CHEBYSHEVS[0] 1
[1] 0, 1
[2] -1, 0, 1
[3] 0, -2, 0, 1
[4] 1, 0, -3, 0, 1
[5] 0, 3, 0, -4, 0, 1

      OEIS Similars: A049310, A053119, A112552, A168561

↕ Type↕ Trait↕ Anum↕ Sequence
StdTriangleT(n, k), 0 ≤ k ≤ nA1685611 0 1 -1 0 1 0 -2 0 1 1 0 -3 0 1 0 3 0 -4 0 1 -1 0 6 0 -5 0 1 0 -4 0 10 0 -6 0 1 1 0 -10 0 15 0 -7
StdRevT(n, n - k), 0 ≤ k ≤ nA1625151 1 0 1 0 -1 1 0 -2 0 1 0 -3 0 1 1 0 -4 0 3 0 1 0 -5 0 6 0 -1 1 0 -6 0 10 0 -4 0 1 0 -7 0 15 0 -10
StdInvT-1(n, k), 0 ≤ k ≤ nA0531211 0 1 1 0 1 0 2 0 1 2 0 3 0 1 0 5 0 4 0 1 5 0 9 0 5 0 1 0 14 0 14 0 6 0 1 14 0 28 0 20 0 7 0 1 0 42
StdRevInvT-1(n, n - k), 0 ≤ k ≤ nA0521731 1 0 1 0 1 1 0 2 0 1 0 3 0 2 1 0 4 0 5 0 1 0 5 0 9 0 5 1 0 6 0 14 0 14 0 1 0 7 0 20 0 28 0 14 1 0
StdAccsee docsmissing1 0 1 -1 -1 0 0 -2 -2 -1 1 1 -2 -2 -1 0 3 3 -1 -1 0 -1 -1 5 5 0 0 1 0 -4 -4 6 6 0 0 1 1 1 -9 -9 6 6
StdAccRevsee docsmissing1 1 1 1 1 0 1 1 -1 -1 1 1 -2 -2 -1 1 1 -3 -3 0 0 1 1 -4 -4 2 2 1 1 1 -5 -5 5 5 1 1 1 1 -6 -6 9 9 -1
StdAntiDiagsee docsmissing1 0 -1 1 0 0 1 -2 1 0 0 0 -1 3 -3 1 0 0 0 0 1 -4 6 -4 1 0 0 0 0 0 -1 5 -10 10 -5 1 0 0 0 0 0 0 1 -6
StdDiffx1T(n, k) (k+1)missing1 0 2 -1 0 3 0 -4 0 4 1 0 -9 0 5 0 6 0 -16 0 6 -1 0 18 0 -25 0 7 0 -8 0 40 0 -36 0 8 1 0 -30 0 75 0
StdAbsSum k=0..n | T(n, k) |A0000451 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181 6765 10946 17711 28657 46368 75025
StdDiagSum k=0..n // 2 T(n - k, k)A0000071 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
StdAccRevSum k=0..n j=0..k T(n, n - j)missing1 2 2 0 -3 -4 -1 4 6 2 -5 -8 -3 6 10 4 -7 -12 -5 8 14 6 -9 -16 -7 10 18 8 -11 -20 -9 12 22 10 -13
StdRowLcmLcm k=0..n | T(n, k) | > 1A0255601 1 1 2 3 12 30 60 210 840 1260 2520 13860 27720 180180 360360 180180 720720 6126120 12252240
StdRowGcdGcd k=0..n | T(n, k) | > 1missing1 1 1 2 3 1 1 2 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
StdRowMaxMax k=0..n | T(n, k) |A0730281 1 1 2 3 4 6 10 15 21 35 56 84 126 210 330 495 792 1287 2002 3003 5005 8008 12376 19448 31824
StdColMiddleT(n, n // 2)missing1 0 0 -2 -3 0 0 10 15 0 0 -56 -84 0 0 330 495 0 0 -2002 -3003 0 0 12376 18564 0 0 -77520 -116280 0
StdCentralET(2 n, n)A0058091 0 -3 0 15 0 -84 0 495 0 -3003 0 18564 0 -116280 0 735471 0 -4686825 0 30045015 0 -193536720 0
StdCentralOT(2 n + 1, n)A1658170 -2 0 10 0 -56 0 330 0 -2002 0 12376 0 -77520 0 490314 0 -3124550 0 20030010 0 -129024480 0
StdColRightT(n, n)A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
StdBinConv k=0..n C(n, k) T(n, k)A2784151 1 0 -5 -16 -24 15 197 576 724 -1200 -8832 -22801 -21293 76440 408795 922368 499104 -4446588
StdInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kA2784151 1 0 -5 -16 -24 15 197 576 724 -1200 -8832 -22801 -21293 76440 408795 922368 499104 -4446588
StdTransNat0 k=0..n T(n, k) kA1867310 1 2 1 -2 -4 -2 3 6 3 -4 -8 -4 5 10 5 -6 -12 -6 7 14 7 -8 -16 -8 9 18 9 -10 -20 -10 11 22 11 -12
StdTransNat1 k=0..n T(n, k) (k + 1)missing1 2 2 0 -3 -4 -1 4 6 2 -5 -8 -3 6 10 4 -7 -12 -5 8 14 6 -9 -16 -7 10 18 8 -11 -20 -9 12 22 10 -13
