CHEBYSHEVU[0] 1
[1] 0, 2
[2] -1, 0, 4
[3] 0, -4, 0, 8
[4] 1, 0, -12, 0, 16
[5] 0, 6, 0, -32, 0, 32

      OEIS Similars: A053117, A053118, A115322

↕ Type↕ Trait↕ Anum↕ Sequence
StdTriangleT(n, k), 0 ≤ k ≤ nA1153221 0 2 -1 0 4 0 -4 0 8 1 0 -12 0 16 0 6 0 -32 0 32 -1 0 24 0 -80 0 64 0 -8 0 80 0 -192 0 128 1 0 -40
StdRevT(n, n - k), 0 ≤ k ≤ nA0531181 2 0 4 0 -1 8 0 -4 0 16 0 -12 0 1 32 0 -32 0 6 0 64 0 -80 0 24 0 -1 128 0 -192 0 80 0 -8 0 256 0
StdAccsee docsmissing1 0 2 -1 -1 3 0 -4 -4 4 1 1 -11 -11 5 0 6 6 -26 -26 6 -1 -1 23 23 -57 -57 7 0 -8 -8 72 72 -120 -120
StdAccRevsee docsmissing1 2 2 4 4 3 8 8 4 4 16 16 4 4 5 32 32 0 0 6 6 64 64 -16 -16 8 8 7 128 128 -64 -64 16 16 8 8 256 256
StdAntiDiagsee docsmissing1 0 -1 2 0 0 1 -4 4 0 0 0 -1 6 -12 8 0 0 0 0 1 -8 24 -32 16 0 0 0 0 0 -1 10 -40 80 -80 32 0 0 0 0 0
StdDiffx1T(n, k) (k+1)missing1 0 4 -1 0 12 0 -8 0 32 1 0 -36 0 80 0 12 0 -128 0 192 -1 0 72 0 -400 0 448 0 -16 0 320 0 -1152 0
StdRowSum k=0..n T(n, k)A0000271 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
StdEvenSum k=0..n T(n, k) even(k)A1933561 0 3 0 5 0 7 0 9 0 11 0 13 0 15 0 17 0 19 0 21 0 23 0 25 0 27 0 29 0 31 0 33 0 35 0 37 0 39 0 41 0
StdOddSum k=0..n T(n, k) odd(k)A2374200 2 0 4 0 6 0 8 0 10 0 12 0 14 0 16 0 18 0 20 0 22 0 24 0 26 0 28 0 30 0 32 0 34 0 36 0 38 0 40 0
StdAltSum k=0..n T(n, k) (-1)^kA0000271 -2 3 -4 5 -6 7 -8 9 -10 11 -12 13 -14 15 -16 17 -18 19 -20 21 -22 23 -24 25 -26 27 -28 29 -30 31
StdAbsSum k=0..n | T(n, k) |A0001291 2 5 12 29 70 169 408 985 2378 5741 13860 33461 80782 195025 470832 1136689 2744210 6625109
StdDiagSum k=0..n // 2 T(n - k, k)A0000351 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
StdAccSum k=0..n j=0..k T(n, j)missing1 2 1 -4 -15 -34 -63 -104 -159 -230 -319 -428 -559 -714 -895 -1104 -1343 -1614 -1919 -2260 -2639
StdAccRevSum k=0..n j=0..k T(n, n - j)A0065271 4 11 24 45 76 119 176 249 340 451 584 741 924 1135 1376 1649 1956 2299 2680 3101 3564 4071 4624
StdRowLcmLcm k=0..n | T(n, k) | > 1missing1 2 4 8 48 96 960 1920 26880 107520 322560 645120 14192640 28385280 738017280 1476034560 2952069120
StdRowGcdGcd k=0..n | T(n, k) | > 1missing1 2 4 4 4 2 8 8 8 2 4 4 4 2 16 16 16 2 4 4 4 2 8 8 8 2 4 4 4 2 32 32 32 2 4 4 4 2 8 8 8 2 4 4 4 2
StdRowMaxMax k=0..n | T(n, k) |missing1 2 4 8 16 32 80 192 448 1024 2304 5120 11520 28160 67584 159744 372736 860160 1966080 4587520
StdColMiddleT(n, n // 2)missing1 0 0 -4 -12 0 0 80 240 0 0 -1792 -5376 0 0 42240 126720 0 0 -1025024 -3075072 0 0 25346048
StdCentralET(2 n, n)A0065881 0 -12 0 240 0 -5376 0 126720 0 -3075072 0 76038144 0 -1905131520 0 48199827456 0 -1228623052800 0
