OEIS Similars: A038719
↕ Type | ↕ Trait | ↕ Anum | ↕ Sequence |
---|---|---|---|
Std | TriangleT(n, k), 0 ≤ k ≤ n | A038719 | 1 2 1 4 5 2 8 19 18 6 16 65 110 84 24 32 211 570 750 480 120 64 665 2702 5460 5880 3240 720 128 |
Std | RevT(n, n - k), 0 ≤ k ≤ n | missing | 1 1 2 2 5 4 6 18 19 8 24 84 110 65 16 120 480 750 570 211 32 720 3240 5880 5460 2702 665 64 5040 |
Std | Accsee docs | missing | 1 2 3 4 9 11 8 27 45 51 16 81 191 275 299 32 243 813 1563 2043 2163 64 729 3431 8891 14771 18011 |
Std | AccRevsee docs | missing | 1 1 3 2 7 11 6 24 43 51 24 108 218 283 299 120 600 1350 1920 2131 2163 720 3960 9840 15300 18002 |
Std | AntiDiagsee docs | missing | 1 2 4 1 8 5 16 19 2 32 65 18 64 211 110 6 128 665 570 84 256 2059 2702 750 24 512 6305 12138 5460 |
Std | Diffx1T(n, k) (k+1) | A199400 | 1 2 2 4 10 6 8 38 54 24 16 130 330 336 120 32 422 1710 3000 2400 720 64 1330 8106 21840 29400 19440 |
Std | RowSum∑ k=0..n T(n, k) | A007047 | 1 3 11 51 299 2163 18731 189171 2183339 28349043 408990251 6490530291 112366270379 2107433393523 |
Std | EvenSum∑ k=0..n T(n, k) even(k) | A000629 | 1 2 6 26 150 1082 9366 94586 1091670 14174522 204495126 3245265146 56183135190 1053716696762 |
Std | OddSum∑ k=0..n T(n, k) odd(k) | A002050 | 0 1 5 25 149 1081 9365 94585 1091669 14174521 204495125 3245265145 56183135189 1053716696761 |
Std | AltSum∑ k=0..n T(n, k) (-1)^k | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Std | AbsSum∑ k=0..n | T(n, k) | | A007047 | 1 3 11 51 299 2163 18731 189171 2183339 28349043 408990251 6490530291 112366270379 2107433393523 |
Std | DiagSum∑ k=0..n // 2 T(n - k, k) | missing | 1 2 5 13 37 115 391 1447 5791 24895 114271 557167 2873071 15608815 89047471 531915247 3318324271 |
Std | AccSum∑ k=0..n ∑ j=0..k T(n, j) | missing | 1 5 24 131 862 6857 64628 705455 8750538 121518869 1867112992 31439023739 575594223734 |
Std | AccRevSum∑ k=0..n ∑ j=0..k T(n, n - j) | A162509 | 1 4 20 124 932 8284 85220 997084 13082852 190320604 3040770020 52937870044 997533561572 |
Std | RowLcmLcm k=0..n | T(n, k) | > 1 | missing | 1 2 20 1368 240240 48108000 60545983680 1044991435017600 956036236766889358080 |
Std | RowGcdGcd k=0..n | T(n, k) | > 1 | A000012 | 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Std | RowMaxMax k=0..n | T(n, k) | | missing | 1 2 5 19 110 750 5880 57120 650160 8013600 106444800 1699624080 28765376640 512898946560 |
Std | ColMiddleT(n, n // 2) | missing | 1 2 5 19 110 570 5460 35406 484344 3759840 67609080 610563360 13689149760 140915174400 |
Std | CentralET(2 n, n) | missing | 1 5 110 5460 484344 67609080 13689149760 3798425030400 1385146411608960 642816232339881600 |
Std | CentralOT(2 n + 1, n) | missing | 2 19 570 35406 3759840 610563360 140915174400 43888511787120 17748253957674240 9045150240092803200 |
Std | ColLeftT(n, 0) | A000079 | 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 1048576 |