StdTransSqrs k=0..n T(n, k) k^2missing0 1 4 7 4 -8 -20 -15 12 39 32 -16 -64 -55 20 95 84 -24 -132 -119 28 175 160 -32 -224 -207 36 279
StdPosHalf k=0..n 2^n T(n, k) (1/2)^kA1068531 1 -3 -7 5 33 13 -119 -171 305 989 -231 -4187 -3263 13485 26537 -27403 -133551 -23939 510265
StdNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kA1068531 1 -3 -7 5 33 13 -119 -171 305 989 -231 -4187 -3263 13485 26537 -27403 -133551 -23939 510265
StdDiagRow2T(n + 2, n)A000027-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25 -26 -27
StdDiagCol1T(n + 1, 1)A1421501 0 -2 0 3 0 -4 0 5 0 -6 0 7 0 -8 0 9 0 -10 0 11 0 -12 0 13 0 -14 0 15 0 -16 0 17 0 -18 0 19 0 -20
StdDiagCol2T(n + 2, 2)A0002171 0 -3 0 6 0 -10 0 15 0 -21 0 28 0 -36 0 45 0 -55 0 66 0 -78 0 91 0 -105 0 120 0 -136 0 153 0 -171
StdDiagCol3T(n + 3, 3)A0002921 0 -4 0 10 0 -20 0 35 0 -56 0 84 0 -120 0 165 0 -220 0 286 0 -364 0 455 0 -560 0 680 0 -816 0 969
StdPolysee docsmissing1 0 1 -1 1 1 0 0 2 1 1 -1 3 3 1 0 -1 4 8 4 1 -1 0 5 21 15 5 1 0 1 6 55 56 24 6 1 1 1 7 144 209 115
StdPolyRow1 k=0..1 T(1, k) n^kA0000270 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
StdPolyRow2 k=0..2 T(2, k) n^kA005563-1 0 3 8 15 24 35 48 63 80 99 120 143 168 195 224 255 288 323 360 399 440 483 528 575 624 675 728
StdPolyRow3 k=0..3 T(3, k) n^kA2421350 -1 4 21 56 115 204 329 496 711 980 1309 1704 2171 2716 3345 4064 4879 5796 6821 7960 9219 10604
StdPolyCol2 k=0..n T(n, k) 2^kA0000271 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
StdPolyCol3 k=0..n T(n, k) 3^kA0019061 3 8 21 55 144 377 987 2584 6765 17711 46368 121393 317811 832040 2178309 5702887 14930352
StdPolyDiag k=0..n T(n, k) n^kA0976901 1 3 21 209 2640 40391 726103 15003009 350382231 9127651499 262424759520 8254109243953
AltInvT-1(n, k), 0 ≤ k ≤ nmissing1 0 1 1 0 1 0 -2 0 1 2 0 3 0 1 0 11 0 -4 0 1 5 0 9 0 5 0 1 0 -90 0 34 0 -6 0 1 14 0 28 0 20 0 7 0 1
AltRevInvT-1(n, n - k), 0 ≤ k ≤ nmissing1 1 0 1 0 1 1 0 -2 0 1 0 3 0 2 1 0 -4 0 11 0 1 0 5 0 9 0 5 1 0 -6 0 34 0 -90 0 1 0 7 0 20 0 28 0 14
AltAccRevsee docsmissing1 -1 -1 1 1 0 -1 -1 1 1 1 1 -2 -2 -1 -1 -1 3 3 0 0 1 1 -4 -4 2 2 1 -1 -1 5 5 -5 -5 -1 -1 1 1 -6 -6
AltAntiDiagsee docsmissing1 0 -1 -1 0 0 1 2 1 0 0 0 -1 -3 -3 -1 0 0 0 0 1 4 6 4 1 0 0 0 0 0 -1 -5 -10 -10 -5 -1 0 0 0 0 0 0 1
AltDiffx1T(n, k) (k+1)missing1 0 -2 -1 0 3 0 4 0 -4 1 0 -9 0 5 0 -6 0 16 0 -6 -1 0 18 0 -25 0 7 0 8 0 -40 0 36 0 -8 1 0 -30 0 75
AltAbsSum k=0..n | T(n, k) |A0000451 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181 6765 10946 17711 28657 46368 75025
AltDiagSum k=0..n // 2 T(n - k, k)A0779571 0 -2 0 4 0 -8 0 16 0 -32 0 64 0 -128 0 256 0 -512 0 1024 0 -2048 0 4096 0 -8192 0 16384 0 -32768
AltAccRevSum k=0..n j=0..k T(n, n - j)missing1 -2 2 0 -3 4 -1 -4 6 -2 -5 8 -3 -6 10 -4 -7 12 -5 -8 14 -6 -9 16 -7 -10 18 -8 -11 20 -9 -12 22 -10
AltRowLcmLcm k=0..n | T(n, k) | > 1A0255601 1 1 2 3 12 30 60 210 840 1260 2520 13860 27720 180180 360360 180180 720720 6126120 12252240
