OEIS Similars: A106465, A106470
↕ Type | ↕ Trait | ↕ Anum | ↕ Sequence |
---|---|---|---|
Std | TriangleT(n, k), 0 ≤ k ≤ n | A106465 | 1 1 1 1 0 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0 1 1 1 1 1 1 |
Std | RevT(n, n - k), 0 ≤ k ≤ n | A106465 | 1 1 1 1 0 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0 1 1 1 1 1 1 |
Std | InvT-1(n, k), 0 ≤ k ≤ n | A106468 | 1 -1 1 -1 0 1 1 -1 -1 1 0 0 -1 0 1 0 0 1 -1 -1 1 0 0 0 0 -1 0 1 0 0 0 0 1 -1 -1 1 0 0 0 0 0 0 -1 0 |
Std | RevInvT-1(n, n - k), 0 ≤ k ≤ n | A000012 | 1 1 -1 1 0 -1 1 -1 -1 1 1 0 -1 0 0 1 -1 -1 1 0 0 1 0 -1 0 0 0 0 1 -1 -1 1 0 0 0 0 1 0 -1 0 0 0 0 0 |
Std | InvRev(T(n, n - k))-1, 0 ≤ k ≤ n | A106468 | 1 -1 1 -1 0 1 1 -1 -1 1 0 0 -1 0 1 0 0 1 -1 -1 1 0 0 0 0 -1 0 1 0 0 0 0 1 -1 -1 1 0 0 0 0 0 0 -1 0 |
Std | Accsee docs | missing | 1 1 2 1 1 2 1 2 3 4 1 1 2 2 3 1 2 3 4 5 6 1 1 2 2 3 3 4 1 2 3 4 5 6 7 8 1 1 2 2 3 3 4 4 5 1 2 3 4 5 |
Std | AccRevsee docs | missing | 1 1 2 1 1 2 1 2 3 4 1 1 2 2 3 1 2 3 4 5 6 1 1 2 2 3 3 4 1 2 3 4 5 6 7 8 1 1 2 2 3 3 4 4 5 1 2 3 4 5 |
Std | AntiDiagsee docs | missing | 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 0 1 0 1 0 1 1 1 1 1 1 1 1 |
Std | Diffx1T(n, k) (k+1) | missing | 1 1 2 1 0 3 1 2 3 4 1 0 3 0 5 1 2 3 4 5 6 1 0 3 0 5 0 7 1 2 3 4 5 6 7 8 1 0 3 0 5 0 7 0 9 1 2 3 4 5 |
Std | RowSum∑ k=0..n T(n, k) | A029578 | 1 2 2 4 3 6 4 8 5 10 6 12 7 14 8 16 9 18 10 20 11 22 12 24 13 26 14 28 15 30 16 32 17 34 18 36 19 |
Std | EvenSum∑ k=0..n T(n, k) even(k) | A004526 | 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13 14 14 15 15 16 16 17 17 18 18 19 19 20 |
Std | OddSum∑ k=0..n T(n, k) odd(k) | A142150 | 0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 10 0 11 0 12 0 13 0 14 0 15 0 16 0 17 0 18 0 19 0 20 0 21 0 |
Std | AltSum∑ k=0..n T(n, k) (-1)^k | A142150 | 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 10 0 11 0 12 0 13 0 14 0 15 0 16 0 17 0 18 0 19 0 20 0 21 0 22 |
Std | AbsSum∑ k=0..n | T(n, k) | | A029578 | 1 2 2 4 3 6 4 8 5 10 6 12 7 14 8 16 9 18 10 20 11 22 12 24 13 26 14 28 15 30 16 32 17 34 18 36 19 |
Std | DiagSum∑ k=0..n // 2 T(n - k, k) | A106466 | 1 1 2 1 3 2 4 2 5 3 6 3 7 4 8 4 9 5 10 5 11 6 12 6 13 7 14 7 15 8 16 8 17 9 18 9 19 10 20 10 21 11 |
Std | AccSum∑ k=0..n ∑ j=0..k T(n, j) | A359366 | 1 3 4 10 9 21 16 36 25 55 36 78 49 105 64 136 81 171 100 210 121 253 144 300 169 351 196 406 225 |
Std | AccRevSum∑ k=0..n ∑ j=0..k T(n, n - j) | A359366 | 1 3 4 10 9 21 16 36 25 55 36 78 49 105 64 136 81 171 100 210 121 253 144 300 169 351 196 406 225 |
