 13 41 122 348 950 2509 6437 16131 39628 95728 227930 535974 1246656 2871975 6560240 14871813 |
Rev | TransSqrs∑ k=0..n T(n, k) k^2 | missing | 0 0 1 7 36 155 596 2076 6733 20598 60194 169444 462456 1229752 3198582 8162302 20486194 50673923 |
Rev | PosHalf∑ k=0..n 2^n T(n, k) (1/2)^k | missing | 1 2 10 46 206 890 3750 15510 63378 256902 1036038 4164690 16708062 66948942 268068874 1072907998 |
Rev | NegHalf∑ k=0..n (-2)^n T(n, k) (-1/2)^k | missing | 1 -2 6 -22 90 -346 1378 -5486 21886 -87502 349666 -1398578 5593002 -22371462 89481094 -357920678 |
Rev | DiagRow1T(n + 1, n) | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Rev | DiagRow2T(n + 2, n) | A000045 | 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181 6765 10946 17711 28657 46368 75025 121393 |
Rev | DiagRow3T(n + 3, n) | A000073 | 4 7 13 24 44 81 149 274 504 927 1705 3136 5768 10609 19513 35890 66012 121415 223317 410744 755476 |
Rev | DiagCol1T(n + 1, 1) | A000225 | 0 1 3 7 15 31 63 127 255 511 1023 2047 4095 8191 16383 32767 65535 131071 262143 524287 1048575 |
Rev | DiagCol2T(n + 2, 2) | A036563 | 0 1 5 13 29 61 125 253 509 1021 2045 4093 8189 16381 32765 65533 131069 262141 524285 1048573 |
Rev | DiagCol3T(n + 3, 3) | A159741 | 0 1 8 24 56 120 248 504 1016 2040 4088 8184 16376 32760 65528 131064 262136 524280 1048568 2097144 |
Rev | Polysee docs | missing | 1 1 1 2 1 1 4 3 1 1 8 8 4 1 1 16 21 14 5 1 1 32 53 50 22 6 1 1 64 130 178 101 32 7 1 1 128 310 642 |
Rev | PolyRow1∑ k=0..1 T(1, k) n^k | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Rev | PolyRow2∑ k=0..2 T(2, k) n^k | A000027 | 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 |
Rev | PolyRow3∑ k=0..3 T(3, k) n^k | A014206 | 4 8 14 22 32 44 58 74 92 112 134 158 184 212 242 274 308 344 382 422 464 508 554 602 652 704 758 |
Rev | PolyCol2∑ k=0..n T(n, k) 2^k | missing | 1 1 4 14 50 178 642 2322 8466 31026 114354 423666 1577202 5897586 22143346 83451506 315577970 |
Rev | PolyCol3∑ k=0..n T(n, k) 3^k | missing | 1 1 5 22 101 475 2330 11710 60278 315121 1668017 8914750 48022172 260431336 1420794626 7792741876 |
Rev | PolyDiag∑ k=0..n T(n, k) n^k | missing | 1 1 4 22 180 2041 31070 598942 14177208 399329149 13092880522 490371388398 20664114207812 |
<< | Table | Source | Similars | Index | >> |
Note: The A-numbers are based on a finite number of numerical comparisons. They ignore the sign and the OEIS-offset. Sometimes they differ in the first few values. In such cases, we consider our version to be the better one because it has a common formula as a root. Since the offset of all triangles is 0 also the offset of all sequences is 0.