StdCentralOT(2 n + 1, n)missing0 -4 0 80 0 -1792 0 42240 0 -1025024 0 25346048 0 -635043840 0 16066609152 0 -409541017600 0
StdColRightT(n, n)A0000791 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 1048576
StdBinConv k=0..n C(n, k) T(n, k)missing1 2 3 -4 -55 -258 -777 -1160 3393 34970 158763 459252 544505 -3070858 -25671825 -109818384
StdInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kmissing1 2 3 -4 -55 -258 -777 -1160 3393 34970 158763 459252 544505 -3070858 -25671825 -109818384
StdTransNat0 k=0..n T(n, k) kA0072900 2 8 20 40 70 112 168 240 330 440 572 728 910 1120 1360 1632 1938 2280 2660 3080 3542 4048 4600
StdTransNat1 k=0..n T(n, k) (k + 1)A0065271 4 11 24 45 76 119 176 249 340 451 584 741 924 1135 1376 1649 1956 2299 2680 3101 3564 4071 4624
StdTransSqrs k=0..n T(n, k) k^2missing0 2 16 68 208 518 1120 2184 3936 6666 10736 16588 24752 35854 50624 69904 94656 125970 165072
StdPosHalf k=0..n 2^n T(n, k) (1/2)^kA0881381 2 0 -8 -16 0 64 128 0 -512 -1024 0 4096 8192 0 -32768 -65536 0 262144 524288 0 -2097152 -4194304
StdNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kA0881381 2 0 -8 -16 0 64 128 0 -512 -1024 0 4096 8192 0 -32768 -65536 0 262144 524288 0 -2097152 -4194304
StdDiagRow2T(n + 2, n)A001787-1 -4 -12 -32 -80 -192 -448 -1024 -2304 -5120 -11264 -24576 -53248 -114688 -245760 -524288 -1114112
StdDiagCol1T(n + 1, 1)A2374202 0 -4 0 6 0 -8 0 10 0 -12 0 14 0 -16 0 18 0 -20 0 22 0 -24 0 26 0 -28 0 30 0 -32 0 34 0 -36 0 38 0
StdDiagCol2T(n + 2, 2)A0460924 0 -12 0 24 0 -40 0 60 0 -84 0 112 0 -144 0 180 0 -220 0 264 0 -312 0 364 0 -420 0 480 0 -544 0
StdDiagCol3T(n + 3, 3)A1308098 0 -32 0 80 0 -160 0 280 0 -448 0 672 0 -960 0 1320 0 -1760 0 2288 0 -2912 0 3640 0 -4480 0 5440 0
StdPolysee docsA2281611 0 1 -1 2 1 0 3 4 1 1 4 15 6 1 0 5 56 35 8 1 -1 6 209 204 63 10 1 0 7 780 1189 496 99 12 1 1 8
StdPolyRow1 k=0..1 T(1, k) n^kA0058430 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68
StdPolyRow2 k=0..2 T(2, k) n^kA000466-1 3 15 35 63 99 143 195 255 323 399 483 575 675 783 899 1023 1155 1295 1443 1599 1763 1935 2115
StdPolyRow3 k=0..3 T(3, k) n^kA1441380 4 56 204 496 980 1704 2716 4064 5796 7960 10604 13776 17524 21896 26940 32704 39236 46584 54796
StdPolyCol2 k=0..n T(n, k) 2^kA0013531 4 15 56 209 780 2911 10864 40545 151316 564719 2107560 7865521 29354524 109552575 408855776
StdPolyCol3 k=0..n T(n, k) 3^kA0011091 6 35 204 1189 6930 40391 235416 1372105 7997214 46611179 271669860 1583407981 9228778026
StdPolyDiag k=0..n T(n, k) n^kA3231181 2 15 204 3905 96030 2883167 102213944 4178507265 193501094490 10011386405999 572335117886532