Std | RowLcmLcm k=0..n | T(n, k) | > 1 | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Std | RowGcdGcd k=0..n | T(n, k) | > 1 | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Std | RowMaxMax k=0..n | T(n, k) | | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Std | ColMiddleT(n, n // 2) | A166486 | 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 |
Std | CentralET(2 n, n) | A000035 | 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 |
Std | CentralOT(2 n + 1, n) | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Std | ColLeftT(n, 0) | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Std | ColRightT(n, n) | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Std | BinConv∑ k=0..n C(n, k) T(n, k) | A158302 | 1 2 2 8 8 32 32 128 128 512 512 2048 2048 8192 8192 32768 32768 131072 131072 524288 524288 2097152 |
Std | InvBinConv∑ k=0..n C(n, k) T(n, n - k) (-1)^k | A103424 | 1 0 2 0 8 0 32 0 128 0 512 0 2048 0 8192 0 32768 0 131072 0 524288 0 2097152 0 8388608 0 33554432 0 |
Std | TransNat0∑ k=0..n T(n, k) k | A056136 | 0 1 2 6 6 15 12 28 20 45 30 66 42 91 56 120 72 153 90 190 110 231 132 276 156 325 182 378 210 435 |
Std | TransNat1∑ k=0..n T(n, k) (k + 1) | A359366 | 1 3 4 10 9 21 16 36 25 55 36 78 49 105 64 136 81 171 100 210 121 253 144 300 169 351 196 406 225 |
Std | TransSqrs∑ k=0..n T(n, k) k^2 | missing | 0 1 4 14 20 55 56 140 120 285 220 506 364 819 560 1240 816 1785 1140 2470 1540 3311 2024 4324 2600 |
Std | PosHalf∑ k=0..n 2^n T(n, k) (1/2)^k | missing | 1 3 5 15 21 63 85 255 341 1023 1365 4095 5461 16383 21845 65535 87381 262143 349525 1048575 1398101 |
Std | DiagRow1T(n + 1, n) | A000035 | 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 |
Std | DiagRow2T(n + 2, n) | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Std | DiagRow3T(n + 3, n) | A000035 | 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 |
Std | DiagCol1T(n + 1, 1) | A000035 | 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 |
Std | DiagCol2T(n + 2, 2) | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Std | DiagCol3T(n + 3, 3) | A000035 | 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 |
Std | Polysee docs | missing | 1 1 1 1 2 1 1 2 3 1 1 4 5 4 1 1 3 15 10 5 1 1 6 21 40 17 6 1 1 4 63 91 85 26 7 1 1 8 85 364 273 156 |
Std | PolyRow1∑ k=0..1 T(1, k) n^k | A000027 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
Std | PolyRow2∑ k=0..2 T(2, k) n^k | A002522 | 1 2 5 10 17 26 37 50 65 82 101 122 145 170 197 226 257 290 325 362 401 442 485 530 577 626 677 730 |
Std | PolyRow3∑ k=0..3 T(3, k) n^k | A053698 | 1 4 15 40 85 156 259 400 585 820 1111 1464 1885 2380 2955 3616 4369 5220 6175 7240 8421 9724 11155 |
Std | PolyCol2∑ k=0..n T(n, k) 2^k | missing | 1 3 5 15 21 63 85 255 341 1023 1365 4095 5461 16383 21845 65535 87381 262143 349525 1048575 1398101 |
