CHARLIER[0] 1
[1] 1, -1
[2] 1, -3, 1
[3] 1, -6, 8, -1
[4] 1, -10, 29, -24, 1
[5] 1, -15, 75, -145, 89, -1

      OEIS Similars: A046716, A094816

↕ Type↕ Trait↕ Anum↕ Sequence
StdTriangleT(n, k), 0 ≤ k ≤ nA0467161 1 -1 1 -3 1 1 -6 8 -1 1 -10 29 -24 1 1 -15 75 -145 89 -1 1 -21 160 -545 814 -415 1 1 -28 301
StdRevT(n, n - k), 0 ≤ k ≤ nA0948161 -1 1 1 -3 1 -1 8 -6 1 1 -24 29 -10 1 -1 89 -145 75 -15 1 1 -415 814 -545 160 -21 1 -1 2372 -5243
StdInvT-1(n, k), 0 ≤ k ≤ nmissing1 -1 1 -4 3 1 25 -18 -8 1 705 -509 -221 24 1 -58836 42481 18434 -1991 -89 1 -24976567 18033672
StdRevInvT-1(n, n - k), 0 ≤ k ≤ nmissing1 1 -1 1 3 -4 1 -8 -18 25 1 24 -221 -509 705 1 -89 -1991 18434 42481 -58836 1 415 -37749 -845256
StdInvRev(T(n, n - k))-1, 0 ≤ k ≤ nA0490201 1 1 2 3 1 5 10 6 1 15 37 31 10 1 52 151 160 75 15 1 203 674 856 520 155 21 1 877 3263 4802 3556
StdAccsee docsmissing1 1 0 1 -2 -1 1 -5 3 2 1 -9 20 -4 -3 1 -14 61 -84 5 4 1 -20 140 -405 409 -6 -5 1 -27 274 -1301 2878
StdAccRevsee docsmissing1 -1 0 1 -2 -1 -1 7 1 2 1 -23 6 -4 -3 -1 88 -57 18 3 4 1 -414 400 -145 15 -6 -5 -1 2371 -2872 1307
StdAntiDiagsee docsmissing1 1 1 -1 1 -3 1 -6 1 1 -10 8 1 -15 29 -1 1 -21 75 -24 1 -28 160 -145 1 1 -36 301 -545 89 1 -45 518
StdDiffx1T(n, k) (k+1)missing1 1 -2 1 -6 3 1 -12 24 -4 1 -20 87 -96 5 1 -30 225 -580 445 -6 1 -42 480 -2180 4070 -2490 7 1 -56
StdRowSum k=0..n T(n, k)A0000271 0 -1 2 -3 4 -5 6 -7 8 -9 10 -11 12 -13 14 -15 16 -17 18 -19 20 -21 22 -23 24 -25 26 -27 28 -29 30
StdEvenSum k=0..n T(n, k) even(k)missing1 1 2 9 31 165 976 6853 54797 493209 4932046 54252561 651030667 8463398749 118487582396
StdOddSum k=0..n T(n, k) odd(k)missing0 -1 -3 -7 -34 -161 -981 -6847 -54804 -493201 -4932055 -54252551 -651030678 -8463398737
StdAltSum k=0..n T(n, k) (-1)^kA0005221 2 5 16 65 326 1957 13700 109601 986410 9864101 108505112 1302061345 16926797486 236975164805
StdAbsSum k=0..n | T(n, k) |A0005221 2 5 16 65 326 1957 13700 109601 986410 9864101 108505112 1302061345 16926797486 236975164805
StdDiagSum k=0..n // 2 T(n - k, k)missing1 1 0 -2 -4 -1 14 31 -11 -190 -288 708 3353 790 -26025 -55011 140638 803458 22896 -8787267
StdAccSum k=0..n j=0..k T(n, j)missing1 1 -2 1 5 -27 114 -527 2897 -18967 144638 -1256719 12232901 -131714195 1553256834 -19901596959
StdAccRevSum k=0..n j=0..k T(n, n - j)missing1 -1 -2 9 -23 55 -154 581 -2967 19055 -144746 1256849 -12233055 131714375 -1553257042 19901597197
StdRowLcmLcm k=0..n | T(n, k) | > 1missing1 1 3 24 3480 193575 12371953440 23944104128700 13143426103939866840 4369249502814657492580553550
StdRowGcdGcd k=0..n | T(n, k) | > 1A1749651 1 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
StdRowMaxMax k=0..n | T(n, k) |missing1 1 3 8 29 145 814 5243 38618 321690 3197210 34975061 415371726 5328246417 73470506291
StdColMiddleT(n, n // 2)missing1 1 -3 -6 29 75 -545 -1575 15659 47775 -606417 -1908060 29515079 94715621 -1728893595 -5624498880
StdCentralET(2 n, n)missing1 -3 29 -545 15659 -606417 29515079 -1728893595 118354862483 -9269734508177 817364855067111
StdCentralOT(2 n + 1, n)missing1 -6 75 -1575 47775 -1908060 94715621 -5624498880 388925316923 -30696807463322 2723264984008569
StdColLeftT(n, 0)A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
StdBinConv k=0..n C(n, k) T(n, k)missing1 0 -4 6 40 -330 1096 3766 -103900 1132188 -8216412 17731692 781174186 -20219601610 339532585432
StdInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kmissing1 -2 8 -44 312 -2722 28128 -334616 4487780 -66808844 1090900516 -19356077776 370378425354
StdTransNat0 k=0..n T(n, k) kmissing0 -1 -1 7 -20 51 -149 575 -2960 19047 -144737 1256839 -12233044 131714363 -1553257029 19901597183
StdTransNat1 k=0..n T(n, k) (k + 1)missing1 -1 -2 9 -23 55 -154 581 -2967 19055 -144746 1256849 -12233055 131714375 -1553257042 19901597197
StdTransSqrs k=0..n T(n, k) k^2missing0 -1 1 17 -94 379 -1601 8133 -50660 374967 -3192971 30602153 -325296434 3794061907 -48145834621
StdPosHalf k=0..n 2^n T(n, k) (1/2)^kA0283871 1 -1 -1 5 -11 19 -29 41 -55 71 -89 109 -131 155 -181 209 -239 271 -305 341 -379 419 -461 505 -551
StdNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kA0013391 -3 11 -49 261 -1631 11743 -95901 876809 -8877691 98641011 -1193556233 15624736141 -220048367319