Std | ColRightT(n, n) | A000142 | 1 1 2 6 24 120 720 5040 40320 362880 3628800 39916800 479001600 6227020800 87178291200 |
Std | BinConv∑ k=0..n C(n, k) T(n, k) | A000272 | 1 3 16 125 1296 16807 262144 4782969 100000000 2357947691 61917364224 1792160394037 56693912375296 |
Std | InvBinConv∑ k=0..n C(n, k) T(n, n - k) (-1)^k | missing | 1 -1 -4 1 104 543 -3116 -78283 -372688 8914267 191686604 374581161 -54397789304 -1053278209609 |
Std | TransNat0∑ k=0..n T(n, k) k | missing | 0 1 9 73 633 6121 66489 807913 10899513 161971561 2631779769 46447339753 885167291193 |
Std | TransNat1∑ k=0..n T(n, k) (k + 1) | A162509 | 1 4 20 124 932 8284 85220 997084 13082852 190320604 3040770020 52937870044 997533561572 |
Std | TransSqrs∑ k=0..n T(n, k) k^2 | missing | 0 1 13 145 1645 19921 261613 3739345 58095085 977772241 17755615213 346443700945 7234250207725 |
Std | PosHalf∑ k=0..n 2^n T(n, k) (1/2)^k | missing | 1 5 28 182 1408 13040 143008 1823792 26564608 435249920 7923647488 158673162752 3466332971008 |
Std | NegHalf∑ k=0..n (-2)^n T(n, k) (-1/2)^k | A119881 | 1 -3 8 -18 32 -48 128 -528 512 6912 2048 -357888 8192 22351872 32768 -1903822848 131072 |
Std | DiagRow1T(n + 1, n) | A038720 | 2 5 18 84 480 3240 25200 221760 2177280 23587200 279417600 3592512000 49816166400 741015475200 |
Std | DiagRow2T(n + 2, n) | missing | 4 19 110 750 5880 52080 514080 5594400 66528000 858211200 11935123200 177989011200 2833294464000 |
Std | DiagRow3T(n + 3, n) | missing | 8 65 570 5460 57120 650160 8013600 106444800 1516838400 23091868800 374140166400 6429398976000 |
Std | DiagCol1T(n + 1, 1) | A001047 | 1 5 19 65 211 665 2059 6305 19171 58025 175099 527345 1586131 4766585 14316139 42981185 129009091 |
Std | DiagCol2T(n + 2, 2) | A038721 | 2 18 110 570 2702 12138 52670 223290 931502 3842058 15718430 63928410 258885902 1045076778 |
Std | DiagCol3T(n + 3, 3) | missing | 6 84 750 5460 35406 213444 1225230 6796020 36774606 195399204 1024151310 5312541780 27339366606 |
Std | Polysee docs | missing | 1 2 1 4 3 1 8 11 4 1 16 51 22 5 1 32 299 166 37 6 1 64 2163 1642 389 56 7 1 128 18731 20254 5413 |
Std | PolyRow1∑ k=0..1 T(1, k) n^k | A000027 | 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 |
Std | PolyRow2∑ k=0..2 T(2, k) n^k | A084849 | 4 11 22 37 56 79 106 137 172 211 254 301 352 407 466 529 596 667 742 821 904 991 1082 1177 1276 |
Std | PolyRow3∑ k=0..3 T(3, k) n^k | missing | 8 51 166 389 756 1303 2066 3081 4384 6011 7998 10381 13196 16479 20266 24593 29496 35011 41174 |
Std | PolyCol2∑ k=0..n T(n, k) 2^k | A368319 | 1 4 22 166 1642 20254 299722 5174446 102094042 2266154014 55890234922 1516265078926 44874837768442 |
Std | PolyCol3∑ k=0..n T(n, k) 3^k | A368322 | 1 5 37 389 5413 94085 1962277 47746949 1327769893 41538664325 1443908686117 55210237509509 |
Std | PolyDiag∑ k=0..n T(n, k) n^k | missing | 1 3 22 389 13556 784087 67687726 8140618761 1299685784968 265765828110011 67705436237351474 |