Std | PolyCol3∑ k=0..n T(n, k) 3^k | missing | 1 4 10 40 91 364 820 3280 7381 29524 66430 265720 597871 2391484 5380840 21523360 48427561 |
Std | PolyDiag∑ k=0..n T(n, k) n^k | missing | 1 2 5 40 273 3906 47989 960800 17043521 435848050 10101010101 313842837672 8978450801041 |
Alt | TriangleT(n, k), 0 ≤ k ≤ n | A106465 | 1 1 -1 1 0 1 1 -1 1 -1 1 0 1 0 1 1 -1 1 -1 1 -1 1 0 1 0 1 0 1 1 -1 1 -1 1 -1 1 -1 1 0 1 0 1 0 1 0 1 |
Alt | RevT(n, n - k), 0 ≤ k ≤ n | A106465 | 1 -1 1 1 0 1 -1 1 -1 1 1 0 1 0 1 -1 1 -1 1 -1 1 1 0 1 0 1 0 1 -1 1 -1 1 -1 1 -1 1 1 0 1 0 1 0 1 0 1 |
Alt | InvT-1(n, k), 0 ≤ k ≤ n | missing | 1 -1 1 -1 0 1 -1 1 -1 1 0 0 -1 0 1 -2 2 -1 1 -1 1 0 0 0 0 -1 0 1 -4 4 -2 2 -1 1 -1 1 0 0 0 0 0 0 -1 |
Alt | RevInvT-1(n, n - k), 0 ≤ k ≤ n | missing | 1 1 -1 1 0 -1 1 -1 1 -1 1 0 -1 0 0 1 -1 1 -1 2 -2 1 0 -1 0 0 0 0 1 -1 1 -1 2 -2 4 -4 1 0 -1 0 0 0 0 |
Alt | InvRev(T(n, n - k))-1, 0 ≤ k ≤ n | A106468 | 1 1 1 -1 0 1 -1 -1 1 1 0 0 -1 0 1 0 0 -1 -1 1 1 0 0 0 0 -1 0 1 0 0 0 0 -1 -1 1 1 0 0 0 0 0 0 -1 0 1 |
Alt | Accsee docs | missing | 1 1 0 1 1 2 1 0 1 0 1 1 2 2 3 1 0 1 0 1 0 1 1 2 2 3 3 4 1 0 1 0 1 0 1 0 1 1 2 2 3 3 4 4 5 1 0 1 0 1 |
Alt | AccRevsee docs | missing | 1 -1 0 1 1 2 -1 0 -1 0 1 1 2 2 3 -1 0 -1 0 -1 0 1 1 2 2 3 3 4 -1 0 -1 0 -1 0 -1 0 1 1 2 2 3 3 4 4 5 |
Alt | AntiDiagsee docs | missing | 1 1 1 -1 1 0 1 -1 1 1 0 1 1 -1 1 -1 1 0 1 0 1 -1 1 -1 1 1 0 1 0 1 1 -1 1 -1 1 -1 1 0 1 0 1 0 1 -1 1 |
Alt | Diffx1T(n, k) (k+1) | missing | 1 1 -2 1 0 3 1 -2 3 -4 1 0 3 0 5 1 -2 3 -4 5 -6 1 0 3 0 5 0 7 1 -2 3 -4 5 -6 7 -8 1 0 3 0 5 0 7 0 9 |
Alt | RowSum∑ k=0..n T(n, k) | A142150 | 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 10 0 11 0 12 0 13 0 14 0 15 0 16 0 17 0 18 0 19 0 20 0 21 0 22 |
Alt | EvenSum∑ k=0..n T(n, k) even(k) | A004526 | 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13 14 14 15 15 16 16 17 17 18 18 19 19 20 |
Alt | OddSum∑ k=0..n T(n, k) odd(k) | A142150 | 0 -1 0 -2 0 -3 0 -4 0 -5 0 -6 0 -7 0 -8 0 -9 0 -10 0 -11 0 -12 0 -13 0 -14 0 -15 0 -16 0 -17 0 -18 |
Alt | AltSum∑ k=0..n T(n, k) (-1)^k | A029578 | 1 2 2 4 3 6 4 8 5 10 6 12 7 14 8 16 9 18 10 20 11 22 12 24 13 26 14 28 15 30 16 32 17 34 18 36 19 |
Alt | AbsSum∑ k=0..n | T(n, k) | | A029578 | 1 2 2 4 3 6 4 8 5 10 6 12 7 14 8 16 9 18 10 20 11 22 12 24 13 26 14 28 15 30 16 32 17 34 18 36 19 |
Alt | DiagSum∑ k=0..n // 2 T(n - k, k) | A354856 | 1 1 0 1 1 2 0 2 1 3 0 3 1 4 0 4 1 5 0 5 1 6 0 6 1 7 0 7 1 8 0 8 1 9 0 9 1 10 0 10 1 11 0 11 1 12 0 |
Alt | AccSum∑ k=0..n ∑ j=0..k T(n, j) | A051494 | 1 1 4 2 9 3 16 4 25 5 36 6 49 7 64 8 81 9 100 10 121 11 144 12 169 13 196 14 225 15 256 16 289 17 |