StdDiagRow1T(n + 1, n)A0021041 -3 8 -24 89 -415 2372 -16072 125673 -1112083 10976184 -119481296 1421542641 -18348340127
StdDiagRow2T(n + 2, n)missing1 -6 29 -145 814 -5243 38618 -321690 2995011 -30840304 348114711 -4274888891 56744495872
StdDiagRow3T(n + 3, n)missing1 -10 75 -545 4179 -34860 318926 -3197210 34975061 -415371726 5328246417 -73470506291 1084206640399
StdDiagCol1T(n + 1, 1)A000217-1 -3 -6 -10 -15 -21 -28 -36 -45 -55 -66 -78 -91 -105 -120 -136 -153 -171 -190 -210 -231 -253 -276
StdDiagCol2T(n + 2, 2)A2903121 8 29 75 160 301 518 834 1275 1870 2651 3653 4914 6475 8380 10676 13413 16644 20425 24815 29876
StdDiagCol3T(n + 3, 3)A290313-1 -24 -145 -545 -1575 -3836 -8274 -16290 -29865 -51700 -85371 -135499 -207935 -309960 -450500
StdPolysee docsmissing1 1 1 1 0 1 1 -1 -1 1 1 2 -1 -2 1 1 -3 13 1 -3 1 1 4 -79 28 5 -4 1 1 -5 503 -335 41 11 -5 1 1 6
StdPolyRow1 k=0..1 T(1, k) n^kA0000271 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25 -26
StdPolyRow2 k=0..2 T(2, k) n^kA0283871 -1 -1 1 5 11 19 29 41 55 71 89 109 131 155 181 209 239 271 305 341 379 419 461 505 551 599 649
StdPolyRow3 k=0..3 T(3, k) n^kmissing1 2 13 28 41 46 37 8 -47 -134 -259 -428 -647 -922 -1259 -1664 -2143 -2702 -3347 -4084 -4919 -5858
StdPolyCol2 k=0..n T(n, k) 2^kmissing1 -1 -1 13 -79 503 -3953 39317 -479071 6886063 -113588641 2109918941 -43530235439 986979776807
StdPolyCol3 k=0..n T(n, k) 3^kmissing1 -2 1 28 -335 3682 -47519 751552 -14291999 317480230 -8049274751 229003571332 -7218246796271
StdPolyDiag k=0..n T(n, k) n^kmissing1 0 -1 28 -855 36176 -2237525 199628892 -24645257119 4030951424320 -842793494333049
AltTriangleT(n, k), 0 ≤ k ≤ nA0467161 1 1 1 3 1 1 6 8 1 1 10 29 24 1 1 15 75 145 89 1 1 21 160 545 814 415 1 1 28 301 1575 4179 5243
AltRevT(n, n - k), 0 ≤ k ≤ nA0948161 1 1 1 3 1 1 8 6 1 1 24 29 10 1 1 89 145 75 15 1 1 415 814 545 160 21 1 1 2372 5243 4179 1575 301
AltInvT-1(n, k), 0 ≤ k ≤ nmissing1 -1 1 2 -3 1 -11 18 -8 1 215 -355 163 -24 1 -17676 29195 -13422 1991 -89 1 7166225 -11836306
AltRevInvT-1(n, n - k), 0 ≤ k ≤ nmissing1 1 -1 1 -3 2 1 -8 18 -11 1 -24 163 -355 215 1 -89 1991 -13422 29195 -17676 1 -415 36121 -807274
AltInvRev(T(n, n - k))-1, 0 ≤ k ≤ nA0490201 -1 1 2 -3 1 -5 10 -6 1 15 -37 31 -10 1 -52 151 -160 75 -15 1 203 -674 856 -520 155 -21 1 -877
AltAccsee docsmissing1 1 2 1 4 5 1 7 15 16 1 11 40 64 65 1 16 91 236 325 326 1 22 182 727 1541 1956 1957 1 29 330 1905
AltAccRevsee docsmissing1 1 2 1 4 5 1 9 15 16 1 25 54 64 65 1 90 235 310 325 326 1 416 1230 1775 1935 1956 1957 1 2373 7616
AltAntiDiagsee docsmissing1 1 1 1 1 3 1 6 1 1 10 8 1 15 29 1 1 21 75 24 1 28 160 145 1 1 36 301 545 89 1 45 518 1575 814 1 1
AltDiffx1T(n, k) (k+1)missing1 1 2 1 6 3 1 12 24 4 1 20 87 96 5 1 30 225 580 445 6 1 42 480 2180 4070 2490 7 1 56 903 6300 20895
AltRowSum k=0..n T(n, k)A0005221 2 5 16 65 326 1957 13700 109601 986410 9864101 108505112 1302061345 16926797486 236975164805
AltEvenSum k=0..n T(n, k) even(k)missing1 1 2 9 31 165 976 6853 54797 493209 4932046 54252561 651030667 8463398749 118487582396
AltOddSum k=0..n T(n, k) odd(k)missing0 1 3 7 34 161 981 6847 54804 493201 4932055 54252551 651030678 8463398737 118487582409
AltAltSum k=0..n T(n, k) (-1)^kA0000271 0 -1 2 -3 4 -5 6 -7 8 -9 10 -11 12 -13 14 -15 16 -17 18 -19 20 -21 22 -23 24 -25 26 -27 28 -29 30
AltAbsSum k=0..n | T(n, k) |A0005221 2 5 16 65 326 1957 13700 109601 986410 9864101 108505112 1302061345 16926797486 236975164805
AltDiagSum k=0..n // 2 T(n - k, k)missing1 1 2 4 8 19 46 121 335 972 2954 9320 30519 103246 360271 1293577 4771120 18047760 69916944
AltAccSum k=0..n j=0..k T(n, j)missing1 3 10 39 181 995 6386 47075 392673 3659731 37709394 425779519 5228835525 69396404467 989898002666
AltAccRevSum k=0..n j=0..k T(n, n - j)missing1 3 10 41 209 1287 9270 76225 703337 7190779 80659818 984786937 13000023305 184505557823
AltRowLcmLcm k=0..n | T(n, k) | > 1missing1 1 3 24 3480 193575 12371953440 23944104128700 13143426103939866840 4369249502814657492580553550
AltRowGcdGcd k=0..n | T(n, k) | > 1A1749651 1 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
AltRowMaxMax k=0..n | T(n, k) |missing1 1 3 8 29 145 814 5243 38618 321690 3197210 34975061 415371726 5328246417 73470506291