AltRowGcdGcd k=0..n | T(n, k) | > 1missing1 1 1 2 3 1 1 2 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
AltRowMaxMax k=0..n | T(n, k) |A0730281 1 1 2 3 4 6 10 15 21 35 56 84 126 210 330 495 792 1287 2002 3003 5005 8008 12376 19448 31824
AltColMiddleT(n, n // 2)missing1 0 0 2 -3 0 0 -10 15 0 0 56 -84 0 0 -330 495 0 0 2002 -3003 0 0 -12376 18564 0 0 77520 -116280 0 0
AltCentralET(2 n, n)A0058091 0 -3 0 15 0 -84 0 495 0 -3003 0 18564 0 -116280 0 735471 0 -4686825 0 30045015 0 -193536720 0
AltCentralOT(2 n + 1, n)A1658170 2 0 -10 0 56 0 -330 0 2002 0 -12376 0 77520 0 -490314 0 3124550 0 -20030010 0 129024480 0
AltBinConv k=0..n C(n, k) T(n, k)A2784151 -1 0 5 -16 24 15 -197 576 -724 -1200 8832 -22801 21293 76440 -408795 922368 -499104 -4446588
AltInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kA2784151 -1 0 5 -16 24 15 -197 576 -724 -1200 8832 -22801 21293 76440 -408795 922368 -499104 -4446588
AltTransNat0 k=0..n T(n, k) kA1867310 -1 2 -1 -2 4 -2 -3 6 -3 -4 8 -4 -5 10 -5 -6 12 -6 -7 14 -7 -8 16 -8 -9 18 -9 -10 20 -10 -11 22
AltTransNat1 k=0..n T(n, k) (k + 1)missing1 -2 2 0 -3 4 -1 -4 6 -2 -5 8 -3 -6 10 -4 -7 12 -5 -8 14 -6 -9 16 -7 -10 18 -8 -11 20 -9 -12 22 -10
AltTransSqrs k=0..n T(n, k) k^2missing0 -1 4 -7 4 8 -20 15 12 -39 32 16 -64 55 20 -95 84 24 -132 119 28 -175 160 32 -224 207 36 -279 260
AltPosHalf k=0..n 2^n T(n, k) (1/2)^kA1068531 -1 -3 7 5 -33 13 119 -171 -305 989 231 -4187 3263 13485 -26537 -27403 133551 -23939 -510265
AltNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kA1068531 -1 -3 7 5 -33 13 119 -171 -305 989 231 -4187 3263 13485 -26537 -27403 133551 -23939 -510265
AltDiagRow2T(n + 2, n)A000027-1 2 -3 4 -5 6 -7 8 -9 10 -11 12 -13 14 -15 16 -17 18 -19 20 -21 22 -23 24 -25 26 -27 28 -29 30 -31
AltDiagCol1T(n + 1, 1)A142150-1 0 2 0 -3 0 4 0 -5 0 6 0 -7 0 8 0 -9 0 10 0 -11 0 12 0 -13 0 14 0 -15 0 16 0 -17 0 18 0 -19 0 20
AltDiagCol2T(n + 2, 2)A0002171 0 -3 0 6 0 -10 0 15 0 -21 0 28 0 -36 0 45 0 -55 0 66 0 -78 0 91 0 -105 0 120 0 -136 0 153 0 -171
AltDiagCol3T(n + 3, 3)A000292-1 0 4 0 -10 0 20 0 -35 0 56 0 -84 0 120 0 -165 0 220 0 -286 0 364 0 -455 0 560 0 -680 0 816 0 -969
AltPolysee docsmissing1 0 1 -1 -1 1 0 0 -2 1 1 1 3 -3 1 0 -1 -4 8 -4 1 -1 0 5 -21 15 -5 1 0 1 -6 55 -56 24 -6 1 1 -1 7
AltPolyRow1 k=0..1 T(1, k) n^kA0000270 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25 -26
AltPolyRow2 k=0..2 T(2, k) n^kA005563-1 0 3 8 15 24 35 48 63 80 99 120 143 168 195 224 255 288 323 360 399 440 483 528 575 624 675 728
AltPolyRow3 k=0..3 T(3, k) n^kA2421350 1 -4 -21 -56 -115 -204 -329 -496 -711 -980 -1309 -1704 -2171 -2716 -3345 -4064 -4879 -5796 -6821
AltPolyCol2 k=0..n T(n, k) 2^kA0000271 -2 3 -4 5 -6 7 -8 9 -10 11 -12 13 -14 15 -16 17 -18 19 -20 21 -22 23 -24 25 -26 27 -28 29 -30 31
AltPolyCol3 k=0..n T(n, k) 3^kA0019061 -3 8 -21 55 -144 377 -987 2584 -6765 17711 -46368 121393 -317811 832040 -2178309 5702887
AltPolyDiag k=0..n T(n, k) n^kA0976901 -1 3 -21 209 -2640 40391 -726103 15003009 -350382231 9127651499 -262424759520 8254109243953