Alt | AccRevSum∑ k=0..n ∑ j=0..k T(n, n - j) | A051494 | 1 -1 4 -2 9 -3 16 -4 25 -5 36 -6 49 -7 64 -8 81 -9 100 -10 121 -11 144 -12 169 -13 196 -14 225 -15 |
Alt | RowLcmLcm k=0..n | T(n, k) | > 1 | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Alt | RowGcdGcd k=0..n | T(n, k) | > 1 | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Alt | RowMaxMax k=0..n | T(n, k) | | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Alt | ColMiddleT(n, n // 2) | A166486 | 1 1 0 -1 1 1 0 -1 1 1 0 -1 1 1 0 -1 1 1 0 -1 1 1 0 -1 1 1 0 -1 1 1 0 -1 1 1 0 -1 1 1 0 -1 1 1 0 -1 |
Alt | CentralET(2 n, n) | A000035 | 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 |
Alt | ColLeftT(n, 0) | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Alt | BinConv∑ k=0..n C(n, k) T(n, k) | A103424 | 1 0 2 0 8 0 32 0 128 0 512 0 2048 0 8192 0 32768 0 131072 0 524288 0 2097152 0 8388608 0 33554432 0 |
Alt | InvBinConv∑ k=0..n C(n, k) T(n, n - k) (-1)^k | A158302 | 1 -2 2 -8 8 -32 32 -128 128 -512 512 -2048 2048 -8192 8192 -32768 32768 -131072 131072 -524288 |
Alt | TransNat0∑ k=0..n T(n, k) k | A129889 | 0 -1 2 -2 6 -3 12 -4 20 -5 30 -6 42 -7 56 -8 72 -9 90 -10 110 -11 132 -12 156 -13 182 -14 210 -15 |
Alt | TransNat1∑ k=0..n T(n, k) (k + 1) | A051494 | 1 -1 4 -2 9 -3 16 -4 25 -5 36 -6 49 -7 64 -8 81 -9 100 -10 121 -11 144 -12 169 -13 196 -14 225 -15 |
Alt | TransSqrs∑ k=0..n T(n, k) k^2 | missing | 0 -1 4 -6 20 -15 56 -28 120 -45 220 -66 364 -91 560 -120 816 -153 1140 -190 1540 -231 2024 -276 |
Alt | PosHalf∑ k=0..n 2^n T(n, k) (1/2)^k | A052992 | 1 1 5 5 21 21 85 85 341 341 1365 1365 5461 5461 21845 21845 87381 87381 349525 349525 1398101 |
Alt | NegHalf∑ k=0..n (-2)^n T(n, k) (-1/2)^k | missing | 1 -3 5 -15 21 -63 85 -255 341 -1023 1365 -4095 5461 -16383 21845 -65535 87381 -262143 349525 |
Alt | DiagRow1T(n + 1, n) | A000035 | 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 |
Alt | DiagRow3T(n + 3, n) | A000035 | 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 |
Alt | DiagCol1T(n + 1, 1) | A000035 | -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 |
Alt | DiagCol2T(n + 2, 2) | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Alt | DiagCol3T(n + 3, 3) | A000035 | -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 |
Alt | Polysee docs | missing | 1 1 1 1 0 1 1 2 -1 1 1 0 5 -2 1 1 3 -5 10 -3 1 1 0 21 -20 17 -4 1 1 4 -21 91 -51 26 -5 1 1 0 85 |
Alt | PolyRow1∑ k=0..1 T(1, k) n^k | A000027 | 1 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25 -26 |
Alt | PolyRow2∑ k=0..2 T(2, k) n^k | A002522 | 1 2 5 10 17 26 37 50 65 82 101 122 145 170 197 226 257 290 325 362 401 442 485 530 577 626 677 730 |
Alt | PolyRow3∑ k=0..3 T(3, k) n^k | A062158 | 1 0 -5 -20 -51 -104 -185 -300 -455 -656 -909 -1220 -1595 -2040 -2561 -3164 -3855 -4640 -5525 -6516 |
