OEIS Similars: A048004
↕ Type | ↕ Trait | ↕ Anum | ↕ Sequence |
---|---|---|---|
Std | TriangleT(n, k), 0 ≤ k ≤ n | missing | 1 0 1 0 1 1 0 1 2 1 0 1 4 2 1 0 1 7 5 2 1 0 1 12 11 5 2 1 0 1 20 23 12 5 2 1 0 1 33 47 27 12 5 2 1 |
Std | RevT(n, n - k), 0 ≤ k ≤ n | missing | 1 1 0 1 1 0 1 2 1 0 1 2 4 1 0 1 2 5 7 1 0 1 2 5 11 12 1 0 1 2 5 12 23 20 1 0 1 2 5 12 27 47 33 1 0 |
Std | InvT-1(n, k), 0 ≤ k ≤ n | missing | 1 0 1 0 -1 1 0 1 -2 1 0 1 0 -2 1 0 -1 3 -1 -2 1 0 -3 4 1 -1 -2 1 0 -5 3 4 0 -1 -2 1 0 -5 -1 6 2 0 |
Std | RevInvT-1(n, n - k), 0 ≤ k ≤ n | missing | 1 1 0 1 -1 0 1 -2 1 0 1 -2 0 1 0 1 -2 -1 3 -1 0 1 -2 -1 1 4 -3 0 1 -2 -1 0 4 3 -5 0 1 -2 -1 0 2 6 |
Std | Accsee docs | missing | 1 0 1 0 1 2 0 1 3 4 0 1 5 7 8 0 1 8 13 15 16 0 1 13 24 29 31 32 0 1 21 44 56 61 63 64 0 1 34 81 108 |
Std | AccRevsee docs | missing | 1 1 1 1 2 2 1 3 4 4 1 3 7 8 8 1 3 8 15 16 16 1 3 8 19 31 32 32 1 3 8 20 43 63 64 64 1 3 8 20 47 94 |
Std | AntiDiagsee docs | missing | 1 0 0 1 0 1 0 1 1 0 1 2 0 1 4 1 0 1 7 2 0 1 12 5 1 0 1 20 11 2 0 1 33 23 5 1 0 1 54 47 12 2 0 1 88 |
Std | Diffx1T(n, k) (k+1) | missing | 1 0 2 0 2 3 0 2 6 4 0 2 12 8 5 0 2 21 20 10 6 0 2 36 44 25 12 7 0 2 60 92 60 30 14 8 0 2 99 188 135 |
Std | RowSum∑ k=0..n T(n, k) | A000079 | 1 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 1048576 |
Std | EvenSum∑ k=0..n T(n, k) even(k) | A103422 | 1 0 1 2 5 9 18 34 66 127 249 490 972 1936 3874 7772 15623 31439 63308 127506 256782 516970 1040340 |
Std | OddSum∑ k=0..n T(n, k) odd(k) | A103421 | 0 1 1 2 3 7 14 30 62 129 263 534 1076 2160 4318 8612 17145 34097 67764 134638 267506 531606 1056812 |
Std | AltSum∑ k=0..n T(n, k) (-1)^k | missing | 1 -1 0 0 2 2 4 4 4 -2 -14 -44 -104 -224 -444 -840 -1522 -2658 -4456 -7132 -10724 -14636 -16472 |
Std | AbsSum∑ k=0..n | T(n, k) | | A000079 | 1 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 1048576 |
Std | DiagSum∑ k=0..n // 2 T(n - k, k) | A368279 | 1 0 1 1 2 3 6 10 19 34 63 116 216 402 754 1417 2674 5061 9608 18286 34888 66706 127798 245284 |
Std | AccSum∑ k=0..n ∑ j=0..k T(n, j) | A039671 | 1 1 3 8 21 53 130 310 724 1661 3757 8398 18588 40800 88918 192592 414907 889631 1899554 4040864 |
Std | AccRevSum∑ k=0..n ∑ j=0..k T(n, n - j) | missing | 1 2 5 12 27 59 126 266 556 1155 2387 4914 10084 20640 42154 85936 174917 355553 721886 1464160 |
Std | RowLcmLcm k=0..n | T(n, k) | > 1 | missing | 1 1 1 2 4 70 660 1380 279180 10481940 130256280 107793766080 549873198114240 19976953590720 |
Std | RowGcdGcd k=0..n | T(n, k) | > 1 | A033420 | 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Std | RowMaxMax k=0..n | T(n, k) | | missing | 1 1 1 2 4 7 12 23 47 94 185 360 694 1328 2526 4903 9960 20135 40534 81300 162538 324020 644282 |
Std | ColMiddleT(n, n // 2) | missing | 1 0 1 1 4 7 11 23 27 59 63 139 143 315 319 699 703 1531 1535 3323 3327 7163 7167 15355 15359 32763 |
Std | CentralET(2 n, n) | A047859 | 1 1 4 11 27 63 143 319 703 1535 3327 7167 15359 32767 69631 147455 311295 655359 1376255 2883583 |
Std | CentralOT(2 n + 1, n) | missing | 0 1 7 23 59 139 315 699 1531 3323 7163 15355 32763 69627 147451 311291 655355 1376251 2883579 |
Std | ColLeftT(n, 0) | A000007 | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Std | ColRightT(n, n) | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Std | BinConv∑ k=0..n C(n, k) T(n, k) | missing | 1 1 3 10 37 136 494 1772 6283 22018 76282 261350 886340 2977846 9919394 32786192 107602851 |
Std | InvBinConv∑ k=0..n C(n, k) T(n, n - k) (-1)^k | missing | 1 1 -1 -2 13 -24 18 64 -373 1210 -2810 4940 -5700 -2352 44198 -184672 566211 -1476534 3468270 |