RevTriangleT(n, k), 0 ≤ k ≤ nA1625151 1 0 1 0 -1 1 0 -2 0 1 0 -3 0 1 1 0 -4 0 3 0 1 0 -5 0 6 0 -1 1 0 -6 0 10 0 -4 0 1 0 -7 0 15 0 -10
RevInvRev(T(n, n - k))-1, 0 ≤ k ≤ nA0531211 0 1 1 0 1 0 2 0 1 2 0 3 0 1 0 5 0 4 0 1 5 0 9 0 5 0 1 0 14 0 14 0 6 0 1 14 0 28 0 20 0 7 0 1 0 42
RevAccsee docsmissing1 1 1 1 1 0 1 1 -1 -1 1 1 -2 -2 -1 1 1 -3 -3 0 0 1 1 -4 -4 2 2 1 1 1 -5 -5 5 5 1 1 1 1 -6 -6 9 9 -1
RevAccRevsee docsmissing1 0 1 -1 -1 0 0 -2 -2 -1 1 1 -2 -2 -1 0 3 3 -1 -1 0 -1 -1 5 5 0 0 1 0 -4 -4 6 6 0 0 1 1 1 -9 -9 6 6
RevAntiDiagsee docsmissing1 1 1 0 1 0 1 0 -1 1 0 -2 1 0 -3 0 1 0 -4 0 1 0 -5 0 1 1 0 -6 0 3 1 0 -7 0 6 0 1 0 -8 0 10 0 1 0 -9
RevDiffx1T(n, k) (k+1)missing1 1 0 1 0 -3 1 0 -6 0 1 0 -9 0 5 1 0 -12 0 15 0 1 0 -15 0 30 0 -7 1 0 -18 0 50 0 -28 0 1 0 -21 0 75
RevAbsSum k=0..n | T(n, k) |A0000451 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181 6765 10946 17711 28657 46368 75025
RevDiagSum k=0..n // 2 T(n - k, k)A0995301 1 1 1 0 -1 -2 -3 -3 -2 0 3 6 8 8 5 -1 -9 -17 -22 -21 -12 5 27 48 60 55 28 -20 -80 -135 -163 -143
RevAccSum k=0..n j=0..k T(n, j)missing1 2 2 0 -3 -4 -1 4 6 2 -5 -8 -3 6 10 4 -7 -12 -5 8 14 6 -9 -16 -7 10 18 8 -11 -20 -9 12 22 10 -13
RevRowLcmLcm k=0..n | T(n, k) | > 1A0255601 1 1 2 3 12 30 60 210 840 1260 2520 13860 27720 180180 360360 180180 720720 6126120 12252240
RevRowGcdGcd k=0..n | T(n, k) | > 1missing1 1 1 2 3 1 1 2 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
RevRowMaxMax k=0..n | T(n, k) |A0730281 1 1 2 3 4 6 10 15 21 35 56 84 126 210 330 495 792 1287 2002 3003 5005 8008 12376 19448 31824
RevColMiddleT(n, n // 2)missing1 1 0 0 -3 -4 0 0 15 21 0 0 -84 -120 0 0 495 715 0 0 -3003 -4368 0 0 18564 27132 0 0 -116280
RevCentralET(2 n, n)A0058091 0 -3 0 15 0 -84 0 495 0 -3003 0 18564 0 -116280 0 735471 0 -4686825 0 30045015 0 -193536720 0
RevCentralOT(2 n + 1, n)A0457211 0 -4 0 21 0 -120 0 715 0 -4368 0 27132 0 -170544 0 1081575 0 -6906900 0 44352165 0 -286097760 0
RevColLeftT(n, 0)A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
RevBinConv k=0..n C(n, k) T(n, k)A2784151 1 0 -5 -16 -24 15 197 576 724 -1200 -8832 -22801 -21293 76440 408795 922368 499104 -4446588
RevInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kA2784151 -1 0 5 -16 24 15 -197 576 -724 -1200 8832 -22801 21293 76440 -408795 922368 -499104 -4446588
RevTransSqrs k=0..n T(n, k) k^2missing0 0 -4 -8 4 32 40 -8 -84 -96 12 160 176 -16 -260 -280 20 384 408 -24 -532 -560 28 704 736 -32 -900
RevPosHalf k=0..n 2^n T(n, k) (1/2)^kA0000271 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
RevNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kA0000271 -2 3 -4 5 -6 7 -8 9 -10 11 -12 13 -14 15 -16 17 -18 19 -20 21 -22 23 -24 25 -26 27 -28 29 -30 31
RevDiagRow1T(n + 1, n)A1421501 0 -2 0 3 0 -4 0 5 0 -6 0 7 0 -8 0 9 0 -10 0 11 0 -12 0 13 0 -14 0 15 0 -16 0 17 0 -18 0 19 0 -20
RevDiagRow2T(n + 2, n)A0002171 0 -3 0 6 0 -10 0 15 0 -21 0 28 0 -36 0 45 0 -55 0 66 0 -78 0 91 0 -105 0 120 0 -136 0 153 0 -171