AltColMiddleT(n, n // 2)missing1 1 3 6 29 75 545 1575 15659 47775 606417 1908060 29515079 94715621 1728893595 5624498880
AltCentralET(2 n, n)missing1 3 29 545 15659 606417 29515079 1728893595 118354862483 9269734508177 817364855067111
AltCentralOT(2 n + 1, n)missing1 6 75 1575 47775 1908060 94715621 5624498880 388925316923 30696807463322 2723264984008569
AltColLeftT(n, 0)A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
AltColRightT(n, n)A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
AltBinConv k=0..n C(n, k) T(n, k)missing1 2 8 44 312 2722 28128 334616 4487780 66808844 1090900516 19356077776 370378425354 7595548591334
AltInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kmissing1 0 -4 -6 40 330 1096 -3766 -103900 -1132188 -8216412 -17731692 781174186 20219601610 339532585432
AltTransNat0 k=0..n T(n, k) kmissing0 1 5 25 144 961 7313 62525 593736 6204369 70795717 876281825 11697961960 167578760337
AltTransNat1 k=0..n T(n, k) (k + 1)missing1 3 10 41 209 1287 9270 76225 703337 7190779 80659818 984786937 13000023305 184505557823
AltTransSqrs k=0..n T(n, k) k^2missing0 1 7 47 358 3069 29001 298787 3336516 40209321 520905235 7227149335 107006776922 1685173120357
AltPosHalf k=0..n 2^n T(n, k) (1/2)^kA0013391 3 11 49 261 1631 11743 95901 876809 8877691 98641011 1193556233 15624736141 220048367319
AltNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kA0283871 -1 -1 1 5 11 19 29 41 55 71 89 109 131 155 181 209 239 271 305 341 379 419 461 505 551 599 649
AltDiagRow1T(n + 1, n)A0021041 3 8 24 89 415 2372 16072 125673 1112083 10976184 119481296 1421542641 18348340127 255323504932
AltDiagRow2T(n + 2, n)missing1 6 29 145 814 5243 38618 321690 2995011 30840304 348114711 4274888891 56744495872 809667333733
AltDiagRow3T(n + 3, n)missing1 10 75 545 4179 34860 318926 3197210 34975061 415371726 5328246417 73470506291 1084206640399
AltDiagCol1T(n + 1, 1)A0002171 3 6 10 15 21 28 36 45 55 66 78 91 105 120 136 153 171 190 210 231 253 276 300 325 351 378 406 435
AltDiagCol2T(n + 2, 2)A2903121 8 29 75 160 301 518 834 1275 1870 2651 3653 4914 6475 8380 10676 13413 16644 20425 24815 29876
AltDiagCol3T(n + 3, 3)A2903131 24 145 545 1575 3836 8274 16290 29865 51700 85371 135499 207935 309960 450500 640356 892449
AltPolysee docsmissing1 1 1 1 2 1 1 5 3 1 1 16 11 4 1 1 65 53 19 5 1 1 326 345 118 29 6 1 1 1957 2947 1021 217 41 7 1 1
AltPolyRow1 k=0..1 T(1, k) n^kA0000271 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
AltPolyRow2 k=0..2 T(2, k) n^kA0283871 5 11 19 29 41 55 71 89 109 131 155 181 209 239 271 305 341 379 419 461 505 551 599 649 701 755
AltPolyRow3 k=0..3 T(3, k) n^kmissing1 16 53 118 217 356 541 778 1073 1432 1861 2366 2953 3628 4397 5266 6241 7328 8533 9862 11321 12916
AltPolyCol2 k=0..n T(n, k) 2^kA0813671 3 11 53 345 2947 31411 400437 5927921 99816515 1882741659 39310397557 899919305929 22410922177347
AltPolyCol3 k=0..n T(n, k) 3^kA0948221 4 19 118 1021 12088 183727 3389242 73156249 1804349548 50009179819 1537920654526 51952155415381
AltPolyDiag k=0..n T(n, k) n^kmissing1 2 11 118 2297 78826 4452247 378595022 45054110369 7128277455538 1445438021648051
RevTriangleT(n, k), 0 ≤ k ≤ nA0948161 -1 1 1 -3 1 -1 8 -6 1 1 -24 29 -10 1 -1 89 -145 75 -15 1 1 -415 814 -545 160 -21 1 -1 2372 -5243
RevInvT-1(n, k), 0 ≤ k ≤ nA0490201 1 1 2 3 1 5 10 6 1 15 37 31 10 1 52 151 160 75 15 1 203 674 856 520 155 21 1 877 3263 4802 3556
RevRevInvT-1(n, n - k), 0 ≤ k ≤ nmissing1 1 1 1 3 2 1 6 10 5 1 10 31 37 15 1 15 75 160 151 52 1 21 155 520 856 674 203 1 28 287 1400 3556
RevInvRev(T(n, n - k))-1, 0 ≤ k ≤ nmissing1 -1 1 -4 3 1 25 -18 -8 1 705 -509 -221 24 1 -58836 42481 18434 -1991 -89 1 -24976567 18033672
RevAccsee docsmissing1 -1 0 1 -2 -1 -1 7 1 2 1 -23 6 -4 -3 -1 88 -57 18 3 4 1 -414 400 -145 15 -6 -5 -1 2371 -2872 1307
RevAccRevsee docsmissing1 1 0 1 -2 -1 1 -5 3 2 1 -9 20 -4 -3 1 -14 61 -84 5 4 1 -20 140 -405 409 -6 -5 1 -27 274 -1301 2878
RevAntiDiagsee docsmissing1 -1 1 1 -1 -3 1 8 1 -1 -24 -6 1 89 29 1 -1 -415 -145 -10 1 2372 814 75 1 -1 -16072 -5243 -545 -15
RevDiffx1T(n, k) (k+1)missing1 -1 2 1 -6 3 -1 16 -18 4 1 -48 87 -40 5 -1 178 -435 300 -75 6 1 -830 2442 -2180 800 -126 7 -1 4744