Std | TransNat0∑ k=0..n T(n, k) k | A102712 | 0 1 3 8 19 43 94 202 428 899 1875 3890 8036 16544 33962 69552 142149 290017 590814 1202016 2442706 |
Std | TransNat1∑ k=0..n T(n, k) (k + 1) | missing | 1 2 5 12 27 59 126 266 556 1155 2387 4914 10084 20640 42154 85936 174917 355553 721886 1464160 |
Std | TransSqrs∑ k=0..n T(n, k) k^2 | missing | 0 1 5 18 51 131 314 726 1630 3593 7803 16762 35692 75476 158690 332080 692157 1437797 2978012 |
Std | PosHalf∑ k=0..n 2^n T(n, k) (1/2)^k | missing | 1 1 3 9 29 97 337 1193 4297 15641 57433 212345 789625 2950841 11075769 41733945 157805369 598579257 |
Std | NegHalf∑ k=0..n (-2)^n T(n, k) (-1/2)^k | missing | 1 1 -1 1 5 -23 89 -287 833 -2159 4817 -7247 -6991 130801 -800527 3889777 -17011087 69933937 |
Std | DiagRow1T(n + 1, n) | A055642 | 0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 |
Std | DiagRow2T(n + 2, n) | A072643 | 0 1 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 |
Std | DiagRow3T(n + 3, n) | missing | 0 1 7 11 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 |
Std | DiagCol1T(n + 1, 1) | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Std | DiagCol2T(n + 2, 2) | A000071 | 1 2 4 7 12 20 33 54 88 143 232 376 609 986 1596 2583 4180 6764 10945 17710 28656 46367 75024 121392 |
Std | DiagCol3T(n + 3, 3) | A000100 | 1 2 5 11 23 47 94 185 360 694 1328 2526 4781 9012 16929 31709 59247 110469 205606 382087 709108 |
Std | Polysee docs | missing | 1 0 1 0 1 1 0 2 2 1 0 4 6 3 1 0 8 18 12 4 1 0 16 50 48 20 5 1 0 32 134 174 100 30 6 1 0 64 346 606 |
Std | PolyRow1∑ k=0..1 T(1, k) n^k | A000027 | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 |
Std | PolyRow2∑ k=0..2 T(2, k) n^k | A002378 | 0 2 6 12 20 30 42 56 72 90 110 132 156 182 210 240 272 306 342 380 420 462 506 552 600 650 702 756 |
Std | PolyRow3∑ k=0..3 T(3, k) n^k | A045991 | 0 4 18 48 100 180 294 448 648 900 1210 1584 2028 2548 3150 3840 4624 5508 6498 7600 8820 10164 |
Std | PolyCol2∑ k=0..n T(n, k) 2^k | missing | 1 2 6 18 50 134 346 874 2158 5242 12538 29614 69154 159922 366582 833826 1883378 4227414 9434810 |
Std | PolyCol3∑ k=0..n T(n, k) 3^k | missing | 1 3 12 48 174 606 2028 6636 21252 67098 209262 646860 1985160 6059568 18417756 55800840 168642354 |
Std | PolyDiag∑ k=0..n T(n, k) n^k | missing | 1 1 6 48 452 5180 71502 1180564 22812232 505919448 12655763810 352234406524 10788469397004 |
Alt | TriangleT(n, k), 0 ≤ k ≤ n | missing | 1 0 -1 0 -1 1 0 -1 2 -1 0 -1 4 -2 1 0 -1 7 -5 2 -1 0 -1 12 -11 5 -2 1 0 -1 20 -23 12 -5 2 -1 0 -1 |
Alt | RevT(n, n - k), 0 ≤ k ≤ n | missing | 1 -1 0 1 -1 0 -1 2 -1 0 1 -2 4 -1 0 -1 2 -5 7 -1 0 1 -2 5 -11 12 -1 0 -1 2 -5 12 -23 20 -1 0 1 -2 5 |
Alt | InvT-1(n, k), 0 ≤ k ≤ n | missing | 1 0 1 0 1 1 0 -1 -2 1 0 -5 -8 2 1 0 -1 -1 1 -2 1 0 1 4 3 -9 2 1 0 11 17 -2 -4 1 -2 1 0 61 91 -14 |
Alt | RevInvT-1(n, n - k), 0 ≤ k ≤ n | missing | 1 1 0 1 1 0 1 -2 -1 0 1 2 -8 -5 0 1 -2 1 -1 -1 0 1 2 -9 3 4 1 0 1 -2 1 -4 -2 17 11 0 1 2 -9 4 -14 |
Alt | Accsee docs | missing | 1 0 -1 0 -1 0 0 -1 1 0 0 -1 3 1 2 0 -1 6 1 3 2 0 -1 11 0 5 3 4 0 -1 19 -4 8 3 5 4 0 -1 32 -15 12 0 |
Alt | AccRevsee docs | missing | 1 -1 -1 1 0 0 -1 1 0 0 1 -1 3 2 2 -1 1 -4 3 2 2 1 -1 4 -7 5 4 4 -1 1 -4 8 -15 5 4 4 1 -1 4 -8 19 |
Alt | AntiDiagsee docs | missing | 1 0 0 -1 0 -1 0 -1 1 0 -1 2 0 -1 4 -1 0 -1 7 -2 0 -1 12 -5 1 0 -1 20 -11 2 0 -1 33 -23 5 -1 0 -1 54 |
Alt | Diffx1T(n, k) (k+1) | missing | 1 0 -2 0 -2 3 0 -2 6 -4 0 -2 12 -8 5 0 -2 21 -20 10 -6 0 -2 36 -44 25 -12 7 0 -2 60 -92 60 -30 14 |
Alt | RowSum∑ k=0..n T(n, k) | missing | 1 -1 0 0 2 2 4 4 4 -2 -14 -44 -104 -224 -444 -840 -1522 -2658 -4456 -7132 -10724 -14636 -16472 |