AltTriangleT(n, k), 0 ≤ k ≤ nA1153221 0 -2 -1 0 4 0 4 0 -8 1 0 -12 0 16 0 -6 0 32 0 -32 -1 0 24 0 -80 0 64 0 8 0 -80 0 192 0 -128 1 0
AltRevT(n, n - k), 0 ≤ k ≤ nA0531181 -2 0 4 0 -1 -8 0 4 0 16 0 -12 0 1 -32 0 32 0 -6 0 64 0 -80 0 24 0 -1 -128 0 192 0 -80 0 8 0 256 0
AltAccsee docsmissing1 0 -2 -1 -1 3 0 4 4 -4 1 1 -11 -11 5 0 -6 -6 26 26 -6 -1 -1 23 23 -57 -57 7 0 8 8 -72 -72 120 120
AltAccRevsee docsmissing1 -2 -2 4 4 3 -8 -8 -4 -4 16 16 4 4 5 -32 -32 0 0 -6 -6 64 64 -16 -16 8 8 7 -128 -128 64 64 -16 -16
AltAntiDiagsee docsmissing1 0 -1 -2 0 0 1 4 4 0 0 0 -1 -6 -12 -8 0 0 0 0 1 8 24 32 16 0 0 0 0 0 -1 -10 -40 -80 -80 -32 0 0 0
AltDiffx1T(n, k) (k+1)missing1 0 -4 -1 0 12 0 8 0 -32 1 0 -36 0 80 0 -12 0 128 0 -192 -1 0 72 0 -400 0 448 0 16 0 -320 0 1152 0
AltRowSum k=0..n T(n, k)A0000271 -2 3 -4 5 -6 7 -8 9 -10 11 -12 13 -14 15 -16 17 -18 19 -20 21 -22 23 -24 25 -26 27 -28 29 -30 31
AltEvenSum k=0..n T(n, k) even(k)A1933561 0 3 0 5 0 7 0 9 0 11 0 13 0 15 0 17 0 19 0 21 0 23 0 25 0 27 0 29 0 31 0 33 0 35 0 37 0 39 0 41 0
AltOddSum k=0..n T(n, k) odd(k)A2374200 -2 0 -4 0 -6 0 -8 0 -10 0 -12 0 -14 0 -16 0 -18 0 -20 0 -22 0 -24 0 -26 0 -28 0 -30 0 -32 0 -34 0
AltAltSum k=0..n T(n, k) (-1)^kA0000271 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
AltAbsSum k=0..n | T(n, k) |A0001291 2 5 12 29 70 169 408 985 2378 5741 13860 33461 80782 195025 470832 1136689 2744210 6625109
AltDiagSum k=0..n // 2 T(n - k, k)A2540061 0 -3 0 9 0 -27 0 81 0 -243 0 729 0 -2187 0 6561 0 -19683 0 59049 0 -177147 0 531441 0 -1594323 0
AltAccSum k=0..n j=0..k T(n, j)missing1 -2 1 4 -15 34 -63 104 -159 230 -319 428 -559 714 -895 1104 -1343 1614 -1919 2260 -2639 3058 -3519
AltAccRevSum k=0..n j=0..k T(n, n - j)A0065271 -4 11 -24 45 -76 119 -176 249 -340 451 -584 741 -924 1135 -1376 1649 -1956 2299 -2680 3101 -3564
AltRowLcmLcm k=0..n | T(n, k) | > 1missing1 2 4 8 48 96 960 1920 26880 107520 322560 645120 14192640 28385280 738017280 1476034560 2952069120
AltRowGcdGcd k=0..n | T(n, k) | > 1missing1 2 4 4 4 2 8 8 8 2 4 4 4 2 16 16 16 2 4 4 4 2 8 8 8 2 4 4 4 2 32 32 32 2 4 4 4 2 8 8 8 2 4 4 4 2
AltRowMaxMax k=0..n | T(n, k) |missing1 2 4 8 16 32 80 192 448 1024 2304 5120 11520 28160 67584 159744 372736 860160 1966080 4587520
AltColMiddleT(n, n // 2)missing1 0 0 4 -12 0 0 -80 240 0 0 1792 -5376 0 0 -42240 126720 0 0 1025024 -3075072 0 0 -25346048
AltCentralET(2 n, n)A0065881 0 -12 0 240 0 -5376 0 126720 0 -3075072 0 76038144 0 -1905131520 0 48199827456 0 -1228623052800 0
