CHEBYSHEVT[0] 1
[1] 0, 1
[2] -1, 0, 2
[3] 0, -3, 0, 4
[4] 1, 0, -8, 0, 8
[5] 0, 5, 0, -20, 0, 16

      OEIS Similars: A053120, A039991, A081265

↕ Type↕ Trait↕ Anum↕ Sequence
StdTriangleT(n, k), 0 ≤ k ≤ nA0531201 0 1 -1 0 2 0 -3 0 4 1 0 -8 0 8 0 5 0 -20 0 16 -1 0 18 0 -48 0 32 0 -7 0 56 0 -112 0 64 1 0 -32 0
StdRevT(n, n - k), 0 ≤ k ≤ nA0812651 1 0 2 0 -1 4 0 -3 0 8 0 -8 0 1 16 0 -20 0 5 0 32 0 -48 0 18 0 -1 64 0 -112 0 56 0 -7 0 128 0 -256
StdAccsee docsmissing1 0 1 -1 -1 1 0 -3 -3 1 1 1 -7 -7 1 0 5 5 -15 -15 1 -1 -1 17 17 -31 -31 1 0 -7 -7 49 49 -63 -63 1 1
StdAccRevsee docsmissing1 1 1 2 2 1 4 4 1 1 8 8 0 0 1 16 16 -4 -4 1 1 32 32 -16 -16 2 2 1 64 64 -48 -48 8 8 1 1 128 128
StdAntiDiagsee docsmissing1 0 -1 1 0 0 1 -3 2 0 0 0 -1 5 -8 4 0 0 0 0 1 -7 18 -20 8 0 0 0 0 0 -1 9 -32 56 -48 16 0 0 0 0 0 0
StdDiffx1T(n, k) (k+1)missing1 0 2 -1 0 6 0 -6 0 16 1 0 -24 0 40 0 10 0 -80 0 96 -1 0 54 0 -240 0 224 0 -14 0 224 0 -672 0 512 1
StdRowSum k=0..n T(n, k)A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
StdEvenSum k=0..n T(n, k) even(k)A0000351 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
StdOddSum k=0..n T(n, k) odd(k)A0000350 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
StdAbsSum k=0..n | T(n, k) |A0013331 1 3 7 17 41 99 239 577 1393 3363 8119 19601 47321 114243 275807 665857 1607521 3880899 9369319
StdDiagSum k=0..n // 2 T(n - k, k)A0000071 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
StdAccSum k=0..n j=0..k T(n, j)A0283871 1 -1 -5 -11 -19 -29 -41 -55 -71 -89 -109 -131 -155 -181 -209 -239 -271 -305 -341 -379 -419 -461
StdAccRevSum k=0..n j=0..k T(n, n - j)A0025221 2 5 10 17 26 37 50 65 82 101 122 145 170 197 226 257 290 325 362 401 442 485 530 577 626 677 730
StdRowLcmLcm k=0..n | T(n, k) | > 1missing1 1 2 12 8 80 288 448 1280 34560 89600 394240 1935360 5591040 66232320 851558400 1968046080
StdRowGcdGcd k=0..n | T(n, k) | > 1missing1 1 2 1 8 1 2 1 32 1 2 1 8 1 2 1 128 1 2 1 8 1 2 1 32 1 2 1 8 1 2 1 512 1 2 1 8 1 2 1 32 1 2 1 8 1
StdRowMaxMax k=0..n | T(n, k) |missing1 1 2 4 8 20 48 112 256 576 1280 2816 6912 16640 39424 92160 212992 487424 1118208 2723840 6553600
StdColMiddleT(n, n // 2)missing1 0 0 -3 -8 0 0 56 160 0 0 -1232 -3584 0 0 28800 84480 0 0 -695552 -2050048 0 0 17145856 50692096 0
StdCentralET(2 n, n)A0369091 0 -8 0 160 0 -3584 0 84480 0 -2050048 0 50692096 0 -1270087680 0 32133218304 0 -819082035200 0
StdCentralOT(2 n + 1, n)missing0 -3 0 56 0 -1232 0 28800 0 -695552 0 17145856 0 -428654592 0 10827497472 0 -275652608000 0
StdColRightT(n, n)A0000791 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 1048576
StdBinConv k=0..n C(n, k) T(n, k)missing1 1 1 -5 -39 -159 -419 -377 3265 23953 96361 242419 117417 -2625375 -17166603 -65567985 -151353855
StdInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kmissing1 1 1 -5 -39 -159 -419 -377 3265 23953 96361 242419 117417 -2625375 -17166603 -65567985 -151353855