Alt | TriangleT(n, k), 0 ≤ k ≤ n | A038719 | 1 2 -1 4 -5 2 8 -19 18 -6 16 -65 110 -84 24 32 -211 570 -750 480 -120 64 -665 2702 -5460 5880 -3240 |
Alt | RevT(n, n - k), 0 ≤ k ≤ n | missing | 1 -1 2 2 -5 4 -6 18 -19 8 24 -84 110 -65 16 -120 480 -750 570 -211 32 720 -3240 5880 -5460 2702 |
Alt | Accsee docs | missing | 1 2 1 4 -1 1 8 -11 7 1 16 -49 61 -23 1 32 -179 391 -359 121 1 64 -601 2101 -3359 2521 -719 1 128 |
Alt | AccRevsee docs | A130850 | 1 -1 1 2 -3 1 -6 12 -7 1 24 -60 50 -15 1 -120 360 -390 180 -31 1 720 -2520 3360 -2100 602 -63 1 |
Alt | AntiDiagsee docs | missing | 1 2 4 -1 8 -5 16 -19 2 32 -65 18 64 -211 110 -6 128 -665 570 -84 256 -2059 2702 -750 24 512 -6305 |
Alt | Diffx1T(n, k) (k+1) | A199400 | 1 2 -2 4 -10 6 8 -38 54 -24 16 -130 330 -336 120 32 -422 1710 -3000 2400 -720 64 -1330 8106 -21840 |
Alt | RowSum∑ k=0..n T(n, k) | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Alt | EvenSum∑ k=0..n T(n, k) even(k) | A000629 | 1 2 6 26 150 1082 9366 94586 1091670 14174522 204495126 3245265146 56183135190 1053716696762 |
Alt | OddSum∑ k=0..n T(n, k) odd(k) | A002050 | 0 -1 -5 -25 -149 -1081 -9365 -94585 -1091669 -14174521 -204495125 -3245265145 -56183135189 |
Alt | AltSum∑ k=0..n T(n, k) (-1)^k | A007047 | 1 3 11 51 299 2163 18731 189171 2183339 28349043 408990251 6490530291 112366270379 2107433393523 |
Alt | AbsSum∑ k=0..n | T(n, k) | | A007047 | 1 3 11 51 299 2163 18731 189171 2183339 28349043 408990251 6490530291 112366270379 2107433393523 |
Alt | DiagSum∑ k=0..n // 2 T(n - k, k) | missing | 1 2 3 3 -1 -15 -43 -51 173 1365 4877 7749 -31747 -338235 -1629763 -4078011 9073853 179141445 |
Alt | AccSum∑ k=0..n ∑ j=0..k T(n, j) | A000027 | 1 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 |
Alt | AccRevSum∑ k=0..n ∑ j=0..k T(n, n - j) | A000007 | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Alt | RowLcmLcm k=0..n | T(n, k) | > 1 | missing | 1 2 20 1368 240240 48108000 60545983680 1044991435017600 956036236766889358080 |
Alt | RowGcdGcd k=0..n | T(n, k) | > 1 | A000012 | 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Alt | RowMaxMax k=0..n | T(n, k) | | missing | 1 2 5 19 110 750 5880 57120 650160 8013600 106444800 1699624080 28765376640 512898946560 |
Alt | ColMiddleT(n, n // 2) | missing | 1 2 -5 -19 110 570 -5460 -35406 484344 3759840 -67609080 -610563360 13689149760 140915174400 |
Alt | CentralET(2 n, n) | missing | 1 -5 110 -5460 484344 -67609080 13689149760 -3798425030400 1385146411608960 -642816232339881600 |
Alt | CentralOT(2 n + 1, n) | missing | 2 -19 570 -35406 3759840 -610563360 140915174400 -43888511787120 17748253957674240 |
Alt | ColLeftT(n, 0) | A000079 | 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 1048576 |
Alt | ColRightT(n, n) | A000142 | 1 -1 2 -6 24 -120 720 -5040 40320 -362880 3628800 -39916800 479001600 -6227020800 87178291200 |