AltCentralOT(2 n + 1, n)missing0 4 0 -80 0 1792 0 -42240 0 1025024 0 -25346048 0 635043840 0 -16066609152 0 409541017600 0
AltColRightT(n, n)A0000791 -2 4 -8 16 -32 64 -128 256 -512 1024 -2048 4096 -8192 16384 -32768 65536 -131072 262144 -524288
AltBinConv k=0..n C(n, k) T(n, k)missing1 -2 3 4 -55 258 -777 1160 3393 -34970 158763 -459252 544505 3070858 -25671825 109818384 -296097279
AltInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kmissing1 -2 3 4 -55 258 -777 1160 3393 -34970 158763 -459252 544505 3070858 -25671825 109818384 -296097279
AltTransNat0 k=0..n T(n, k) kA0072900 -2 8 -20 40 -70 112 -168 240 -330 440 -572 728 -910 1120 -1360 1632 -1938 2280 -2660 3080 -3542
AltTransNat1 k=0..n T(n, k) (k + 1)A0065271 -4 11 -24 45 -76 119 -176 249 -340 451 -584 741 -924 1135 -1376 1649 -1956 2299 -2680 3101 -3564
AltTransSqrs k=0..n T(n, k) k^2missing0 -2 16 -68 208 -518 1120 -2184 3936 -6666 10736 -16588 24752 -35854 50624 -69904 94656 -125970
AltPosHalf k=0..n 2^n T(n, k) (1/2)^kA0881381 -2 0 8 -16 0 64 -128 0 512 -1024 0 4096 -8192 0 32768 -65536 0 262144 -524288 0 2097152 -4194304
AltNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kA0881381 -2 0 8 -16 0 64 -128 0 512 -1024 0 4096 -8192 0 32768 -65536 0 262144 -524288 0 2097152 -4194304
AltDiagRow2T(n + 2, n)A001787-1 4 -12 32 -80 192 -448 1024 -2304 5120 -11264 24576 -53248 114688 -245760 524288 -1114112 2359296
AltDiagCol1T(n + 1, 1)A237420-2 0 4 0 -6 0 8 0 -10 0 12 0 -14 0 16 0 -18 0 20 0 -22 0 24 0 -26 0 28 0 -30 0 32 0 -34 0 36 0 -38
AltDiagCol2T(n + 2, 2)A0460924 0 -12 0 24 0 -40 0 60 0 -84 0 112 0 -144 0 180 0 -220 0 264 0 -312 0 364 0 -420 0 480 0 -544 0
AltDiagCol3T(n + 3, 3)A130809-8 0 32 0 -80 0 160 0 -280 0 448 0 -672 0 960 0 -1320 0 1760 0 -2288 0 2912 0 -3640 0 4480 0 -5440
AltPolysee docsA2281611 0 1 -1 -2 1 0 3 -4 1 1 -4 15 -6 1 0 5 -56 35 -8 1 -1 -6 209 -204 63 -10 1 0 7 -780 1189 -496 99
AltPolyRow1 k=0..1 T(1, k) n^kA0058430 -2 -4 -6 -8 -10 -12 -14 -16 -18 -20 -22 -24 -26 -28 -30 -32 -34 -36 -38 -40 -42 -44 -46 -48 -50
AltPolyRow2 k=0..2 T(2, k) n^kA000466-1 3 15 35 63 99 143 195 255 323 399 483 575 675 783 899 1023 1155 1295 1443 1599 1763 1935 2115
AltPolyRow3 k=0..3 T(3, k) n^kA1441380 -4 -56 -204 -496 -980 -1704 -2716 -4064 -5796 -7960 -10604 -13776 -17524 -21896 -26940 -32704
AltPolyCol2 k=0..n T(n, k) 2^kA0013531 -4 15 -56 209 -780 2911 -10864 40545 -151316 564719 -2107560 7865521 -29354524 109552575
AltPolyCol3 k=0..n T(n, k) 3^kA0011091 -6 35 -204 1189 -6930 40391 -235416 1372105 -7997214 46611179 -271669860 1583407981 -9228778026
AltPolyDiag k=0..n T(n, k) n^kA3231181 -2 15 -204 3905 -96030 2883167 -102213944 4178507265 -193501094490 10011386405999