Alt | PolyCol3∑ k=0..n T(n, k) 3^k | missing | 1 -2 10 -20 91 -182 820 -1640 7381 -14762 66430 -132860 597871 -1195742 5380840 -10761680 48427561 |
Alt | PolyDiag∑ k=0..n T(n, k) n^k | missing | 1 0 5 -20 273 -2604 47989 -720600 17043521 -348678440 10101010101 -261535698060 8978450801041 |
Inv | TriangleT(n, k), 0 ≤ k ≤ n | A106468 | 1 -1 1 -1 0 1 1 -1 -1 1 0 0 -1 0 1 0 0 1 -1 -1 1 0 0 0 0 -1 0 1 0 0 0 0 1 -1 -1 1 0 0 0 0 0 0 -1 0 |
Inv | RevT(n, n - k), 0 ≤ k ≤ n | A000012 | 1 1 -1 1 0 -1 1 -1 -1 1 1 0 -1 0 0 1 -1 -1 1 0 0 1 0 -1 0 0 0 0 1 -1 -1 1 0 0 0 0 1 0 -1 0 0 0 0 0 |
Inv | RevInvT-1(n, n - k), 0 ≤ k ≤ n | A106465 | 1 1 1 1 0 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0 1 1 1 1 1 1 |
Inv | Accsee docs | missing | 1 -1 0 -1 -1 0 1 0 -1 0 0 0 -1 -1 0 0 0 1 0 -1 0 0 0 0 0 -1 -1 0 0 0 0 0 1 0 -1 0 0 0 0 0 0 0 -1 -1 |
Inv | AccRevsee docs | missing | 1 1 0 1 1 0 1 0 -1 0 1 1 0 0 0 1 0 -1 0 0 0 1 1 0 0 0 0 0 1 0 -1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 -1 |
Inv | Diffx1T(n, k) (k+1) | missing | 1 -1 2 -1 0 3 1 -2 -3 4 0 0 -3 0 5 0 0 3 -4 -5 6 0 0 0 0 -5 0 7 0 0 0 0 5 -6 -7 8 0 0 0 0 0 0 -7 0 |
Inv | RowSum∑ k=0..n T(n, k) | A000007 | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Inv | OddSum∑ k=0..n T(n, k) odd(k) | A063524 | 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Inv | AltSum∑ k=0..n T(n, k) (-1)^k | A130706 | 1 -2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Inv | AbsSum∑ k=0..n | T(n, k) | | A105397 | 1 2 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 |
Inv | DiagSum∑ k=0..n // 2 T(n - k, k) | A000035 | 1 -1 0 1 0 -1 0 1 0 -1 0 1 0 -1 0 1 0 -1 0 1 0 -1 0 1 0 -1 0 1 0 -1 0 1 0 -1 0 1 0 -1 0 1 0 -1 0 1 |
Inv | AccSum∑ k=0..n ∑ j=0..k T(n, j) | A010673 | 1 -1 -2 0 -2 0 -2 0 -2 0 -2 0 -2 0 -2 0 -2 0 -2 0 -2 0 -2 0 -2 0 -2 0 -2 0 -2 0 -2 0 -2 0 -2 0 -2 0 |
Inv | AccRevSum∑ k=0..n ∑ j=0..k T(n, n - j) | A010673 | 1 1 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 |
Inv | RowLcmLcm k=0..n | T(n, k) | > 1 | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Inv | RowGcdGcd k=0..n | T(n, k) | > 1 | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Inv | RowMaxMax k=0..n | T(n, k) | | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Inv | ColMiddleT(n, n // 2) | A115944 | 1 -1 0 -1 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Inv | CentralOT(2 n + 1, n) | A079944 | -1 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Inv | ColRightT(n, n) | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Inv | BinConv∑ k=0..n C(n, k) T(n, k) | missing | 1 0 0 -4 -5 -4 -14 8 -27 40 -44 100 -65 196 -90 336 -119 528 -152 780 -189 1100 -230 1496 -275 1976 |