RevDiagRow3T(n + 3, n)A0002921 0 -4 0 10 0 -20 0 35 0 -56 0 84 0 -120 0 165 0 -220 0 286 0 -364 0 455 0 -560 0 680 0 -816 0 969
RevDiagCol2T(n + 2, 2)A000027-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25 -26 -27
RevPolysee docsmissing1 1 1 1 1 1 1 0 1 1 1 -1 -3 1 1 1 -1 -7 -8 1 1 1 0 5 -17 -15 1 1 1 1 33 55 -31 -24 1 1 1 1 13 208
RevPolyRow1 k=0..1 T(1, k) n^kA0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
RevPolyRow2 k=0..2 T(2, k) n^kA0055631 0 -3 -8 -15 -24 -35 -48 -63 -80 -99 -120 -143 -168 -195 -224 -255 -288 -323 -360 -399 -440 -483
RevPolyRow3 k=0..3 T(3, k) n^kA0562201 -1 -7 -17 -31 -49 -71 -97 -127 -161 -199 -241 -287 -337 -391 -449 -511 -577 -647 -721 -799 -881
RevPolyCol2 k=0..n T(n, k) 2^kA1068531 1 -3 -7 5 33 13 -119 -171 305 989 -231 -4187 -3263 13485 26537 -27403 -133551 -23939 510265
RevPolyCol3 k=0..n T(n, k) 3^kA1460781 1 -8 -17 55 208 -287 -2159 424 19855 16039 -162656 -307007 1156897 3919960 -6492113 -41771753
RevPolyDiag k=0..n T(n, k) n^kmissing1 1 -3 -17 209 1776 -39059 -446879 14216769 204741919 -8534720899 -148220668320 7645684627153
InvTriangleT(n, k), 0 ≤ k ≤ nA0531211 0 1 1 0 1 0 2 0 1 2 0 3 0 1 0 5 0 4 0 1 5 0 9 0 5 0 1 0 14 0 14 0 6 0 1 14 0 28 0 20 0 7 0 1 0 42
InvRevT(n, n - k), 0 ≤ k ≤ nA0521731 1 0 1 0 1 1 0 2 0 1 0 3 0 2 1 0 4 0 5 0 1 0 5 0 9 0 5 1 0 6 0 14 0 14 0 1 0 7 0 20 0 28 0 14 1 0
InvRevInvT-1(n, n - k), 0 ≤ k ≤ nA1625151 1 0 1 0 -1 1 0 -2 0 1 0 -3 0 1 1 0 -4 0 3 0 1 0 -5 0 6 0 -1 1 0 -6 0 10 0 -4 0 1 0 -7 0 15 0 -10
InvAccsee docsmissing1 0 1 1 1 2 0 2 2 3 2 2 5 5 6 0 5 5 9 9 10 5 5 14 14 19 19 20 0 14 14 28 28 34 34 35 14 14 42 42 62
InvAccRevsee docsA1074301 1 1 1 1 2 1 1 3 3 1 1 4 4 6 1 1 5 5 10 10 1 1 6 6 15 15 20 1 1 7 7 21 21 35 35 1 1 8 8 28 28 56
InvAntiDiagsee docsmissing1 0 1 1 0 0 2 2 1 0 0 0 5 5 3 1 0 0 0 0 14 14 9 4 1 0 0 0 0 0 42 42 28 14 5 1 0 0 0 0 0 0 132 132
InvDiffx1T(n, k) (k+1)missing1 0 2 1 0 3 0 4 0 4 2 0 9 0 5 0 10 0 16 0 6 5 0 27 0 25 0 7 0 28 0 56 0 36 0 8 14 0 84 0 100 0 49 0
InvRowSum k=0..n T(n, k)A0014051 1 2 3 6 10 20 35 70 126 252 462 924 1716 3432 6435 12870 24310 48620 92378 184756 352716 705432
InvEvenSum k=0..n T(n, k) even(k)A1268691 0 2 0 6 0 20 0 70 0 252 0 924 0 3432 0 12870 0 48620 0 184756 0 705432 0 2704156 0 10400600 0
InvOddSum k=0..n T(n, k) odd(k)A1383640 1 0 3 0 10 0 35 0 126 0 462 0 1716 0 6435 0 24310 0 92378 0 352716 0 1352078 0 5200300 0 20058300
InvAltSum k=0..n T(n, k) (-1)^kA0014051 -1 2 -3 6 -10 20 -35 70 -126 252 -462 924 -1716 3432 -6435 12870 -24310 48620 -92378 184756
InvAbsSum k=0..n | T(n, k) |A0014051 1 2 3 6 10 20 35 70 126 252 462 924 1716 3432 6435 12870 24310 48620 92378 184756 352716 705432
InvDiagSum k=0..n // 2 T(n - k, k)A1261201 0 2 0 5 0 14 0 42 0 132 0 429 0 1430 0 4862 0 16796 0 58786 0 208012 0 742900 0 2674440 0 9694845
InvAccSum k=0..n j=0..k T(n, j)A2966631 1 4 7 20 38 96 187 444 874 2000 3958 8840 17548 38528 76627 166124 330818 710256 1415650 3016056
InvAccRevSum k=0..n j=0..k T(n, n - j)A0000791 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 1048576