Alt | EvenSum∑ k=0..n T(n, k) even(k) | A103422 | 1 0 1 2 5 9 18 34 66 127 249 490 972 1936 3874 7772 15623 31439 63308 127506 256782 516970 1040340 |
Alt | OddSum∑ k=0..n T(n, k) odd(k) | A103421 | 0 -1 -1 -2 -3 -7 -14 -30 -62 -129 -263 -534 -1076 -2160 -4318 -8612 -17145 -34097 -67764 -134638 |
Alt | AltSum∑ k=0..n T(n, k) (-1)^k | A000079 | 1 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 1048576 |
Alt | AbsSum∑ k=0..n | T(n, k) | | A000079 | 1 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 1048576 |
Alt | DiagSum∑ k=0..n // 2 T(n - k, k) | missing | 1 0 -1 -1 0 1 2 4 7 10 13 16 16 6 -26 -103 -272 -623 -1320 -2660 -5176 -9806 -18170 -33016 -58907 |
Alt | AccSum∑ k=0..n ∑ j=0..k T(n, j) | missing | 1 -1 -1 0 5 11 22 34 40 15 -83 -362 -1036 -2524 -5590 -11620 -22993 -43575 -79146 -137292 -225118 |
Alt | AccRevSum∑ k=0..n ∑ j=0..k T(n, n - j) | missing | 1 -2 1 0 7 3 10 2 0 -37 -85 -210 -420 -836 -1514 -2660 -4403 -6927 -9974 -12480 -10810 4318 55372 |
Alt | RowLcmLcm k=0..n | T(n, k) | > 1 | missing | 1 1 1 2 4 70 660 1380 279180 10481940 130256280 107793766080 549873198114240 19976953590720 |
Alt | RowGcdGcd k=0..n | T(n, k) | > 1 | A033420 | 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Alt | RowMaxMax k=0..n | T(n, k) | | missing | 1 1 1 2 4 7 12 23 47 94 185 360 694 1328 2526 4903 9960 20135 40534 81300 162538 324020 644282 |
Alt | ColMiddleT(n, n // 2) | missing | 1 0 -1 -1 4 7 -11 -23 27 59 -63 -139 143 315 -319 -699 703 1531 -1535 -3323 3327 7163 -7167 -15355 |
Alt | CentralET(2 n, n) | A047859 | 1 -1 4 -11 27 -63 143 -319 703 -1535 3327 -7167 15359 -32767 69631 -147455 311295 -655359 1376255 |
Alt | CentralOT(2 n + 1, n) | missing | 0 -1 7 -23 59 -139 315 -699 1531 -3323 7163 -15355 32763 -69627 147451 -311291 655355 -1376251 |
Alt | ColLeftT(n, 0) | A000007 | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Alt | BinConv∑ k=0..n C(n, k) T(n, k) | missing | 1 -1 -1 2 13 24 18 -64 -373 -1210 -2810 -4940 -5700 2352 44198 184672 566211 1476534 3468270 |
Alt | InvBinConv∑ k=0..n C(n, k) T(n, n - k) (-1)^k | missing | 1 -1 3 -10 37 -136 494 -1772 6283 -22018 76282 -261350 886340 -2977846 9919394 -32786192 107602851 |
Alt | TransNat0∑ k=0..n T(n, k) k | missing | 0 -1 1 0 5 1 6 -2 -4 -35 -71 -166 -316 -612 -1070 -1820 -2881 -4269 -5518 -5348 -86 18954 71844 |
Alt | TransNat1∑ k=0..n T(n, k) (k + 1) | missing | 1 -2 1 0 7 3 10 2 0 -37 -85 -210 -420 -836 -1514 -2660 -4403 -6927 -9974 -12480 -10810 4318 55372 |
Alt | TransSqrs∑ k=0..n T(n, k) k^2 | missing | 0 -1 3 -2 13 -11 14 -38 -14 -153 -179 -466 -652 -1276 -1690 -2376 -1957 339 9652 34110 95074 233698 |
Alt | PosHalf∑ k=0..n 2^n T(n, k) (1/2)^k | missing | 1 -1 -1 -1 5 23 89 287 833 2159 4817 7247 -6991 -130801 -800527 -3889777 -17011087 -69933937 |
Alt | NegHalf∑ k=0..n (-2)^n T(n, k) (-1/2)^k | missing | 1 -1 3 -9 29 -97 337 -1193 4297 -15641 57433 -212345 789625 -2950841 11075769 -41733945 157805369 |
Alt | DiagRow1T(n + 1, n) | A055642 | 0 -1 2 -2 2 -2 2 -2 2 -2 2 -2 2 -2 2 -2 2 -2 2 -2 2 -2 2 -2 2 -2 2 -2 2 -2 2 -2 2 -2 2 -2 2 -2 2 -2 |
Alt | DiagRow2T(n + 2, n) | A072643 | 0 -1 4 -5 5 -5 5 -5 5 -5 5 -5 5 -5 5 -5 5 -5 5 -5 5 -5 5 -5 5 -5 5 -5 5 -5 5 -5 5 -5 5 -5 5 -5 5 -5 |
Alt | DiagRow3T(n + 3, n) | missing | 0 -1 7 -11 12 -12 12 -12 12 -12 12 -12 12 -12 12 -12 12 -12 12 -12 12 -12 12 -12 12 -12 12 -12 12 |
Alt | DiagCol1T(n + 1, 1) | A000012 | -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 |
Alt | DiagCol2T(n + 2, 2) | A000071 | 1 2 4 7 12 20 33 54 88 143 232 376 609 986 1596 2583 4180 6764 10945 17710 28656 46367 75024 121392 |