RevRowSum k=0..n T(n, k)A0000271 0 -1 2 -3 4 -5 6 -7 8 -9 10 -11 12 -13 14 -15 16 -17 18 -19 20 -21 22 -23 24 -25 26 -27 28 -29 30
RevEvenSum k=0..n T(n, k) even(k)A0091321 -1 2 -7 31 -161 976 -6847 54797 -493201 4932046 -54252551 651030667 -8463398737 118487582396
RevOddSum k=0..n T(n, k) odd(k)A0095780 1 -3 9 -34 165 -981 6853 -54804 493209 -4932055 54252561 -651030678 8463398749 -118487582409
RevAltSum k=0..n T(n, k) (-1)^kA0005221 -2 5 -16 65 -326 1957 -13700 109601 -986410 9864101 -108505112 1302061345 -16926797486
RevAbsSum k=0..n | T(n, k) |A0005221 2 5 16 65 326 1957 13700 109601 986410 9864101 108505112 1302061345 16926797486 236975164805
RevDiagSum k=0..n // 2 T(n - k, k)missing1 -1 2 -4 10 -31 120 -571 3263 -21876 168632 -1470230 14306083 -153685866 1806490613 -23060689727
RevAccSum k=0..n j=0..k T(n, j)missing1 -1 -2 9 -23 55 -154 581 -2967 19055 -144746 1256849 -12233055 131714375 -1553257042 19901597197
RevAccRevSum k=0..n j=0..k T(n, n - j)missing1 1 -2 1 5 -27 114 -527 2897 -18967 144638 -1256719 12232901 -131714195 1553256834 -19901596959
RevRowLcmLcm k=0..n | T(n, k) | > 1missing1 1 3 24 3480 193575 12371953440 23944104128700 13143426103939866840 4369249502814657492580553550
RevRowGcdGcd k=0..n | T(n, k) | > 1A1749651 1 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
RevRowMaxMax k=0..n | T(n, k) |missing1 1 3 8 29 145 814 5243 38618 321690 3197210 34975061 415371726 5328246417 73470506291
RevColMiddleT(n, n // 2)missing1 -1 -3 8 29 -145 -545 4179 15659 -163191 -606417 8002742 29515079 -471635879 -1728893595
RevCentralET(2 n, n)missing1 -3 29 -545 15659 -606417 29515079 -1728893595 118354862483 -9269734508177 817364855067111
RevCentralOT(2 n + 1, n)missing-1 8 -145 4179 -163191 8002742 -471635879 32444191208 -2551072567043 225666809131400
RevColRightT(n, n)A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
RevBinConv k=0..n C(n, k) T(n, k)missing1 0 -4 6 40 -330 1096 3766 -103900 1132188 -8216412 17731692 781174186 -20219601610 339532585432
RevInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kmissing1 2 8 44 312 2722 28128 334616 4487780 66808844 1090900516 19356077776 370378425354 7595548591334
RevTransNat0 k=0..n T(n, k) kmissing0 1 -1 -1 8 -31 119 -533 2904 -18975 144647 -1256729 12232912 -131714207 1553256847 -19901596973
RevTransNat1 k=0..n T(n, k) (k + 1)missing1 1 -2 1 5 -27 114 -527 2897 -18967 144638 -1256719 12232901 -131714195 1553256834 -19901596959
RevTransSqrs k=0..n T(n, k) k^2missing0 1 1 -7 18 -31 7 377 -3748 32769 -299131 2952905 -31704962 369490497 -4654640357 63098611721
RevPosHalf k=0..n 2^n T(n, k) (1/2)^kmissing1 -1 -1 13 -79 503 -3953 39317 -479071 6886063 -113588641 2109918941 -43530235439 986979776807
RevNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kA0813671 3 11 53 345 2947 31411 400437 5927921 99816515 1882741659 39310397557 899919305929 22410922177347
RevDiagRow1T(n + 1, n)A000217-1 -3 -6 -10 -15 -21 -28 -36 -45 -55 -66 -78 -91 -105 -120 -136 -153 -171 -190 -210 -231 -253 -276
RevDiagRow2T(n + 2, n)A2903121 8 29 75 160 301 518 834 1275 1870 2651 3653 4914 6475 8380 10676 13413 16644 20425 24815 29876
RevDiagRow3T(n + 3, n)A290313-1 -24 -145 -545 -1575 -3836 -8274 -16290 -29865 -51700 -85371 -135499 -207935 -309960 -450500
RevDiagCol1T(n + 1, 1)A0021041 -3 8 -24 89 -415 2372 -16072 125673 -1112083 10976184 -119481296 1421542641 -18348340127
RevDiagCol2T(n + 2, 2)missing1 -6 29 -145 814 -5243 38618 -321690 2995011 -30840304 348114711 -4274888891 56744495872
RevDiagCol3T(n + 3, 3)missing1 -10 75 -545 4179 -34860 318926 -3197210 34975061 -415371726 5328246417 -73470506291 1084206640399
RevPolysee docsA2536671 -1 1 1 0 1 -1 -1 1 1 1 2 -1 2 1 -1 -3 -1 1 3 1 1 4 5 -4 5 4 1 -1 -5 -11 1 -1 11 5 1 1 6 19 14 -15
RevPolyRow1 k=0..1 T(1, k) n^kA000027-1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
RevPolyRow2 k=0..2 T(2, k) n^kA0283871 -1 -1 1 5 11 19 29 41 55 71 89 109 131 155 181 209 239 271 305 341 379 419 461 505 551 599 649
RevPolyRow3 k=0..3 T(3, k) n^kmissing-1 2 -1 -4 -1 14 47 104 191 314 479 692 959 1286 1679 2144 2687 3314 4031 4844 5759 6782 7919 9176
RevPolyCol2 k=0..n T(n, k) 2^kA0283871 1 -1 -1 5 -11 19 -29 41 -55 71 -89 109 -131 155 -181 209 -239 271 -305 341 -379 419 -461 505 -551