RevTriangleT(n, k), 0 ≤ k ≤ nA0531181 2 0 4 0 -1 8 0 -4 0 16 0 -12 0 1 32 0 -32 0 6 0 64 0 -80 0 24 0 -1 128 0 -192 0 80 0 -8 0 256 0
RevAccsee docsmissing1 2 2 4 4 3 8 8 4 4 16 16 4 4 5 32 32 0 0 6 6 64 64 -16 -16 8 8 7 128 128 -64 -64 16 16 8 8 256 256
RevAccRevsee docsmissing1 0 2 -1 -1 3 0 -4 -4 4 1 1 -11 -11 5 0 6 6 -26 -26 6 -1 -1 23 23 -57 -57 7 0 -8 -8 72 72 -120 -120
RevAntiDiagsee docsmissing1 2 4 0 8 0 16 0 -1 32 0 -4 64 0 -12 0 128 0 -32 0 256 0 -80 0 1 512 0 -192 0 6 1024 0 -448 0 24 0
RevDiffx1T(n, k) (k+1)missing1 2 0 4 0 -3 8 0 -12 0 16 0 -36 0 5 32 0 -96 0 30 0 64 0 -240 0 120 0 -7 128 0 -576 0 400 0 -56 0
RevRowSum k=0..n T(n, k)A0000271 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
RevEvenSum k=0..n T(n, k) even(k)A0000271 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
RevAltSum k=0..n T(n, k) (-1)^kA0000271 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
RevAbsSum k=0..n | T(n, k) |A0001291 2 5 12 29 70 169 408 985 2378 5741 13860 33461 80782 195025 470832 1136689 2744210 6625109
RevDiagSum k=0..n // 2 T(n - k, k)A0089371 2 4 8 15 28 52 96 177 326 600 1104 2031 3736 6872 12640 23249 42762 78652 144664 266079 489396
RevAccSum k=0..n j=0..k T(n, j)A0065271 4 11 24 45 76 119 176 249 340 451 584 741 924 1135 1376 1649 1956 2299 2680 3101 3564 4071 4624
RevAccRevSum k=0..n j=0..k T(n, n - j)missing1 2 1 -4 -15 -34 -63 -104 -159 -230 -319 -428 -559 -714 -895 -1104 -1343 -1614 -1919 -2260 -2639
RevRowLcmLcm k=0..n | T(n, k) | > 1missing1 2 4 8 48 96 960 1920 26880 107520 322560 645120 14192640 28385280 738017280 1476034560 2952069120
RevRowGcdGcd k=0..n | T(n, k) | > 1missing1 2 4 4 4 2 8 8 8 2 4 4 4 2 16 16 16 2 4 4 4 2 8 8 8 2 4 4 4 2 32 32 32 2 4 4 4 2 8 8 8 2 4 4 4 2
RevRowMaxMax k=0..n | T(n, k) |missing1 2 4 8 16 32 80 192 448 1024 2304 5120 11520 28160 67584 159744 372736 860160 1966080 4587520
RevColMiddleT(n, n // 2)missing1 2 0 0 -12 -32 0 0 240 672 0 0 -5376 -15360 0 0 126720 366080 0 0 -3075072 -8945664 0 0 76038144
RevCentralET(2 n, n)A0065881 0 -12 0 240 0 -5376 0 126720 0 -3075072 0 76038144 0 -1905131520 0 48199827456 0 -1228623052800 0
RevCentralOT(2 n + 1, n)missing2 0 -32 0 672 0 -15360 0 366080 0 -8945664 0 222265344 0 -5588385792 0 141764198400 0
RevColLeftT(n, 0)A0000791 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 1048576
RevBinConv k=0..n C(n, k) T(n, k)missing1 2 3 -4 -55 -258 -777 -1160 3393 34970 158763 459252 544505 -3070858 -25671825 -109818384
RevInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kmissing1 -2 3 4 -55 258 -777 1160 3393 -34970 158763 -459252 544505 3070858 -25671825 109818384 -296097279
RevTransNat0 k=0..n T(n, k) kA0072900 0 -2 -8 -20 -40 -70 -112 -168 -240 -330 -440 -572 -728 -910 -1120 -1360 -1632 -1938 -2280 -2660
RevTransNat1 k=0..n T(n, k) (k + 1)missing1 2 1 -4 -15 -34 -63 -104 -159 -230 -319 -428 -559 -714 -895 -1104 -1343 -1614 -1919 -2260 -2639
RevTransSqrs k=0..n T(n, k) k^2missing0 0 -4 -16 -32 -32 28 224 672 1536 3036 5456 9152 14560 22204 32704 46784 65280 89148 119472 157472
RevPosHalf k=0..n 2^n T(n, k) (1/2)^kA0013531 4 15 56 209 780 2911 10864 40545 151316 564719 2107560 7865521 29354524 109552575 408855776
RevNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kA0013531 -4 15 -56 209 -780 2911 -10864 40545 -151316 564719 -2107560 7865521 -29354524 109552575
RevDiagRow1T(n + 1, n)A2374202 0 -4 0 6 0 -8 0 10 0 -12 0 14 0 -16 0 18 0 -20 0 22 0 -24 0 26 0 -28 0 30 0 -32 0 34 0 -36 0 38 0
RevDiagRow2T(n + 2, n)A0460924 0 -12 0 24 0 -40 0 60 0 -84 0 112 0 -144 0 180 0 -220 0 264 0 -312 0 364 0 -420 0 480 0 -544 0
RevDiagRow3T(n + 3, n)A1308098 0 -32 0 80 0 -160 0 280 0 -448 0 672 0 -960 0 1320 0 -1760 0 2288 0 -2912 0 3640 0 -4480 0 5440 0
RevDiagCol2T(n + 2, 2)A001787-1 -4 -12 -32 -80 -192 -448 -1024 -2304 -5120 -11264 -24576 -53248 -114688 -245760 -524288 -1114112
RevPolysee docsmissing1 2 1 4 2 1 8 3 2 1 16 4 0 2 1 32 5 -8 -5 2 1 64 6 -16 -28 -12 2 1 128 7 0 -11 -56 -21 2 1 256 8 64
RevPolyRow1 k=0..1 T(1, k) n^kA0556422 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
RevPolyRow2 k=0..2 T(2, k) n^kA0283474 3 0 -5 -12 -21 -32 -45 -60 -77 -96 -117 -140 -165 -192 -221 -252 -285 -320 -357 -396 -437 -480
RevPolyRow3 k=0..3 T(3, k) n^kmissing8 4 -8 -28 -56 -92 -136 -188 -248 -316 -392 -476 -568 -668 -776 -892 -1016 -1148 -1288 -1436 -1592
RevPolyCol2 k=0..n T(n, k) 2^kA0881381 2 0 -8 -16 0 64 128 0 -512 -1024 0 4096 8192 0 -32768 -65536 0 262144 524288 0 -2097152 -4194304
RevPolyCol3 k=0..n T(n, k) 3^kA0251701 2 -5 -28 -11 230 559 -952 -6935 -5302 51811 151340 -163619 -1689298 -1906025 11391632 39937489
RevPolyDiag k=0..n T(n, k) n^kmissing1 2 0 -28 80 2982 -18368 -758392 7246080 349763210 -4542309376 -254336397588 4180805963776
 << TableSourceSimilarsIndex >> 

Note: The A-numbers are based on a finite number of numerical comparisons. They ignore the sign and the OEIS-offset. Sometimes they differ in the first few values. In such cases, we consider our version to be the better one because it has a common formula as a root. Since the offset of all triangles is 0 also the offset of all sequences is 0.