Alt | DiagCol3T(n + 3, 3) | A000100 | -1 -2 -5 -11 -23 -47 -94 -185 -360 -694 -1328 -2526 -4781 -9012 -16929 -31709 -59247 -110469 |
Alt | Polysee docs | missing | 1 0 1 0 -1 1 0 0 -2 1 0 0 2 -3 1 0 2 -2 6 -4 1 0 2 14 -12 12 -5 1 0 4 -14 60 -36 20 -6 1 0 4 38 |
Alt | PolyRow1∑ k=0..1 T(1, k) n^k | A000027 | 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25 -26 |
Alt | PolyRow2∑ k=0..2 T(2, k) n^k | A002378 | 0 0 2 6 12 20 30 42 56 72 90 110 132 156 182 210 240 272 306 342 380 420 462 506 552 600 650 702 |
Alt | PolyRow3∑ k=0..3 T(3, k) n^k | A011379 | 0 0 -2 -12 -36 -80 -150 -252 -392 -576 -810 -1100 -1452 -1872 -2366 -2940 -3600 -4352 -5202 -6156 |
Alt | PolyCol2∑ k=0..n T(n, k) 2^k | missing | 1 -2 2 -2 14 -14 38 -74 122 -362 422 -1430 1790 -5522 7826 -20210 35054 -74174 152870 -272618 |
Alt | PolyCol3∑ k=0..n T(n, k) 3^k | missing | 1 -3 6 -12 60 -156 456 -1416 4128 -12828 37428 -113736 339504 -1021728 3060312 -9179904 27559788 |
Alt | PolyDiag∑ k=0..n T(n, k) n^k | missing | 1 -1 2 -12 188 -2330 35634 -650384 13589048 -320195034 8402793790 -243105423704 7687861523700 |
Rev | TriangleT(n, k), 0 ≤ k ≤ n | missing | 1 1 0 1 1 0 1 2 1 0 1 2 4 1 0 1 2 5 7 1 0 1 2 5 11 12 1 0 1 2 5 12 23 20 1 0 1 2 5 12 27 47 33 1 0 |
Rev | InvRev(T(n, n - k))-1, 0 ≤ k ≤ n | missing | 1 0 1 0 -1 1 0 1 -2 1 0 1 0 -2 1 0 -1 3 -1 -2 1 0 -3 4 1 -1 -2 1 0 -5 3 4 0 -1 -2 1 0 -5 -1 6 2 0 |
Rev | Accsee docs | missing | 1 1 1 1 2 2 1 3 4 4 1 3 7 8 8 1 3 8 15 16 16 1 3 8 19 31 32 32 1 3 8 20 43 63 64 64 1 3 8 20 47 94 |
Rev | AccRevsee docs | missing | 1 0 1 0 1 2 0 1 3 4 0 1 5 7 8 0 1 8 13 15 16 0 1 13 24 29 31 32 0 1 21 44 56 61 63 64 0 1 34 81 108 |
Rev | AntiDiagsee docs | missing | 1 1 1 0 1 1 1 2 0 1 2 1 1 2 4 0 1 2 5 1 1 2 5 7 0 1 2 5 11 1 1 2 5 12 12 0 1 2 5 12 23 1 1 2 5 12 |
Rev | Diffx1T(n, k) (k+1) | missing | 1 1 0 1 2 0 1 4 3 0 1 4 12 4 0 1 4 15 28 5 0 1 4 15 44 60 6 0 1 4 15 48 115 120 7 0 1 4 15 48 135 |
Rev | RowSum∑ k=0..n T(n, k) | A000079 | 1 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 1048576 |
Rev | EvenSum∑ k=0..n T(n, k) even(k) | missing | 1 1 1 2 5 7 18 30 66 129 249 534 972 2160 3874 8612 15623 34097 63308 134638 256782 531606 1040340 |
Rev | OddSum∑ k=0..n T(n, k) odd(k) | missing | 0 0 1 2 3 9 14 34 62 127 263 490 1076 1936 4318 7772 17145 31439 67764 127506 267506 516970 1056812 |
Rev | AltSum∑ k=0..n T(n, k) (-1)^k | missing | 1 1 0 0 2 -2 4 -4 4 2 -14 44 -104 224 -444 840 -1522 2658 -4456 7132 -10724 14636 -16472 9404 23684 |
Rev | AbsSum∑ k=0..n | T(n, k) | | A000079 | 1 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 1048576 |
Rev | DiagSum∑ k=0..n // 2 T(n - k, k) | missing | 1 1 1 2 3 4 7 9 15 20 32 44 67 96 140 206 293 437 612 920 1277 1923 2662 3998 5540 8279 11509 17089 |
Rev | AccSum∑ k=0..n ∑ j=0..k T(n, j) | missing | 1 2 5 12 27 59 126 266 556 1155 2387 4914 10084 20640 42154 85936 174917 355553 721886 1464160 |
Rev | AccRevSum∑ k=0..n ∑ j=0..k T(n, n - j) | A039671 | 1 1 3 8 21 53 130 310 724 1661 3757 8398 18588 40800 88918 192592 414907 889631 1899554 4040864 |
Rev | RowLcmLcm k=0..n | T(n, k) | > 1 | missing | 1 1 1 2 4 70 660 1380 279180 10481940 130256280 107793766080 549873198114240 19976953590720 |
Rev | RowGcdGcd k=0..n | T(n, k) | > 1 | A033420 | 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Rev | RowMaxMax k=0..n | T(n, k) | | missing | 1 1 1 2 4 7 12 23 47 94 185 360 694 1328 2526 4903 9960 20135 40534 81300 162538 324020 644282 |
Rev | ColMiddleT(n, n // 2) | missing | 1 1 1 2 4 5 11 12 27 28 63 64 143 144 319 320 703 704 1535 1536 3327 3328 7167 7168 15359 15360 |