Alt | BinConv∑ k=0..n C(n, k) T(n, k) | missing | 1 1 -4 -1 104 -543 -3116 78283 -372688 -8914267 191686604 -374581161 -54397789304 1053278209609 |
Alt | InvBinConv∑ k=0..n C(n, k) T(n, n - k) (-1)^k | A000272 | 1 -3 16 -125 1296 -16807 262144 -4782969 100000000 -2357947691 61917364224 -1792160394037 |
Alt | TransNat0∑ k=0..n T(n, k) k | A000012 | 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 |
Alt | TransNat1∑ k=0..n T(n, k) (k + 1) | A000007 | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Alt | TransSqrs∑ k=0..n T(n, k) k^2 | A010684 | 0 -1 3 -1 3 -1 3 -1 3 -1 3 -1 3 -1 3 -1 3 -1 3 -1 3 -1 3 -1 3 -1 3 -1 3 -1 3 -1 3 -1 3 -1 3 -1 3 -1 |
Alt | PosHalf∑ k=0..n 2^n T(n, k) (1/2)^k | A119881 | 1 3 8 18 32 48 128 528 512 -6912 2048 357888 8192 -22351872 32768 1903822848 131072 -209865080832 |
Alt | NegHalf∑ k=0..n (-2)^n T(n, k) (-1/2)^k | missing | 1 -5 28 -182 1408 -13040 143008 -1823792 26564608 -435249920 7923647488 -158673162752 3466332971008 |
Alt | DiagRow1T(n + 1, n) | A038720 | 2 -5 18 -84 480 -3240 25200 -221760 2177280 -23587200 279417600 -3592512000 49816166400 |
Alt | DiagRow2T(n + 2, n) | missing | 4 -19 110 -750 5880 -52080 514080 -5594400 66528000 -858211200 11935123200 -177989011200 |
Alt | DiagRow3T(n + 3, n) | missing | 8 -65 570 -5460 57120 -650160 8013600 -106444800 1516838400 -23091868800 374140166400 |
Alt | DiagCol1T(n + 1, 1) | A001047 | -1 -5 -19 -65 -211 -665 -2059 -6305 -19171 -58025 -175099 -527345 -1586131 -4766585 -14316139 |
Alt | DiagCol2T(n + 2, 2) | A038721 | 2 18 110 570 2702 12138 52670 223290 931502 3842058 15718430 63928410 258885902 1045076778 |
Alt | DiagCol3T(n + 3, 3) | missing | -6 -84 -750 -5460 -35406 -213444 -1225230 -6796020 -36774606 -195399204 -1024151310 -5312541780 |
Alt | Polysee docs | missing | 1 2 1 4 1 1 8 1 0 1 16 1 2 -1 1 32 1 -6 7 -2 1 64 1 38 -49 16 -3 1 128 1 -270 487 -164 29 -4 1 256 |
Alt | PolyRow1∑ k=0..1 T(1, k) n^k | A000027 | 2 1 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25 |
Alt | PolyRow2∑ k=0..2 T(2, k) n^k | A130883 | 4 1 2 7 16 29 46 67 92 121 154 191 232 277 326 379 436 497 562 631 704 781 862 947 1036 1129 1226 |
Alt | PolyRow3∑ k=0..3 T(3, k) n^k | missing | 8 1 -6 -49 -164 -387 -754 -1301 -2064 -3079 -4382 -6009 -7996 -10379 -13194 -16477 -20264 -24591 |
Alt | PolyCol2∑ k=0..n T(n, k) 2^k | A052841 | 1 0 2 -6 38 -270 2342 -23646 272918 -3543630 51123782 -811316286 14045783798 -263429174190 |
Alt | PolyCol3∑ k=0..n T(n, k) 3^k | missing | 1 -1 7 -49 487 -6001 88807 -1533169 30250087 -671453041 16560069607 -449263727089 13296248227687 |
Alt | PolyDiag∑ k=0..n T(n, k) n^k | missing | 1 1 2 -49 2284 -155523 14932546 -1935629141 326729376632 -69749414722567 18388604828150974 |
Rev | TriangleT(n, k), 0 ≤ k ≤ n | missing | 1 1 2 2 5 4 6 18 19 8 24 84 110 65 16 120 480 750 570 211 32 720 3240 5880 5460 2702 665 64 5040 |