RevPolyCol3 k=0..n T(n, k) 3^kmissing1 2 1 -4 1 14 -47 104 -191 314 -479 692 -959 1286 -1679 2144 -2687 3314 -4031 4844 -5759 6782 -7919
RevPolyDiag k=0..n T(n, k) n^kA0099401 0 -1 -4 -15 -56 -185 -204 6209 112400 1520271 19165420 237686449 2944654296 36392001815
Rev:InvTriangleT(n, k), 0 ≤ k ≤ nA0490201 1 1 2 3 1 5 10 6 1 15 37 31 10 1 52 151 160 75 15 1 203 674 856 520 155 21 1 877 3263 4802 3556
Rev:InvRevT(n, n - k), 0 ≤ k ≤ nmissing1 1 1 1 3 2 1 6 10 5 1 10 31 37 15 1 15 75 160 151 52 1 21 155 520 856 674 203 1 28 287 1400 3556
Rev:InvInvT-1(n, k), 0 ≤ k ≤ nA0948161 -1 1 1 -3 1 -1 8 -6 1 1 -24 29 -10 1 -1 89 -145 75 -15 1 1 -415 814 -545 160 -21 1 -1 2372 -5243
Rev:InvRevInvT-1(n, n - k), 0 ≤ k ≤ nA0467161 1 -1 1 -3 1 1 -6 8 -1 1 -10 29 -24 1 1 -15 75 -145 89 -1 1 -21 160 -545 814 -415 1 1 -28 301
Rev:InvAccsee docsmissing1 1 2 2 5 6 5 15 21 22 15 52 83 93 94 52 203 363 438 453 454 203 877 1733 2253 2408 2429 2430 877
Rev:InvAccRevsee docsmissing1 1 2 1 4 6 1 7 17 22 1 11 42 79 94 1 16 91 251 402 454 1 22 177 697 1553 2227 2430 1 29 316 1716
Rev:InvAntiDiagsee docsmissing1 1 2 1 5 3 15 10 1 52 37 6 203 151 31 1 877 674 160 10 4140 3263 856 75 1 21147 17007 4802 520 15
Rev:InvDiffx1T(n, k) (k+1)missing1 1 2 2 6 3 5 20 18 4 15 74 93 40 5 52 302 480 300 75 6 203 1348 2568 2080 775 126 7 877 6526 14406
Rev:InvRowSum k=0..n T(n, k)A0018611 2 6 22 94 454 2430 14214 89918 610182 4412798 33827974 273646526 2326980998 20732504062
Rev:InvEvenSum k=0..n T(n, k) even(k)A0350091 1 3 11 47 227 1215 7107 44959 305091 2206399 16913987 136823263 1163490499 10366252031
Rev:InvOddSum k=0..n T(n, k) odd(k)A0350090 1 3 11 47 227 1215 7107 44959 305091 2206399 16913987 136823263 1163490499 10366252031
Rev:InvAltSum k=0..n T(n, k) (-1)^kA0000071 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Rev:InvAbsSum k=0..n | T(n, k) |A0018611 2 6 22 94 454 2430 14214 89918 610182 4412798 33827974 273646526 2326980998 20732504062
Rev:InvDiagSum k=0..n // 2 T(n - k, k)missing1 1 3 8 26 95 386 1721 8335 43491 242852 1443108 9082639 60299974 420809639 3077379185 23519288783
Rev:InvAccSum k=0..n j=0..k T(n, j)missing1 3 13 63 337 1963 12333 82967 594089 4505603 36039589 302940399 2667560865 24538462939
Rev:InvAccRevSum k=0..n j=0..k T(n, n - j)A0350091 3 11 47 227 1215 7107 44959 305091 2206399 16913987 136823263 1163490499 10366252031 96491364675
Rev:InvRowLcmLcm k=0..n | T(n, k) | > 1missing1 1 6 30 34410 4711200 353994087720 7155276166711400 1538354952287097889140
Rev:InvRowGcdGcd k=0..n | T(n, k) | > 1A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Rev:InvRowMaxMax k=0..n | T(n, k) |missing1 1 3 10 37 160 856 4802 28337 175896 1279240 9677151 75750752 613656836 5181338526 48538121450
Rev:InvColMiddleT(n, n // 2)missing1 1 3 10 31 160 520 3556 11991 101031 350889 3492511 12428746 142171744 516450792 6658634268
Rev:InvCentralET(2 n, n)A2451091 3 31 520 11991 350889 12428746 516450792 24619176153 1323971052261 79280864647205
Rev:InvCentralOT(2 n + 1, n)missing1 10 160 3556 101031 3492511 142171744 6658634268 352613489371 20829775992818 1357834671369540
Rev:InvColLeftT(n, 0)A0001101 1 2 5 15 52 203 877 4140 21147 115975 678570 4213597 27644437 190899322 1382958545 10480142147
Rev:InvColRightT(n, n)A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Rev:InvBinConv k=0..n C(n, k) T(n, k)missing1 2 9 54 390 3233 29939 304244 3350307 39603277 498856919 6656785732 93648114690 1383322779855
Rev:InvInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kmissing1 0 -3 8 14 -221 799 2414 -48973 264553 469463 -21307122 180550666 -216796659 -13870594817
Rev:InvTransNat0 k=0..n T(n, k) kmissing0 1 5 25 133 761 4677 30745 215173 1596217 12501189 102995289 889843973 8039271033 75758860613
Rev:InvTransNat1 k=0..n T(n, k) (k + 1)A0350091 3 11 47 227 1215 7107 44959 305091 2206399 16913987 136823263 1163490499 10366252031 96491364675
Rev:InvTransSqrs k=0..n T(n, k) k^2missing0 1 7 43 267 1731 11819 85107 645563 5147395 43040651 376510355 3437890267 32696304291 323251451051
Rev:InvPosHalf k=0..n 2^n T(n, k) (1/2)^kmissing1 3 15 93 681 5691 53079 544053 6058545 72652179 931542207 12697268205 183092096409 2781622021899