StdTransNat0 k=0..n T(n, k) kA0002900 1 4 9 16 25 36 49 64 81 100 121 144 169 196 225 256 289 324 361 400 441 484 529 576 625 676 729
StdTransNat1 k=0..n T(n, k) (k + 1)A0025221 2 5 10 17 26 37 50 65 82 101 122 145 170 197 226 257 290 325 362 401 442 485 530 577 626 677 730
StdTransSqrs k=0..n T(n, k) k^2A0148200 1 8 33 96 225 456 833 1408 2241 3400 4961 7008 9633 12936 17025 22016 28033 35208 43681 53600
StdDiagRow2T(n + 2, n)A001792-1 -3 -8 -20 -48 -112 -256 -576 -1280 -2816 -6144 -13312 -28672 -61440 -131072 -278528 -589824
StdDiagCol1T(n + 1, 1)A1933561 0 -3 0 5 0 -7 0 9 0 -11 0 13 0 -15 0 17 0 -19 0 21 0 -23 0 25 0 -27 0 29 0 -31 0 33 0 -35 0 37 0
StdDiagCol2T(n + 2, 2)A0011052 0 -8 0 18 0 -32 0 50 0 -72 0 98 0 -128 0 162 0 -200 0 242 0 -288 0 338 0 -392 0 450 0 -512 0 578
StdDiagCol3T(n + 3, 3)A0024924 0 -20 0 56 0 -120 0 220 0 -364 0 560 0 -816 0 1140 0 -1540 0 2024 0 -2600 0 3276 0 -4060 0 4960 0
StdPolysee docsA1011241 0 1 -1 1 1 0 1 2 1 1 1 7 3 1 0 1 26 17 4 1 -1 1 97 99 31 5 1 0 1 362 577 244 49 6 1 1 1 1351 3363
StdPolyRow1 k=0..1 T(1, k) n^kA0000270 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
StdPolyRow2 k=0..2 T(2, k) n^kA056220-1 1 7 17 31 49 71 97 127 161 199 241 287 337 391 449 511 577 647 721 799 881 967 1057 1151 1249
StdPolyRow3 k=0..3 T(3, k) n^kA1441290 1 26 99 244 485 846 1351 2024 2889 3970 5291 6876 8749 10934 13455 16336 19601 23274 27379 31940
StdPolyCol2 k=0..n T(n, k) 2^kA0010751 2 7 26 97 362 1351 5042 18817 70226 262087 978122 3650401 13623482 50843527 189750626 708158977
StdPolyCol3 k=0..n T(n, k) 3^kA0015411 3 17 99 577 3363 19601 114243 665857 3880899 22619537 131836323 768398401 4478554083 26102926097
StdPolyDiag k=0..n T(n, k) n^kA1150661 1 7 99 1921 47525 1431431 50843527 2081028097 96450076809 4993116004999 285573847759211
AltAccsee docsmissing1 0 -1 -1 -1 1 0 3 3 -1 1 1 -7 -7 1 0 -5 -5 15 15 -1 -1 -1 17 17 -31 -31 1 0 7 7 -49 -49 63 63 -1 1
AltAccRevsee docsmissing1 -1 -1 2 2 1 -4 -4 -1 -1 8 8 0 0 1 -16 -16 4 4 -1 -1 32 32 -16 -16 2 2 1 -64 -64 48 48 -8 -8 -1 -1
AltAntiDiagsee docsmissing1 0 -1 -1 0 0 1 3 2 0 0 0 -1 -5 -8 -4 0 0 0 0 1 7 18 20 8 0 0 0 0 0 -1 -9 -32 -56 -48 -16 0 0 0 0 0
AltDiffx1T(n, k) (k+1)missing1 0 -2 -1 0 6 0 6 0 -16 1 0 -24 0 40 0 -10 0 80 0 -96 -1 0 54 0 -240 0 224 0 14 0 -224 0 672 0 -512
AltEvenSum k=0..n T(n, k) even(k)A0000351 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
AltOddSum k=0..n T(n, k) odd(k)A0000350 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1
AltAltSum k=0..n T(n, k) (-1)^kA0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
AltAbsSum k=0..n | T(n, k) |A0013331 1 3 7 17 41 99 239 577 1393 3363 8119 19601 47321 114243 275807 665857 1607521 3880899 9369319
AltDiagSum k=0..n // 2 T(n - k, k)A0087761 0 -2 0 6 0 -18 0 54 0 -162 0 486 0 -1458 0 4374 0 -13122 0 39366 0 -118098 0 354294 0 -1062882 0