Rev | Accsee docs | missing | 1 1 3 2 7 11 6 24 43 51 24 108 218 283 299 120 600 1350 1920 2131 2163 720 3960 9840 15300 18002 |
Rev | AccRevsee docs | missing | 1 2 3 4 9 11 8 27 45 51 16 81 191 275 299 32 243 813 1563 2043 2163 64 729 3431 8891 14771 18011 |
Rev | AntiDiagsee docs | missing | 1 1 2 2 6 5 24 18 4 120 84 19 720 480 110 8 5040 3240 750 65 40320 25200 5880 570 16 362880 221760 |
Rev | Diffx1T(n, k) (k+1) | missing | 1 1 4 2 10 12 6 36 57 32 24 168 330 260 80 120 960 2250 2280 1055 192 720 6480 17640 21840 13510 |
Rev | RowSum∑ k=0..n T(n, k) | A007047 | 1 3 11 51 299 2163 18731 189171 2183339 28349043 408990251 6490530291 112366270379 2107433393523 |
Rev | EvenSum∑ k=0..n T(n, k) even(k) | missing | 1 1 6 25 150 1081 9366 94585 1091670 14174521 204495126 3245265145 56183135190 1053716696761 |
Rev | OddSum∑ k=0..n T(n, k) odd(k) | missing | 0 2 5 26 149 1082 9365 94586 1091669 14174522 204495125 3245265146 56183135189 1053716696762 |
Rev | AbsSum∑ k=0..n | T(n, k) | | A007047 | 1 3 11 51 299 2163 18731 189171 2183339 28349043 408990251 6490530291 112366270379 2107433393523 |
Rev | DiagSum∑ k=0..n // 2 T(n - k, k) | missing | 1 1 4 11 46 223 1318 9095 71986 642391 6380014 69784631 833457346 10791377143 150556177678 |
Rev | AccSum∑ k=0..n ∑ j=0..k T(n, j) | A162509 | 1 4 20 124 932 8284 85220 997084 13082852 190320604 3040770020 52937870044 997533561572 |
Rev | AccRevSum∑ k=0..n ∑ j=0..k T(n, n - j) | missing | 1 5 24 131 862 6857 64628 705455 8750538 121518869 1867112992 31439023739 575594223734 |
Rev | RowLcmLcm k=0..n | T(n, k) | > 1 | missing | 1 2 20 1368 240240 48108000 60545983680 1044991435017600 956036236766889358080 |
Rev | RowGcdGcd k=0..n | T(n, k) | > 1 | A000012 | 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Rev | RowMaxMax k=0..n | T(n, k) | | missing | 1 2 5 19 110 750 5880 57120 650160 8013600 106444800 1699624080 28765376640 512898946560 |
Rev | ColMiddleT(n, n // 2) | missing | 1 1 5 18 110 750 5460 57120 484344 6972840 67609080 1253221200 13689149760 312446534400 |
Rev | CentralET(2 n, n) | missing | 1 5 110 5460 484344 67609080 13689149760 3798425030400 1385146411608960 642816232339881600 |
Rev | CentralOT(2 n + 1, n) | missing | 1 18 750 57120 6972840 1253221200 312446534400 103403831731200 43916540610983040 |
Rev | ColLeftT(n, 0) | A000142 | 1 1 2 6 24 120 720 5040 40320 362880 3628800 39916800 479001600 6227020800 87178291200 |
Rev | ColRightT(n, n) | A000079 | 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 1048576 |
Rev | BinConv∑ k=0..n C(n, k) T(n, k) | A000272 | 1 3 16 125 1296 16807 262144 4782969 100000000 2357947691 61917364224 1792160394037 56693912375296 |
Rev | InvBinConv∑ k=0..n C(n, k) T(n, n - k) (-1)^k | missing | 1 1 -4 -1 104 -543 -3116 78283 -372688 -8914267 191686604 -374581161 -54397789304 1053278209609 |