Rev:InvNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kA0042111 -1 3 -11 49 -257 1539 -10299 75905 -609441 5284451 -49134923 487026929 -5120905441 56878092067
Rev:InvDiagRow1T(n + 1, n)A0002171 3 6 10 15 21 28 36 45 55 66 78 91 105 120 136 153 171 190 210 231 253 276 300 325 351 378 406 435
Rev:InvDiagRow2T(n + 2, n)A0908092 10 31 75 155 287 490 786 1200 1760 2497 3445 4641 6125 7940 10132 12750 15846 19475 23695 28567
Rev:InvDiagRow3T(n + 3, n)missing5 37 160 520 1400 3290 6972 13620 24915 43175 71500 113932 175630 263060 384200 548760 768417
Rev:InvDiagCol1T(n + 1, 1)A0054931 3 10 37 151 674 3263 17007 94828 562595 3535027 23430840 163254885 1192059223 9097183602
Rev:InvDiagCol2T(n + 2, 2)A0031281 6 31 160 856 4802 28337 175896 1146931 7841108 56089804 418952508 3261082917 26403700954
Rev:InvDiagCol3T(n + 3, 3)A3468421 10 75 520 3556 24626 174805 1279240 9677151 75750752 613656836 5142797660 44557627661
Rev:InvPolysee docsmissing1 1 1 2 2 1 5 6 3 1 15 22 12 4 1 52 94 57 20 5 1 203 454 309 116 30 6 1 877 2430 1866 756 205 42 7
Rev:InvPolyRow1 k=0..1 T(1, k) n^kA0000271 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
Rev:InvPolyRow2 k=0..2 T(2, k) n^kA0023782 6 12 20 30 42 56 72 90 110 132 156 182 210 240 272 306 342 380 420 462 506 552 600 650 702 756
Rev:InvPolyRow3 k=0..3 T(3, k) n^kA0334455 22 57 116 205 330 497 712 981 1310 1705 2172 2717 3346 4065 4880 5797 6822 7961 9220 10605 12122
Rev:InvPolyCol2 k=0..n T(n, k) 2^kA0277101 3 12 57 309 1866 12351 88563 681870 5597643 48718569 447428856 4318854429 43666895343
Rev:InvPolyCol3 k=0..n T(n, k) 3^kA0789441 4 20 116 756 5428 42356 355636 3188340 30333492 304716148 3218555700 35618229364 411717043252
Rev:InvPolyDiag k=0..n T(n, k) n^kA0350511 2 12 116 1555 26682 558215 13781448 392209380 12641850510 455198725025 18109373455164
InvTriangleT(n, k), 0 ≤ k ≤ nmissing1 -1 1 -4 3 1 25 -18 -8 1 705 -509 -221 24 1 -58836 42481 18434 -1991 -89 1 -24976567 18033672
InvRevT(n, n - k), 0 ≤ k ≤ nmissing1 1 -1 1 3 -4 1 -8 -18 25 1 24 -221 -509 705 1 -89 -1991 18434 42481 -58836 1 415 -37749 -845256
InvRevInvT-1(n, n - k), 0 ≤ k ≤ nA0948161 1 1 1 -3 1 1 8 -6 1 1 -24 29 -10 1 1 89 -145 75 -15 1 1 -415 814 -545 160 -21 1 1 2372 -5243 4179
InvAccsee docsmissing1 -1 0 -4 -1 0 25 7 -1 0 705 196 -25 -1 0 -58836 -16355 2079 88 -1 0 -24976567 -6942895 882589
InvAccRevsee docsmissing1 1 0 1 4 0 1 -7 -25 0 1 25 -196 -705 0 1 -88 -2079 16355 58836 0 1 416 -37333 -882589 6942895
InvAntiDiagsee docsmissing1 -1 -4 1 25 3 705 -18 1 -58836 -509 -8 -24976567 42481 -221 1 58933034131 18033672 18434 24
InvDiffx1T(n, k) (k+1)missing1 -1 2 -4 6 3 25 -36 -24 4 705 -1018 -663 96 5 -58836 84962 55302 -7964 -445 6 -24976567 36067344
InvRowSum k=0..n T(n, k)A0000071 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
InvEvenSum k=0..n T(n, k) even(k)missing1 -1 -3 17 485 -40491 -17188831 40557613653 652504345862429 -81989126203498685183
InvOddSum k=0..n T(n, k) odd(k)missing0 1 3 -17 -485 40491 17188831 -40557613653 -652504345862429 81989126203498685183
InvAltSum k=0..n T(n, k) (-1)^kmissing1 -2 -6 34 970 -80982 -34377662 81115227306 1305008691724858 -163978252406997370366
InvAbsSum k=0..n | T(n, k) |missing1 2 8 52 1460 121832 51719144 122033027304 1963307835010764 246695512270125801652
InvDiagSum k=0..n // 2 T(n - k, k)missing1 -1 -3 28 688 -59353 -24934306 58951086261 948091664432497 -119136588748395148717
InvAccSum k=0..n j=0..k T(n, j)missing1 -1 -5 31 875 -73025 -30999957 73145421599 1176787813046891 -147866914803634029441
InvAccRevSum k=0..n j=0..k T(n, n - j)missing1 1 5 -31 -875 73025 30999957 -73145421599 -1176787813046891 147866914803634029441
InvRowLcmLcm k=0..n | T(n, k) | > 1missing1 1 12 1800 634437960 4082147799964605228 162060599677046369991061428763320
InvRowGcdGcd k=0..n | T(n, k) | > 1A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
InvRowMaxMax k=0..n | T(n, k) |missing1 1 4 25 705 58836 24976567 58933034131 948134207653218 119135904154611634193
InvColMiddleT(n, n // 2)missing1 -1 3 -18 -221 18434 -845256 1994409698 1432984851867 -180058840393076511 2201272714625792868245
InvCentralET(2 n, n)missing1 3 -221 -845256 1432984851867 2201272714625792868245 -6993490705841157222775289984379386
InvCentralOT(2 n + 1, n)missing-1 -18 18434 1994409698 -180058840393076511 -24161513304938523833826435579