AltAccSum k=0..n j=0..k T(n, j)A0283871 -1 -1 5 -11 19 -29 41 -55 71 -89 109 -131 155 -181 209 -239 271 -305 341 -379 419 -461 505 -551
AltAccRevSum k=0..n j=0..k T(n, n - j)A0025221 -2 5 -10 17 -26 37 -50 65 -82 101 -122 145 -170 197 -226 257 -290 325 -362 401 -442 485 -530 577
AltRowLcmLcm k=0..n | T(n, k) | > 1missing1 1 2 12 8 80 288 448 1280 34560 89600 394240 1935360 5591040 66232320 851558400 1968046080
AltRowGcdGcd k=0..n | T(n, k) | > 1missing1 1 2 1 8 1 2 1 32 1 2 1 8 1 2 1 128 1 2 1 8 1 2 1 32 1 2 1 8 1 2 1 512 1 2 1 8 1 2 1 32 1 2 1 8 1
AltRowMaxMax k=0..n | T(n, k) |missing1 1 2 4 8 20 48 112 256 576 1280 2816 6912 16640 39424 92160 212992 487424 1118208 2723840 6553600
AltColMiddleT(n, n // 2)missing1 0 0 3 -8 0 0 -56 160 0 0 1232 -3584 0 0 -28800 84480 0 0 695552 -2050048 0 0 -17145856 50692096 0
AltCentralET(2 n, n)A0369091 0 -8 0 160 0 -3584 0 84480 0 -2050048 0 50692096 0 -1270087680 0 32133218304 0 -819082035200 0
AltCentralOT(2 n + 1, n)missing0 3 0 -56 0 1232 0 -28800 0 695552 0 -17145856 0 428654592 0 -10827497472 0 275652608000 0
AltColRightT(n, n)A0000791 -1 2 -4 8 -16 32 -64 128 -256 512 -1024 2048 -4096 8192 -16384 32768 -65536 131072 -262144 524288
AltBinConv k=0..n C(n, k) T(n, k)missing1 -1 1 5 -39 159 -419 377 3265 -23953 96361 -242419 117417 2625375 -17166603 65567985 -151353855
AltInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kmissing1 -1 1 5 -39 159 -419 377 3265 -23953 96361 -242419 117417 2625375 -17166603 65567985 -151353855
AltTransNat0 k=0..n T(n, k) kA0002900 -1 4 -9 16 -25 36 -49 64 -81 100 -121 144 -169 196 -225 256 -289 324 -361 400 -441 484 -529 576
AltTransNat1 k=0..n T(n, k) (k + 1)A0025221 -2 5 -10 17 -26 37 -50 65 -82 101 -122 145 -170 197 -226 257 -290 325 -362 401 -442 485 -530 577
AltTransSqrs k=0..n T(n, k) k^2A0148200 -1 8 -33 96 -225 456 -833 1408 -2241 3400 -4961 7008 -9633 12936 -17025 22016 -28033 35208 -43681
AltPosHalf k=0..n 2^n T(n, k) (1/2)^kA1382301 -1 -2 8 -8 -16 64 -64 -128 512 -512 -1024 4096 -4096 -8192 32768 -32768 -65536 262144 -262144
AltNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kA1382301 -1 -2 8 -8 -16 64 -64 -128 512 -512 -1024 4096 -4096 -8192 32768 -32768 -65536 262144 -262144
AltDiagRow2T(n + 2, n)A001792-1 3 -8 20 -48 112 -256 576 -1280 2816 -6144 13312 -28672 61440 -131072 278528 -589824 1245184
AltDiagCol1T(n + 1, 1)A193356-1 0 3 0 -5 0 7 0 -9 0 11 0 -13 0 15 0 -17 0 19 0 -21 0 23 0 -25 0 27 0 -29 0 31 0 -33 0 35 0 -37 0
AltDiagCol2T(n + 2, 2)A0011052 0 -8 0 18 0 -32 0 50 0 -72 0 98 0 -128 0 162 0 -200 0 242 0 -288 0 338 0 -392 0 450 0 -512 0 578
AltDiagCol3T(n + 3, 3)A002492-4 0 20 0 -56 0 120 0 -220 0 364 0 -560 0 816 0 -1140 0 1540 0 -2024 0 2600 0 -3276 0 4060 0 -4960
AltPolysee docsA1011241 0 1 -1 -1 1 0 1 -2 1 1 -1 7 -3 1 0 1 -26 17 -4 1 -1 -1 97 -99 31 -5 1 0 1 -362 577 -244 49 -6 1 1