InvRowLcmLcm k=0..n | T(n, k) | > 1missing1 1 1 2 6 20 45 42 140 3024 3150 660 207900 34320 21021 450450 2522520 13613600 192972780 4232592
InvRowGcdGcd k=0..n | T(n, k) | > 1A2973821 1 1 2 1 1 1 2 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
InvRowMaxMax k=0..n | T(n, k) |A1014611 1 1 2 3 5 9 14 28 48 90 165 297 572 1001 2002 3640 7072 13260 25194 48450 90440 177650 326876
InvColMiddleT(n, n // 2)missing1 0 0 2 3 0 0 14 20 0 0 110 154 0 0 910 1260 0 0 7752 10659 0 0 67298 92092 0 0 592020 807300 0 0
InvCentralET(2 n, n)A1265961 0 3 0 20 0 154 0 1260 0 10659 0 92092 0 807300 0 7152444 0 63882940 0 574221648 0 5188082354 0
InvCentralOT(2 n + 1, n)A3591080 2 0 14 0 110 0 910 0 7752 0 67298 0 592020 0 5259150 0 47071640 0 423830264 0 3834669566 0
InvColLeftT(n, 0)A1261201 0 1 0 2 0 5 0 14 0 42 0 132 0 429 0 1430 0 4862 0 16796 0 58786 0 208012 0 742900 0 2674440 0
InvColRightT(n, n)A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
InvBinConv k=0..n C(n, k) T(n, k)A3445001 1 2 7 21 66 216 715 2395 8101 27598 94568 325612 1125632 3904512 13583195 47373255 165585883
InvInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kA3445001 1 2 7 21 66 216 715 2395 8101 27598 94568 325612 1125632 3904512 13583195 47373255 165585883
InvTransNat0 k=0..n T(n, k) kA0456210 1 2 5 10 22 44 93 186 386 772 1586 3172 6476 12952 26333 52666 106762 213524 431910 863820
InvTransNat1 k=0..n T(n, k) (k + 1)A0000791 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 1048576
InvTransSqrs k=0..n T(n, k) k^2missing0 1 4 11 28 66 152 339 748 1622 3496 7454 15832 33380 70192 146819 306508 637326 1323272 2738922
InvPosHalf k=0..n 2^n T(n, k) (1/2)^kA1217241 1 5 9 45 97 485 1145 5725 14289 71445 185193 925965 2467137 12335685 33563481 167817405 464221105
InvNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kA1217241 1 5 9 45 97 485 1145 5725 14289 71445 185193 925965 2467137 12335685 33563481 167817405 464221105
InvDiagRow2T(n + 2, n)A0000271 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
InvDiagCol1T(n + 1, 1)A1261201 0 2 0 5 0 14 0 42 0 132 0 429 0 1430 0 4862 0 16796 0 58786 0 208012 0 742900 0 2674440 0 9694845
InvDiagCol2T(n + 2, 2)A0002451 0 3 0 9 0 28 0 90 0 297 0 1001 0 3432 0 11934 0 41990 0 149226 0 534888 0 1931540 0 7020405 0
InvDiagCol3T(n + 3, 3)A0020571 0 4 0 14 0 48 0 165 0 572 0 2002 0 7072 0 25194 0 90440 0 326876 0 1188640 0 4345965 0 15967980 0
InvPolysee docsmissing1 0 1 1 1 1 0 2 2 1 2 3 5 3 1 0 6 12 10 4 1 5 10 30 33 17 5 1 0 20 74 110 72 26 6 1 14 35 185 366
InvPolyRow1 k=0..1 T(1, k) n^kA0000270 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
InvPolyRow2 k=0..2 T(2, k) n^kA0025221 2 5 10 17 26 37 50 65 82 101 122 145 170 197 226 257 290 325 362 401 442 485 530 577 626 677 730
InvPolyRow3 k=0..3 T(3, k) n^kA0546020 3 12 33 72 135 228 357 528 747 1020 1353 1752 2223 2772 3405 4128 4947 5868 6897 8040 9303 10692
InvPolyCol2 k=0..n T(n, k) 2^kA0543411 2 5 12 30 74 185 460 1150 2868 7170 17904 44760 111834 279585 698748 1746870 4366460 10916150