Rev | CentralET(2 n, n) | A047859 | 1 1 4 11 27 63 143 319 703 1535 3327 7167 15359 32767 69631 147455 311295 655359 1376255 2883583 |
Rev | CentralOT(2 n + 1, n) | A045623 | 1 2 5 12 28 64 144 320 704 1536 3328 7168 15360 32768 69632 147456 311296 655360 1376256 2883584 |
Rev | ColLeftT(n, 0) | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Rev | ColRightT(n, n) | A000007 | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Rev | BinConv∑ k=0..n C(n, k) T(n, k) | missing | 1 1 3 10 37 136 494 1772 6283 22018 76282 261350 886340 2977846 9919394 32786192 107602851 |
Rev | InvBinConv∑ k=0..n C(n, k) T(n, n - k) (-1)^k | missing | 1 -1 -1 2 13 24 18 -64 -373 -1210 -2810 -4940 -5700 2352 44198 184672 566211 1476534 3468270 |
Rev | TransNat0∑ k=0..n T(n, k) k | missing | 0 0 1 4 13 37 98 246 596 1405 3245 7374 16540 36704 80726 176208 382139 824095 1768482 3778720 |
Rev | TransNat1∑ k=0..n T(n, k) (k + 1) | A039671 | 1 1 3 8 21 53 130 310 724 1661 3757 8398 18588 40800 88918 192592 414907 889631 1899554 4040864 |
Rev | TransSqrs∑ k=0..n T(n, k) k^2 | missing | 0 0 1 6 27 101 338 1034 2974 8147 21503 55086 137740 337556 813386 1931920 4531997 10517123 |
Rev | PosHalf∑ k=0..n 2^n T(n, k) (1/2)^k | missing | 1 2 6 18 50 134 346 874 2158 5242 12538 29614 69154 159922 366582 833826 1883378 4227414 9434810 |
Rev | NegHalf∑ k=0..n (-2)^n T(n, k) (-1/2)^k | missing | 1 -2 2 -2 14 -14 38 -74 122 -362 422 -1430 1790 -5522 7826 -20210 35054 -74174 152870 -272618 |
Rev | DiagRow1T(n + 1, n) | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Rev | DiagRow2T(n + 2, n) | A000071 | 1 2 4 7 12 20 33 54 88 143 232 376 609 986 1596 2583 4180 6764 10945 17710 28656 46367 75024 121392 |
Rev | DiagRow3T(n + 3, n) | A000100 | 1 2 5 11 23 47 94 185 360 694 1328 2526 4781 9012 16929 31709 59247 110469 205606 382087 709108 |
Rev | DiagCol1T(n + 1, 1) | A055642 | 0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 |
Rev | DiagCol2T(n + 2, 2) | A072643 | 0 1 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 |
Rev | DiagCol3T(n + 3, 3) | missing | 0 1 7 11 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 |
Rev | Polysee docs | missing | 1 1 1 1 1 1 1 2 1 1 1 4 3 1 1 1 8 9 4 1 1 1 16 29 16 5 1 1 1 32 97 70 25 6 1 1 1 64 337 322 137 36 |
Rev | PolyRow1∑ k=0..1 T(1, k) n^k | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Rev | PolyRow2∑ k=0..2 T(2, k) n^k | A000027 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
Rev | PolyRow3∑ k=0..3 T(3, k) n^k | A000290 | 1 4 9 16 25 36 49 64 81 100 121 144 169 196 225 256 289 324 361 400 441 484 529 576 625 676 729 784 |
Rev | PolyCol2∑ k=0..n T(n, k) 2^k | missing | 1 1 3 9 29 97 337 1193 4297 15641 57433 212345 789625 2950841 11075769 41733945 157805369 598579257 |
Rev | PolyCol3∑ k=0..n T(n, k) 3^k | missing | 1 1 4 16 70 322 1564 7828 40228 210166 1112182 5943508 32015464 173622256 947199148 5195166712 |
Rev | PolyDiag∑ k=0..n T(n, k) n^k | missing | 1 1 3 16 137 1636 25897 513388 12405073 354959272 11783592521 445792171364 18942104690665 |
Inv | TriangleT(n, k), 0 ≤ k ≤ n | missing | 1 0 1 0 -1 1 0 1 -2 1 0 1 0 -2 1 0 -1 3 -1 -2 1 0 -3 4 1 -1 -2 1 0 -5 3 4 0 -1 -2 1 0 -5 -1 6 2 0 |
Inv | RevT(n, n - k), 0 ≤ k ≤ n | missing | 1 1 0 1 -1 0 1 -2 1 0 1 -2 0 1 0 1 -2 -1 3 -1 0 1 -2 -1 1 4 -3 0 1 -2 -1 0 4 3 -5 0 1 -2 -1 0 2 6 |
Inv | RevInvT-1(n, n - k), 0 ≤ k ≤ n | missing | 1 1 0 1 1 0 1 2 1 0 1 2 4 1 0 1 2 5 7 1 0 1 2 5 11 12 1 0 1 2 5 12 23 20 1 0 1 2 5 12 27 47 33 1 0 |
Inv | AccRevsee docs | missing | 1 1 1 1 0 0 1 -1 0 0 1 -1 -1 0 0 1 -1 -2 1 0 0 1 -1 -2 -1 3 0 0 1 -1 -2 -2 2 5 0 0 1 -1 -2 -2 0 6 5 |