AltPolyRow1 k=0..1 T(1, k) n^kA0000270 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25 -26
AltPolyRow2 k=0..2 T(2, k) n^kA056220-1 1 7 17 31 49 71 97 127 161 199 241 287 337 391 449 511 577 647 721 799 881 967 1057 1151 1249
AltPolyRow3 k=0..3 T(3, k) n^kA1441290 -1 -26 -99 -244 -485 -846 -1351 -2024 -2889 -3970 -5291 -6876 -8749 -10934 -13455 -16336 -19601
AltPolyCol2 k=0..n T(n, k) 2^kA0010751 -2 7 -26 97 -362 1351 -5042 18817 -70226 262087 -978122 3650401 -13623482 50843527 -189750626
AltPolyCol3 k=0..n T(n, k) 3^kA0015411 -3 17 -99 577 -3363 19601 -114243 665857 -3880899 22619537 -131836323 768398401 -4478554083
AltPolyDiag k=0..n T(n, k) n^kA1150661 -1 7 -99 1921 -47525 1431431 -50843527 2081028097 -96450076809 4993116004999 -285573847759211
RevTriangleT(n, k), 0 ≤ k ≤ nA0812651 1 0 2 0 -1 4 0 -3 0 8 0 -8 0 1 16 0 -20 0 5 0 32 0 -48 0 18 0 -1 64 0 -112 0 56 0 -7 0 128 0 -256
RevAccsee docsmissing1 1 1 2 2 1 4 4 1 1 8 8 0 0 1 16 16 -4 -4 1 1 32 32 -16 -16 2 2 1 64 64 -48 -48 8 8 1 1 128 128
RevAccRevsee docsmissing1 0 1 -1 -1 1 0 -3 -3 1 1 1 -7 -7 1 0 5 5 -15 -15 1 -1 -1 17 17 -31 -31 1 0 -7 -7 49 49 -63 -63 1 1
RevAntiDiagsee docsmissing1 1 2 0 4 0 8 0 -1 16 0 -3 32 0 -8 0 64 0 -20 0 128 0 -48 0 1 256 0 -112 0 5 512 0 -256 0 18 0 1024
RevDiffx1T(n, k) (k+1)missing1 1 0 2 0 -3 4 0 -9 0 8 0 -24 0 5 16 0 -60 0 25 0 32 0 -144 0 90 0 -7 64 0 -336 0 280 0 -49 0 128 0
RevRowSum k=0..n T(n, k)A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
RevEvenSum k=0..n T(n, k) even(k)A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
RevAltSum k=0..n T(n, k) (-1)^kA0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
RevAbsSum k=0..n | T(n, k) |A0013331 1 3 7 17 41 99 239 577 1393 3363 8119 19601 47321 114243 275807 665857 1607521 3880899 9369319
RevDiagSum k=0..n // 2 T(n - k, k)A0000731 1 2 4 7 13 24 44 81 149 274 504 927 1705 3136 5768 10609 19513 35890 66012 121415 223317 410744
RevAccSum k=0..n j=0..k T(n, j)A0025221 2 5 10 17 26 37 50 65 82 101 122 145 170 197 226 257 290 325 362 401 442 485 530 577 626 677 730
RevAccRevSum k=0..n j=0..k T(n, n - j)A0283871 1 -1 -5 -11 -19 -29 -41 -55 -71 -89 -109 -131 -155 -181 -209 -239 -271 -305 -341 -379 -419 -461
RevRowLcmLcm k=0..n | T(n, k) | > 1missing1 1 2 12 8 80 288 448 1280 34560 89600 394240 1935360 5591040 66232320 851558400 1968046080
RevRowGcdGcd k=0..n | T(n, k) | > 1missing1 1 2 1 8 1 2 1 32 1 2 1 8 1 2 1 128 1 2 1 8 1 2 1 32 1 2 1 8 1 2 1 512 1 2 1 8 1 2 1 32 1 2 1 8 1
RevRowMaxMax k=0..n | T(n, k) |missing1 1 2 4 8 20 48 112 256 576 1280 2816 6912 16640 39424 92160 212992 487424 1118208 2723840 6553600
RevColMiddleT(n, n // 2)missing1 1 0 0 -8 -20 0 0 160 432 0 0 -3584 -9984 0 0 84480 239360 0 0 -2050048 -5870592 0 0 50692096
RevCentralET(2 n, n)A0369091 0 -8 0 160 0 -3584 0 84480 0 -2050048 0 50692096 0 -1270087680 0 32133218304 0 -819082035200 0