InvPolyCol3 k=0..n T(n, k) 3^kA1269311 3 10 33 110 366 1220 4065 13550 45162 150540 501786 1672620 5575356 18584520 61948257 206494190
InvPolyDiag k=0..n T(n, k) n^kmissing1 1 5 33 306 3650 53465 929285 18695950 427313934 10935759042 309766519722 9620876053140
Inv:RevTriangleT(n, k), 0 ≤ k ≤ nA0521731 1 0 1 0 1 1 0 2 0 1 0 3 0 2 1 0 4 0 5 0 1 0 5 0 9 0 5 1 0 6 0 14 0 14 0 1 0 7 0 20 0 28 0 14 1 0
Inv:RevRevT(n, n - k), 0 ≤ k ≤ nA0531211 0 1 1 0 1 0 2 0 1 2 0 3 0 1 0 5 0 4 0 1 5 0 9 0 5 0 1 0 14 0 14 0 6 0 1 14 0 28 0 20 0 7 0 1 0 42
Inv:RevInvRev(T(n, n - k))-1, 0 ≤ k ≤ nA1685611 0 1 -1 0 1 0 -2 0 1 1 0 -3 0 1 0 3 0 -4 0 1 -1 0 6 0 -5 0 1 0 -4 0 10 0 -6 0 1 1 0 -10 0 15 0 -7
Inv:RevAccsee docsA1074301 1 1 1 1 2 1 1 3 3 1 1 4 4 6 1 1 5 5 10 10 1 1 6 6 15 15 20 1 1 7 7 21 21 35 35 1 1 8 8 28 28 56
Inv:RevAccRevsee docsmissing1 0 1 1 1 2 0 2 2 3 2 2 5 5 6 0 5 5 9 9 10 5 5 14 14 19 19 20 0 14 14 28 28 34 34 35 14 14 42 42 62
Inv:RevAntiDiagsee docsmissing1 1 1 0 1 0 1 0 1 1 0 2 1 0 3 0 1 0 4 0 1 0 5 0 2 1 0 6 0 5 1 0 7 0 9 0 1 0 8 0 14 0 1 0 9 0 20 0 5
Inv:RevDiffx1T(n, k) (k+1)missing1 1 0 1 0 3 1 0 6 0 1 0 9 0 10 1 0 12 0 25 0 1 0 15 0 45 0 35 1 0 18 0 70 0 98 0 1 0 21 0 100 0 196
Inv:RevRowSum k=0..n T(n, k)A0014051 1 2 3 6 10 20 35 70 126 252 462 924 1716 3432 6435 12870 24310 48620 92378 184756 352716 705432
Inv:RevEvenSum k=0..n T(n, k) even(k)A0014051 1 2 3 6 10 20 35 70 126 252 462 924 1716 3432 6435 12870 24310 48620 92378 184756 352716 705432
Inv:RevAltSum k=0..n T(n, k) (-1)^kA0014051 1 2 3 6 10 20 35 70 126 252 462 924 1716 3432 6435 12870 24310 48620 92378 184756 352716 705432
Inv:RevAbsSum k=0..n | T(n, k) |A0014051 1 2 3 6 10 20 35 70 126 252 462 924 1716 3432 6435 12870 24310 48620 92378 184756 352716 705432
Inv:RevDiagSum k=0..n // 2 T(n - k, k)A2741121 1 1 1 2 3 4 5 8 12 17 23 35 52 75 105 157 232 337 480 712 1049 1529 2199 3248 4777 6976 10092
Inv:RevAccSum k=0..n j=0..k T(n, j)A0000791 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 1048576
Inv:RevAccRevSum k=0..n j=0..k T(n, n - j)A2966631 1 4 7 20 38 96 187 444 874 2000 3958 8840 17548 38528 76627 166124 330818 710256 1415650 3016056
Inv:RevRowLcmLcm k=0..n | T(n, k) | > 1missing1 1 1 2 6 20 45 42 140 3024 3150 660 207900 34320 21021 450450 2522520 13613600 192972780 4232592
Inv:RevRowGcdGcd k=0..n | T(n, k) | > 1A2973821 1 1 2 1 1 1 2 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Inv:RevRowMaxMax k=0..n | T(n, k) |A1014611 1 1 2 3 5 9 14 28 48 90 165 297 572 1001 2002 3640 7072 13260 25194 48450 90440 177650 326876
Inv:RevColMiddleT(n, n // 2)missing1 1 0 0 3 4 0 0 20 27 0 0 154 208 0 0 1260 1700 0 0 10659 14364 0 0 92092 123970 0 0 807300 1085760
Inv:RevCentralET(2 n, n)A1265961 0 3 0 20 0 154 0 1260 0 10659 0 92092 0 807300 0 7152444 0 63882940 0 574221648 0 5188082354 0
Inv:RevCentralOT(2 n + 1, n)A0260051 0 4 0 27 0 208 0 1700 0 14364 0 123970 0 1085760 0 9612108 0 85795600 0 770755843 0 6960408624 0