Inv | AntiDiagsee docs | missing | 1 0 0 1 0 -1 0 1 1 0 1 -2 0 -1 0 1 0 -3 3 -2 0 -5 4 -1 1 0 -5 3 1 -2 0 -1 -1 4 -1 1 0 9 -11 6 0 -2 |
Inv | Diffx1T(n, k) (k+1) | missing | 1 0 2 0 -2 3 0 2 -6 4 0 2 0 -8 5 0 -2 9 -4 -10 6 0 -6 12 4 -5 -12 7 0 -10 9 16 0 -6 -14 8 0 -10 -3 |
Inv | RowSum∑ k=0..n T(n, k) | A019590 | 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Inv | EvenSum∑ k=0..n T(n, k) even(k) | missing | 1 0 1 -2 1 1 4 1 1 -8 -20 -47 -83 -143 -224 -332 -440 -500 -371 262 2086 6532 16495 37780 81784 |
Inv | OddSum∑ k=0..n T(n, k) odd(k) | missing | 0 1 -1 2 -1 -1 -4 -1 -1 8 20 47 83 143 224 332 440 500 371 -262 -2086 -6532 -16495 -37780 -81784 |
Inv | AltSum∑ k=0..n T(n, k) (-1)^k | missing | 1 -1 2 -4 2 2 8 2 2 -16 -40 -94 -166 -286 -448 -664 -880 -1000 -742 524 4172 13064 32990 75560 |
Inv | AbsSum∑ k=0..n | T(n, k) | | missing | 1 1 2 4 4 8 12 16 18 30 62 120 212 376 650 1082 1746 2726 4126 6086 12004 23954 47074 91422 193448 |
Inv | DiagSum∑ k=0..n // 2 T(n - k, k) | missing | 1 0 1 -1 2 -1 0 -2 -1 -3 2 2 13 27 55 98 177 300 501 822 1321 2091 3233 4886 7098 9771 12120 11980 |
Inv | AccSum∑ k=0..n ∑ j=0..k T(n, j) | missing | 1 1 -1 0 1 1 0 -3 -7 -12 -16 -15 -3 33 112 272 572 1120 2093 3802 6770 11900 20731 35888 61860 |
Inv | AccRevSum∑ k=0..n ∑ j=0..k T(n, n - j) | missing | 1 2 1 0 -1 -1 0 3 7 12 16 15 3 -33 -112 -272 -572 -1120 -2093 -3802 -6770 -11900 -20731 -35888 |
Inv | RowLcmLcm k=0..n | T(n, k) | > 1 | missing | 1 1 1 2 2 6 12 60 30 440 1260 53010 877560 24276252 349011360 37190448 1179264240 5865051649860 |
Inv | RowGcdGcd k=0..n | T(n, k) | > 1 | A033420 | 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Inv | RowMaxMax k=0..n | T(n, k) | | missing | 1 1 1 2 2 3 4 5 6 11 28 57 103 172 269 437 717 1131 1719 3040 5981 11574 22102 41743 89269 189237 |
Inv | ColMiddleT(n, n // 2) | missing | 1 0 -1 1 0 3 1 4 2 5 3 6 4 7 5 8 6 9 7 10 8 11 9 12 10 13 11 14 12 15 13 16 14 17 15 18 16 19 17 20 |
Inv | CentralET(2 n, n) | A000027 | 1 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 |
Inv | CentralOT(2 n + 1, n) | A000027 | 0 1 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 |
Inv | ColLeftT(n, 0) | A000007 | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Inv | ColRightT(n, n) | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Inv | BinConv∑ k=0..n C(n, k) T(n, k) | missing | 1 1 -1 -2 -3 6 36 134 365 970 2402 5941 14381 34932 83948 203068 491865 1201374 2960313 7373635 |
Inv | InvBinConv∑ k=0..n C(n, k) T(n, n - k) (-1)^k | missing | 1 1 3 10 5 -34 56 36 -195 538 -1650 3807 -4875 1184 5052 -23324 114393 -386290 906509 -1885141 |
Inv | TransNat0∑ k=0..n T(n, k) k | missing | 0 1 1 0 -1 -1 0 3 7 12 16 15 3 -33 -112 -272 -572 -1120 -2093 -3802 -6770 -11900 -20731 -35888 |
Inv | TransNat1∑ k=0..n T(n, k) (k + 1) | missing | 1 2 1 0 -1 -1 0 3 7 12 16 15 3 -33 -112 -272 -572 -1120 -2093 -3802 -6770 -11900 -20731 -35888 |
Inv | TransSqrs∑ k=0..n T(n, k) k^2 | missing | 0 1 3 2 -1 -5 -8 -5 7 36 84 155 243 331 376 284 -120 -1196 -3581 -8522 -18266 -37080 -72771 -139976 |
Inv | PosHalf∑ k=0..n 2^n T(n, k) (1/2)^k | missing | 1 1 -1 1 5 1 -31 -167 -487 -983 -727 6601 47177 227209 923273 3473161 12381449 42620425 142940681 |
Inv | NegHalf∑ k=0..n (-2)^n T(n, k) (-1/2)^k | missing | 1 1 3 9 -3 -39 153 -351 417 1521 -12687 62289 -249903 907281 -3056367 9726609 -29298543 82386321 |
Inv | DiagRow1T(n + 1, n) | A055642 | 0 -1 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 |
Inv | DiagRow2T(n + 2, n) | A000012 | 0 1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 |