RevCentralOT(2 n + 1, n)missing1 0 -20 0 432 0 -9984 0 239360 0 -5870592 0 146227200 0 -3683254272 0 93564370944 0 -2392581734400
RevColLeftT(n, 0)A0000791 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 1048576
RevBinConv k=0..n C(n, k) T(n, k)missing1 1 1 -5 -39 -159 -419 -377 3265 23953 96361 242419 117417 -2625375 -17166603 -65567985 -151353855
RevInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kmissing1 -1 1 5 -39 159 -419 377 3265 -23953 96361 -242419 117417 2625375 -17166603 65567985 -151353855
RevTransNat0 k=0..n T(n, k) kA0023780 0 -2 -6 -12 -20 -30 -42 -56 -72 -90 -110 -132 -156 -182 -210 -240 -272 -306 -342 -380 -420 -462
RevTransNat1 k=0..n T(n, k) (k + 1)A0283871 1 -1 -5 -11 -19 -29 -41 -55 -71 -89 -109 -131 -155 -181 -209 -239 -271 -305 -341 -379 -419 -461
RevTransSqrs k=0..n T(n, k) k^2missing0 0 -4 -12 -16 0 60 196 448 864 1500 2420 3696 5408 7644 10500 14080 18496 23868 30324 38000 47040
RevPosHalf k=0..n 2^n T(n, k) (1/2)^kA0010751 2 7 26 97 362 1351 5042 18817 70226 262087 978122 3650401 13623482 50843527 189750626 708158977
RevNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kA0010751 -2 7 -26 97 -362 1351 -5042 18817 -70226 262087 -978122 3650401 -13623482 50843527 -189750626
RevDiagRow1T(n + 1, n)A1933561 0 -3 0 5 0 -7 0 9 0 -11 0 13 0 -15 0 17 0 -19 0 21 0 -23 0 25 0 -27 0 29 0 -31 0 33 0 -35 0 37 0
RevDiagRow2T(n + 2, n)A0011052 0 -8 0 18 0 -32 0 50 0 -72 0 98 0 -128 0 162 0 -200 0 242 0 -288 0 338 0 -392 0 450 0 -512 0 578
RevDiagRow3T(n + 3, n)A0024924 0 -20 0 56 0 -120 0 220 0 -364 0 560 0 -816 0 1140 0 -1540 0 2024 0 -2600 0 3276 0 -4060 0 4960 0
RevDiagCol2T(n + 2, 2)A001792-1 -3 -8 -20 -48 -112 -256 -576 -1280 -2816 -6144 -13312 -28672 -61440 -131072 -278528 -589824
RevPolysee docsmissing1 1 1 2 1 1 4 1 1 1 8 1 -2 1 1 16 1 -8 -7 1 1 32 1 -8 -23 -14 1 1 64 1 16 17 -44 -23 1 1 128 1 64
RevPolyRow1 k=0..1 T(1, k) n^kA0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
RevPolyRow2 k=0..2 T(2, k) n^kA0088652 1 -2 -7 -14 -23 -34 -47 -62 -79 -98 -119 -142 -167 -194 -223 -254 -287 -322 -359 -398 -439 -482
RevPolyRow3 k=0..3 T(3, k) n^kmissing4 1 -8 -23 -44 -71 -104 -143 -188 -239 -296 -359 -428 -503 -584 -671 -764 -863 -968 -1079 -1196
RevPolyCol3 k=0..n T(n, k) 3^kA0251721 1 -7 -23 17 241 329 -1511 -5983 1633 57113 99529 -314959 -1525679 -216727 13297657 28545857
RevPolyDiag k=0..n T(n, k) n^kmissing1 1 -2 -23 136 2641 -25024 -694511 9027712 326435521 -5388927488 -240294390599 4808675526656
 << TableSourceSimilarsIndex >> 

Note: The A-numbers are based on a finite number of numerical comparisons. They ignore the sign and the OEIS-offset. Sometimes they differ in the first few values. In such cases, we consider our version to be the better one because it has a common formula as a root. Since the offset of all triangles is 0 also the offset of all sequences is 0.