Inv:RevColLeftT(n, 0)A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Inv:RevColRightT(n, n)A1261201 0 1 0 2 0 5 0 14 0 42 0 132 0 429 0 1430 0 4862 0 16796 0 58786 0 208012 0 742900 0 2674440 0
Inv:RevBinConv k=0..n C(n, k) T(n, k)A3445001 1 2 7 21 66 216 715 2395 8101 27598 94568 325612 1125632 3904512 13583195 47373255 165585883
Inv:RevInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kA3445001 -1 2 -7 21 -66 216 -715 2395 -8101 27598 -94568 325612 -1125632 3904512 -13583195 47373255
Inv:RevTransNat0 k=0..n T(n, k) kmissing0 0 2 4 14 28 76 152 374 748 1748 3496 7916 15832 35096 70192 153254 306508 661636 1323272 2831300
Inv:RevTransNat1 k=0..n T(n, k) (k + 1)A2966631 1 4 7 20 38 96 187 444 874 2000 3958 8840 17548 38528 76627 166124 330818 710256 1415650 3016056
Inv:RevTransSqrs k=0..n T(n, k) k^2missing0 0 4 8 44 96 344 752 2252 4880 13256 28464 72760 155008 380208 804704 1915916 4033008 9389288
Inv:RevPosHalf k=0..n 2^n T(n, k) (1/2)^kA0543411 2 5 12 30 74 185 460 1150 2868 7170 17904 44760 111834 279585 698748 1746870 4366460 10916150
Inv:RevNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kA0543411 -2 5 -12 30 -74 185 -460 1150 -2868 7170 -17904 44760 -111834 279585 -698748 1746870 -4366460
Inv:RevDiagRow1T(n + 1, n)A1261201 0 2 0 5 0 14 0 42 0 132 0 429 0 1430 0 4862 0 16796 0 58786 0 208012 0 742900 0 2674440 0 9694845
Inv:RevDiagRow2T(n + 2, n)A0002451 0 3 0 9 0 28 0 90 0 297 0 1001 0 3432 0 11934 0 41990 0 149226 0 534888 0 1931540 0 7020405 0
Inv:RevDiagRow3T(n + 3, n)A0020571 0 4 0 14 0 48 0 165 0 572 0 2002 0 7072 0 25194 0 90440 0 326876 0 1188640 0 4345965 0 15967980 0
Inv:RevDiagCol2T(n + 2, 2)A0000271 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
Inv:RevPolysee docsmissing1 1 1 1 1 1 1 2 1 1 1 3 5 1 1 1 6 9 10 1 1 1 10 45 19 17 1 1 1 20 97 190 33 26 1 1 1 35 485 442 561
Inv:RevPolyRow1 k=0..1 T(1, k) n^kA0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Inv:RevPolyRow2 k=0..2 T(2, k) n^kA0025221 2 5 10 17 26 37 50 65 82 101 122 145 170 197 226 257 290 325 362 401 442 485 530 577 626 677 730
Inv:RevPolyRow3 k=0..3 T(3, k) n^kA0583311 3 9 19 33 51 73 99 129 163 201 243 289 339 393 451 513 579 649 723 801 883 969 1059 1153 1251
Inv:RevPolyCol2 k=0..n T(n, k) 2^kA1217241 1 5 9 45 97 485 1145 5725 14289 71445 185193 925965 2467137 12335685 33563481 167817405 464221105
Inv:RevPolyCol3 k=0..n T(n, k) 3^kA1217251 1 10 19 190 442 4420 11395 113950 312814 3128140 8960878 89608780 264735892 2647358920 8006545891
Inv:RevPolyDiag k=0..n T(n, k) n^kmissing1 1 5 19 561 3226 245125 1680995 242303425 1833649246 429075350901 3459304779822 1195433422273585
 << TableSourceSimilarsIndex >> 

Note: The A-numbers are based on a finite number of numerical comparisons. They ignore the sign and the OEIS-offset. Sometimes they differ in the first few values. In such cases, we consider our version to be the better one because it has a common formula as a root. Since the offset of all triangles is 0 also the offset of all sequences is 0.