InvColLeftT(n, 0)missing1 -1 -4 25 705 -58836 -24976567 58933034131 948134207653218 -119135904154611634193
InvColRightT(n, n)A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
InvBinConv k=0..n C(n, k) T(n, k)missing1 0 3 -52 -2560 317555 183138861 -553777317142 -10949944655077919 1637692273519175200841
InvInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kmissing1 2 -9 -54 1320 67437 540057 97630253240 -3588688462343055 -766193799710059444095
InvTransNat0 k=0..n T(n, k) kmissing0 1 5 -31 -875 73025 30999957 -73145421599 -1176787813046891 147866914803634029441
InvTransNat1 k=0..n T(n, k) (k + 1)missing1 1 5 -31 -875 73025 30999957 -73145421599 -1176787813046891 147866914803634029441
InvTransSqrs k=0..n T(n, k) k^2missing0 1 7 -41 -1161 96899 41134731 -97058755261 -1561513459678113 196208845084080531591
InvPosHalf k=0..n 2^n T(n, k) (1/2)^kmissing1 -1 -9 113 6373 -1063725 -903127253 4261917117765 137134273472283145 -34462664734235053549241
InvNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kmissing1 3 -21 -255 14421 2407191 -2043759825 -9644637500043 310332256570532361 77988355818069523983723
InvDiagRow1T(n + 1, n)A002104-1 3 -8 24 -89 415 -2372 16072 -125673 1112083 -10976184 119481296 -1421542641 18348340127
InvDiagRow2T(n + 2, n)missing-4 -18 -221 -1991 -37749 -979137 -38161402 -2019494766 -139761801870 -12206396790968
InvDiagRow3T(n + 3, n)missing25 -509 18434 -845256 89069822 -15752681474 4795094505940 -2245893930477160 1534047377668164427
InvDiagCol1T(n + 1, 1)missing1 3 -18 -509 42481 18033672 -42551044215 -684575318181251 86018939971928640258
InvDiagCol2T(n + 2, 2)missing1 -8 -221 18434 7825484 -18464487928 -297062808481255 37326831996411645254
InvDiagCol3T(n + 3, 3)missing1 24 -1991 -845256 1994409698 32086724984224 -4031793138038569683 -4483784702045553161263322
InvPolysee docsmissing1 -1 1 -4 0 1 25 0 1 1 705 0 6 2 1 -58836 0 -35 14 3 1 -24976567 0 -989 -74 24 4 1 58933034131 0
InvPolyRow1 k=0..1 T(1, k) n^kA000027-1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
InvPolyRow2 k=0..2 T(2, k) n^kA028557-4 0 6 14 24 36 50 66 84 104 126 150 176 204 234 266 300 336 374 414 456 500 546 594 644 696 750
InvPolyRow3 k=0..3 T(3, k) n^kmissing25 0 -35 -74 -111 -140 -155 -150 -119 -56 45 190 385 636 949 1330 1785 2320 2941 3654 4465 5380
InvPolyCol2 k=0..n T(n, k) 2^kmissing1 1 6 -35 -989 82542 35040025 -82678095339 -1330152631210064 167137663743914823971
InvPolyCol3 k=0..n T(n, k) 3^kmissing1 2 14 -74 -2082 173790 73775798 -174076429730 -2800599361750770 351903701442064348822
InvPolyDiag k=0..n T(n, k) n^kmissing1 0 6 -74 -3075 313044 136718585 -262479610254 -1768732862328950 -322616741649725856056
Inv:RevTriangleT(n, k), 0 ≤ k ≤ nmissing1 1 -1 1 3 -4 1 -8 -18 25 1 24 -221 -509 705 1 -89 -1991 18434 42481 -58836 1 415 -37749 -845256
Inv:RevRevT(n, n - k), 0 ≤ k ≤ nmissing1 -1 1 -4 3 1 25 -18 -8 1 705 -509 -221 24 1 -58836 42481 18434 -1991 -89 1 -24976567 18033672
Inv:RevInvRev(T(n, n - k))-1, 0 ≤ k ≤ nA0467161 1 1 1 -3 1 1 -6 8 1 1 -10 29 -24 1 1 -15 75 -145 89 1 1 -21 160 -545 814 -415 1 1 -28 301 -1575
Inv:RevAccsee docsmissing1 1 0 1 4 0 1 -7 -25 0 1 25 -196 -705 0 1 -88 -2079 16355 58836 0 1 416 -37333 -882589 6942895
Inv:RevAccRevsee docsmissing1 -1 0 -4 -1 0 25 7 -1 0 705 196 -25 -1 0 -58836 -16355 2079 88 -1 0 -24976567 -6942895 882589
Inv:RevAntiDiagsee docsmissing1 1 1 -1 1 3 1 -8 -4 1 24 -18 1 -89 -221 25 1 415 -1991 -509 1 -2372 -37749 18434 705 1 16072
Inv:RevDiffx1T(n, k) (k+1)missing1 1 -2 1 6 -12 1 -16 -54 100 1 48 -663 -2036 3525 1 -178 -5973 73736 212405 -353016 1 830 -113247
Inv:RevRowSum k=0..n T(n, k)A0000071 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Inv:RevEvenSum k=0..n T(n, k) even(k)missing1 1 -3 -17 485 40491 -17188831 -40557613653 652504345862429 81989126203498685183
Inv:RevOddSum k=0..n T(n, k) odd(k)missing0 -1 3 17 -485 -40491 17188831 40557613653 -652504345862429 -81989126203498685183
Inv:RevAltSum k=0..n T(n, k) (-1)^kmissing1 2 -6 -34 970 80982 -34377662 -81115227306 1305008691724858 163978252406997370366
Inv:RevAbsSum k=0..n | T(n, k) |missing1 2 8 52 1460 121832 51719144 122033027304 1963307835010764 246695512270125801652