Inv | DiagRow3T(n + 3, n) | A000007 | 0 1 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Inv | DiagCol1T(n + 1, 1) | missing | 1 -1 1 1 -1 -3 -5 -5 -1 9 31 71 141 255 437 717 1131 1719 2493 3397 4155 4021 1115 -8781 -34949 |
Inv | DiagCol2T(n + 2, 2) | missing | 1 -2 0 3 4 3 -1 -11 -28 -57 -103 -172 -269 -394 -534 -631 -549 54 1904 6575 17266 40509 89269 |
Inv | DiagCol3T(n + 3, 3) | missing | 1 -2 -1 1 4 6 8 10 9 4 -13 -53 -144 -336 -729 -1511 -3040 -5981 -11574 -22102 -41743 -78105 -144935 |
Inv | Polysee docs | missing | 1 0 1 0 1 1 0 0 2 1 0 0 2 3 1 0 0 2 6 4 1 0 0 2 12 12 5 1 0 0 2 30 36 20 6 1 0 0 2 78 132 80 30 7 1 |
Inv | PolyRow1∑ k=0..1 T(1, k) n^k | A000027 | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 |
Inv | PolyRow2∑ k=0..2 T(2, k) n^k | A002378 | 0 0 2 6 12 20 30 42 56 72 90 110 132 156 182 210 240 272 306 342 380 420 462 506 552 600 650 702 |
Inv | PolyRow3∑ k=0..3 T(3, k) n^k | A011379 | 0 0 2 12 36 80 150 252 392 576 810 1100 1452 1872 2366 2940 3600 4352 5202 6156 7220 8400 9702 |
Inv | PolyCol2∑ k=0..n T(n, k) 2^k | A055642 | 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 |
Inv | PolyCol3∑ k=0..n T(n, k) 3^k | missing | 1 3 6 12 30 78 216 606 1758 5136 15192 45102 134502 401742 1202112 3599592 10786464 32333400 |
Inv | PolyDiag∑ k=0..n T(n, k) n^k | missing | 1 1 2 12 132 1820 30150 572922 12331928 296640864 7901377290 231103022150 7368682226532 |
Inv:Rev | TriangleT(n, k), 0 ≤ k ≤ n | missing | 1 1 0 1 -1 0 1 -2 1 0 1 -2 0 1 0 1 -2 -1 3 -1 0 1 -2 -1 1 4 -3 0 1 -2 -1 0 4 3 -5 0 1 -2 -1 0 2 6 |
Inv:Rev | RevT(n, n - k), 0 ≤ k ≤ n | missing | 1 0 1 0 -1 1 0 1 -2 1 0 1 0 -2 1 0 -1 3 -1 -2 1 0 -3 4 1 -1 -2 1 0 -5 3 4 0 -1 -2 1 0 -5 -1 6 2 0 |
Inv:Rev | InvRev(T(n, n - k))-1, 0 ≤ k ≤ n | missing | 1 0 1 0 1 1 0 1 2 1 0 1 4 2 1 0 1 7 5 2 1 0 1 12 11 5 2 1 0 1 20 23 12 5 2 1 0 1 33 47 27 12 5 2 1 |
Inv:Rev | Accsee docs | missing | 1 1 1 1 0 0 1 -1 0 0 1 -1 -1 0 0 1 -1 -2 1 0 0 1 -1 -2 -1 3 0 0 1 -1 -2 -2 2 5 0 0 1 -1 -2 -2 0 6 5 |
Inv:Rev | AntiDiagsee docs | missing | 1 1 1 0 1 -1 1 -2 0 1 -2 1 1 -2 0 0 1 -2 -1 1 1 -2 -1 3 0 1 -2 -1 1 -1 1 -2 -1 0 4 0 1 -2 -1 0 4 -3 |
Inv:Rev | RowSum∑ k=0..n T(n, k) | A019590 | 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Inv:Rev | EvenSum∑ k=0..n T(n, k) even(k) | missing | 1 1 1 2 1 -1 4 -1 1 8 -20 47 -83 143 -224 332 -440 500 -371 -262 2086 -6532 16495 -37780 81784 |
Inv:Rev | OddSum∑ k=0..n T(n, k) odd(k) | missing | 0 0 -1 -2 -1 1 -4 1 -1 -8 20 -47 83 -143 224 -332 440 -500 371 262 -2086 6532 -16495 37780 -81784 |
Inv:Rev | AltSum∑ k=0..n T(n, k) (-1)^k | missing | 1 1 2 4 2 -2 8 -2 2 16 -40 94 -166 286 -448 664 -880 1000 -742 -524 4172 -13064 32990 -75560 163568 |
Inv:Rev | AbsSum∑ k=0..n | T(n, k) | | missing | 1 1 2 4 4 8 12 16 18 30 62 120 212 376 650 1082 1746 2726 4126 6086 12004 23954 47074 91422 193448 |
Inv:Rev | DiagSum∑ k=0..n // 2 T(n - k, k) | missing | 1 1 1 0 -1 0 -1 -1 1 -2 2 -1 3 0 3 5 -3 16 -13 30 -31 55 -64 91 -114 138 -183 189 -269 225 -354 189 |
Inv:Rev | AccSum∑ k=0..n ∑ j=0..k T(n, j) | missing | 1 2 1 0 -1 -1 0 3 7 12 16 15 3 -33 -112 -272 -572 -1120 -2093 -3802 -6770 -11900 -20731 -35888 |
Inv:Rev | AccRevSum∑ k=0..n ∑ j=0..k T(n, n - j) | missing | 1 1 -1 0 1 1 0 -3 -7 -12 -16 -15 -3 33 112 272 572 1120 2093 3802 6770 11900 20731 35888 61860 |
Inv:Rev | RowLcmLcm k=0..n | T(n, k) | > 1 | missing | 1 1 1 2 2 6 12 60 30 440 1260 53010 877560 24276252 349011360 37190448 1179264240 5865051649860 |
Inv:Rev | RowGcdGcd k=0..n | T(n, k) | > 1 | A033420 | 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Inv:Rev | RowMaxMax k=0..n | T(n, k) | | missing | 1 1 1 2 2 3 4 5 6 11 28 57 103 172 269 437 717 1131 1719 3040 5981 11574 22102 41743 89269 189237 |