Rev | TransNat0∑ k=0..n T(n, k) k | missing | 0 2 13 80 563 4694 45897 516284 6567199 93169826 1458122741 24948493448 463227953355 9275098265198 |
Rev | TransNat1∑ k=0..n T(n, k) (k + 1) | missing | 1 5 24 131 862 6857 64628 705455 8750538 121518869 1867112992 31439023739 575594223734 |
Rev | TransSqrs∑ k=0..n T(n, k) k^2 | missing | 0 2 21 166 1365 12786 138061 1697942 23436573 358556626 6019044933 109956391590 2170978153669 |
Rev | PosHalf∑ k=0..n 2^n T(n, k) (1/2)^k | A368319 | 1 4 22 166 1642 20254 299722 5174446 102094042 2266154014 55890234922 1516265078926 44874837768442 |
Rev | NegHalf∑ k=0..n (-2)^n T(n, k) (-1/2)^k | A052841 | 1 0 2 -6 38 -270 2342 -23646 272918 -3543630 51123782 -811316286 14045783798 -263429174190 |
Rev | DiagRow1T(n + 1, n) | A001047 | 1 5 19 65 211 665 2059 6305 19171 58025 175099 527345 1586131 4766585 14316139 42981185 129009091 |
Rev | DiagRow2T(n + 2, n) | A038721 | 2 18 110 570 2702 12138 52670 223290 931502 3842058 15718430 63928410 258885902 1045076778 |
Rev | DiagRow3T(n + 3, n) | missing | 6 84 750 5460 35406 213444 1225230 6796020 36774606 195399204 1024151310 5312541780 27339366606 |
Rev | DiagCol1T(n + 1, 1) | A038720 | 2 5 18 84 480 3240 25200 221760 2177280 23587200 279417600 3592512000 49816166400 741015475200 |
Rev | DiagCol2T(n + 2, 2) | missing | 4 19 110 750 5880 52080 514080 5594400 66528000 858211200 11935123200 177989011200 2833294464000 |
Rev | DiagCol3T(n + 3, 3) | missing | 8 65 570 5460 57120 650160 8013600 106444800 1516838400 23091868800 374140166400 6429398976000 |
Rev | Polysee docs | missing | 1 1 1 2 3 1 6 11 5 1 24 51 28 7 1 120 299 182 53 9 1 720 2163 1408 447 86 11 1 5040 18731 13040 |
Rev | PolyRow1∑ k=0..1 T(1, k) n^k | A005408 | 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 |
Rev | PolyRow2∑ k=0..2 T(2, k) n^k | A054552 | 2 11 28 53 86 127 176 233 298 371 452 541 638 743 856 977 1106 1243 1388 1541 1702 1871 2048 2233 |
Rev | PolyRow3∑ k=0..3 T(3, k) n^k | missing | 6 51 182 447 894 1571 2526 3807 5462 7539 10086 13151 16782 21027 25934 31551 37926 45107 53142 |
Rev | PolyCol2∑ k=0..n T(n, k) 2^k | missing | 1 5 28 182 1408 13040 143008 1823792 26564608 435249920 7923647488 158673162752 3466332971008 |
Rev | PolyCol3∑ k=0..n T(n, k) 3^k | missing | 1 7 53 447 4317 48567 637893 9689967 167850477 3269439207 70753134933 1684244512287 43737334717437 |
Rev | PolyDiag∑ k=0..n T(n, k) n^k | missing | 1 3 28 447 10376 324395 13070016 658991487 40670238592 3016813197699 264769063500800 |
<< | Table | Source | Similars | Index | >> |
Note: The A-numbers are based on a finite number of numerical comparisons. They ignore the sign and the OEIS-offset. Sometimes they differ in the first few values. In such cases, we consider our version to be the better one because it has a common formula as a root. Since the offset of all triangles is 0 also the offset of all sequences is 0.