Inv:RevDiagSum k=0..n // 2 T(n - k, k)missing1 1 0 4 -11 7 -284 -2084 -20981 -1765839 58549396 -15758620786 6069817115259 -246684405737449
Inv:RevAccSum k=0..n j=0..k T(n, j)missing1 1 5 -31 -875 73025 30999957 -73145421599 -1176787813046891 147866914803634029441
Inv:RevAccRevSum k=0..n j=0..k T(n, n - j)missing1 -1 -5 31 875 -73025 -30999957 73145421599 1176787813046891 -147866914803634029441
Inv:RevRowLcmLcm k=0..n | T(n, k) | > 1missing1 1 12 1800 634437960 4082147799964605228 162060599677046369991061428763320
Inv:RevRowGcdGcd k=0..n | T(n, k) | > 1A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Inv:RevRowMaxMax k=0..n | T(n, k) |missing1 1 4 25 705 58836 24976567 58933034131 948134207653218 119135904154611634193
Inv:RevColMiddleT(n, n // 2)missing1 1 3 -8 -221 -1991 -845256 89069822 1432984851867 1979371628109373 2201272714625792868245
Inv:RevCentralET(2 n, n)missing1 3 -221 -845256 1432984851867 2201272714625792868245 -6993490705841157222775289984379386
Inv:RevCentralOT(2 n + 1, n)missing1 -8 -1991 89069822 1979371628109373 -58532080615083635105867048
Inv:RevColLeftT(n, 0)A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Inv:RevColRightT(n, n)missing1 -1 -4 25 705 -58836 -24976567 58933034131 948134207653218 -119135904154611634193
Inv:RevBinConv k=0..n C(n, k) T(n, k)missing1 0 3 -52 -2560 317555 183138861 -553777317142 -10949944655077919 1637692273519175200841
Inv:RevInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kmissing1 -2 -9 54 1320 -67437 540057 -97630253240 -3588688462343055 766193799710059444095
Inv:RevTransNat0 k=0..n T(n, k) kmissing0 -1 -5 31 875 -73025 -30999957 73145421599 1176787813046891 -147866914803634029441
Inv:RevTransNat1 k=0..n T(n, k) (k + 1)missing1 -1 -5 31 875 -73025 -30999957 73145421599 1176787813046891 -147866914803634029441
Inv:RevTransSqrs k=0..n T(n, k) k^2missing0 -1 -13 145 5839 -633351 -330864753 926977147125 17267091549072143 -2465395621381331998347
Inv:RevPosHalf k=0..n 2^n T(n, k) (1/2)^kmissing1 1 6 -35 -989 82542 35040025 -82678095339 -1330152631210064 167137663743914823971
Inv:RevNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kmissing1 -3 -6 21 663 -55590 -23597127 55678190865 895769209267260 -112556085202390962933
Inv:RevDiagRow1T(n + 1, n)missing1 3 -18 -509 42481 18033672 -42551044215 -684575318181251 86018939971928640258
Inv:RevDiagRow2T(n + 2, n)missing1 -8 -221 18434 7825484 -18464487928 -297062808481255 37326831996411645254
Inv:RevDiagRow3T(n + 3, n)missing1 24 -1991 -845256 1994409698 32086724984224 -4031793138038569683 -4483784702045553161263322
Inv:RevDiagCol1T(n + 1, 1)A002104-1 3 -8 24 -89 415 -2372 16072 -125673 1112083 -10976184 119481296 -1421542641 18348340127
Inv:RevDiagCol2T(n + 2, 2)missing-4 -18 -221 -1991 -37749 -979137 -38161402 -2019494766 -139761801870 -12206396790968
Inv:RevDiagCol3T(n + 3, 3)missing25 -509 18434 -845256 89069822 -15752681474 4795094505940 -2245893930477160 1534047377668164427
Inv:RevPolysee docsmissing1 1 1 1 0 1 1 0 -1 1 1 0 -9 -2 1 1 0 113 -26 -3 1 1 0 6373 490 -51 -4 1 1 0 -1063725 41446 1281 -84
Inv:RevPolyRow1 k=0..1 T(1, k) n^kA0000271 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25 -26
Inv:RevPolyRow2 k=0..2 T(2, k) n^kA3435601 0 -9 -26 -51 -84 -125 -174 -231 -296 -369 -450 -539 -636 -741 -854 -975 -1104 -1241 -1386 -1539
Inv:RevPolyRow3 k=0..3 T(3, k) n^kmissing1 0 113 490 1281 2636 4705 7638 11585 16696 23121 31010 40513 51780 64961 80206 97665 117488 139825
Inv:RevPolyCol2 k=0..n T(n, k) 2^kmissing1 -1 -9 113 6373 -1063725 -903127253 4261917117765 137134273472283145 -34462664734235053549241
Inv:RevPolyCol3 k=0..n T(n, k) 3^kmissing1 -2 -26 490 41446 -10376654 -13215031250 93543907096642 4514896248445895926
Inv:RevPolyDiag k=0..n T(n, k) n^kmissing1 0 -9 490 144465 -155057844 -1015118980985 43222286358529230 14394577947488355656641
 << TableSourceSimilarsIndex >> 

Note: The A-numbers are based on a finite number of numerical comparisons. They ignore the sign and the OEIS-offset. Sometimes they differ in the first few values. In such cases, we consider our version to be the better one because it has a common formula as a root. Since the offset of all triangles is 0 also the offset of all sequences is 0.