Inv:Rev | ColMiddleT(n, n // 2) | missing | 1 1 -1 -2 0 -1 1 0 2 1 3 2 4 3 5 4 6 5 7 6 8 7 9 8 10 9 11 10 12 11 13 12 14 13 15 14 16 15 17 16 |
Inv:Rev | CentralET(2 n, n) | A000027 | 1 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 |
Inv:Rev | CentralOT(2 n + 1, n) | A001477 | 1 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 |
Inv:Rev | ColLeftT(n, 0) | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Inv:Rev | ColRightT(n, n) | A000007 | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Inv:Rev | BinConv∑ k=0..n C(n, k) T(n, k) | missing | 1 1 -1 -2 -3 6 36 134 365 970 2402 5941 14381 34932 83948 203068 491865 1201374 2960313 7373635 |
Inv:Rev | InvBinConv∑ k=0..n C(n, k) T(n, n - k) (-1)^k | missing | 1 -1 3 -10 5 34 56 -36 -195 -538 -1650 -3807 -4875 -1184 5052 23324 114393 386290 906509 1885141 |
Inv:Rev | TransNat0∑ k=0..n T(n, k) k | missing | 0 0 -1 0 1 1 0 -3 -7 -12 -16 -15 -3 33 112 272 572 1120 2093 3802 6770 11900 20731 35888 61860 |
Inv:Rev | TransNat1∑ k=0..n T(n, k) (k + 1) | missing | 1 1 -1 0 1 1 0 -3 -7 -12 -16 -15 -3 33 112 272 572 1120 2093 3802 6770 11900 20731 35888 61860 |
Inv:Rev | TransSqrs∑ k=0..n T(n, k) k^2 | missing | 0 0 -1 2 7 5 -8 -47 -105 -180 -236 -175 171 1189 3512 8444 18184 36884 71767 135954 252534 462720 |
Inv:Rev | PosHalf∑ k=0..n 2^n T(n, k) (1/2)^k | A055642 | 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 |
Inv:Rev | NegHalf∑ k=0..n (-2)^n T(n, k) (-1/2)^k | missing | 1 -2 6 -18 30 -42 126 -234 438 -954 1662 -3978 6822 -15138 28182 -59538 115854 -231450 471894 |
Inv:Rev | DiagRow1T(n + 1, n) | missing | 1 -1 1 1 -1 -3 -5 -5 -1 9 31 71 141 255 437 717 1131 1719 2493 3397 4155 4021 1115 -8781 -34949 |
Inv:Rev | DiagRow2T(n + 2, n) | missing | 1 -2 0 3 4 3 -1 -11 -28 -57 -103 -172 -269 -394 -534 -631 -549 54 1904 6575 17266 40509 89269 |
Inv:Rev | DiagRow3T(n + 3, n) | missing | 1 -2 -1 1 4 6 8 10 9 4 -13 -53 -144 -336 -729 -1511 -3040 -5981 -11574 -22102 -41743 -78105 -144935 |
Inv:Rev | DiagCol1T(n + 1, 1) | A055642 | 0 -1 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 |
Inv:Rev | DiagCol2T(n + 2, 2) | A000012 | 0 1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 |
Inv:Rev | DiagCol3T(n + 3, 3) | A000007 | 0 1 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Inv:Rev | Polysee docs | missing | 1 1 1 1 1 1 1 0 1 1 1 0 -1 1 1 1 0 1 -2 1 1 1 0 5 4 -3 1 1 1 0 1 22 9 -4 1 1 1 0 -31 -14 57 16 -5 1 |
Inv:Rev | PolyRow1∑ k=0..1 T(1, k) n^k | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Inv:Rev | PolyRow2∑ k=0..2 T(2, k) n^k | A000027 | 1 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25 -26 |
Inv:Rev | PolyRow3∑ k=0..3 T(3, k) n^k | A000290 | 1 0 1 4 9 16 25 36 49 64 81 100 121 144 169 196 225 256 289 324 361 400 441 484 529 576 625 676 729 |
Inv:Rev | PolyCol2∑ k=0..n T(n, k) 2^k | missing | 1 1 -1 1 5 1 -31 -167 -487 -983 -727 6601 47177 227209 923273 3473161 12381449 42620425 142940681 |
Inv:Rev | PolyCol3∑ k=0..n T(n, k) 3^k | missing | 1 1 -2 4 22 -14 -392 -2606 -10058 -23504 21208 794434 6693502 44219506 256502848 1395509944 |
Inv:Rev | PolyDiag∑ k=0..n T(n, k) n^k | missing | 1 1 -1 4 57 -284 -17975 -528282 -10543183 -91106144 6307309881 671792211850 46403493767257 |
<< | Table | Source | Similars | Index | >> |
Note: The A-numbers are based on a finite number of numerical comparisons. They ignore the sign and the OEIS-offset. Sometimes they differ in the first few values. In such cases, we consider our version to be the better one because it has a common formula as a root. Since the offset of all triangles is 0 also the offset of all sequences is 0.