Inv | InvBinConv∑ k=0..n C(n, k) T(n, n - k) (-1)^k | missing | 1 2 0 0 -5 -14 -14 -48 -27 -110 -44 -208 -65 -350 -90 -544 -119 -798 -152 -1120 -189 -1518 -230 |
Inv | TransNat0∑ k=0..n T(n, k) k | A010673 | 0 1 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 |
Inv | TransNat1∑ k=0..n T(n, k) (k + 1) | A010673 | 1 1 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 |
Inv | TransSqrs∑ k=0..n T(n, k) k^2 | missing | 0 1 4 4 12 4 20 4 28 4 36 4 44 4 52 4 60 4 68 4 76 4 84 4 92 4 100 4 108 4 116 4 124 4 132 4 140 4 |
Inv | NegHalf∑ k=0..n (-2)^n T(n, k) (-1/2)^k | A010707 | 1 3 -3 -9 -3 -9 -3 -9 -3 -9 -3 -9 -3 -9 -3 -9 -3 -9 -3 -9 -3 -9 -3 -9 -3 -9 -3 -9 -3 -9 -3 -9 -3 -9 |
Inv | DiagRow1T(n + 1, n) | A000035 | -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 |
Inv | DiagRow2T(n + 2, n) | A000012 | -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 |
Inv | DiagRow3T(n + 3, n) | A000035 | 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 |
Inv | Polysee docs | missing | 1 -1 1 -1 0 1 1 0 1 1 0 0 3 2 1 0 0 3 8 3 1 0 0 12 16 15 4 1 0 0 12 72 45 24 5 1 0 0 48 144 240 96 |
Inv | PolyRow1∑ k=0..1 T(1, k) n^k | A000027 | -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 |
Inv | PolyRow2∑ k=0..2 T(2, k) n^k | A005563 | -1 0 3 8 15 24 35 48 63 80 99 120 143 168 195 224 255 288 323 360 399 440 483 528 575 624 675 728 |
Inv | PolyRow3∑ k=0..3 T(3, k) n^k | A152618 | 1 0 3 16 45 96 175 288 441 640 891 1200 1573 2016 2535 3136 3825 4608 5491 6480 7581 8800 10143 |
Inv | PolyCol2∑ k=0..n T(n, k) 2^k | A117856 | 1 1 3 3 12 12 48 48 192 192 768 768 3072 3072 12288 12288 49152 49152 196608 196608 786432 786432 |
Inv | PolyCol3∑ k=0..n T(n, k) 3^k | missing | 1 2 8 16 72 144 648 1296 5832 11664 52488 104976 472392 944784 4251528 8503056 38263752 76527504 |
Inv | PolyDiag∑ k=0..n T(n, k) n^k | missing | 1 0 3 16 240 2400 45360 691488 16515072 340122240 9900000000 257230657200 8854183084032 |
Inv:Rev | TriangleT(n, k), 0 ≤ k ≤ n | A000012 | 1 1 -1 1 0 -1 1 -1 -1 1 1 0 -1 0 0 1 -1 -1 1 0 0 1 0 -1 0 0 0 0 1 -1 -1 1 0 0 0 0 1 0 -1 0 0 0 0 0 |
Inv:Rev | RevT(n, n - k), 0 ≤ k ≤ n | A106468 | 1 -1 1 -1 0 1 1 -1 -1 1 0 0 -1 0 1 0 0 1 -1 -1 1 0 0 0 0 -1 0 1 0 0 0 0 1 -1 -1 1 0 0 0 0 0 0 -1 0 |
Inv:Rev | InvRev(T(n, n - k))-1, 0 ≤ k ≤ n | A106465 | 1 1 1 1 0 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0 1 1 1 1 1 1 |
Inv:Rev | Accsee docs | missing | 1 1 0 1 1 0 1 0 -1 0 1 1 0 0 0 1 0 -1 0 0 0 1 1 0 0 0 0 0 1 0 -1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 -1 |
Inv:Rev | AccRevsee docs | missing | 1 -1 0 -1 -1 0 1 0 -1 0 0 0 -1 -1 0 0 0 1 0 -1 0 0 0 0 0 -1 -1 0 0 0 0 0 1 0 -1 0 0 0 0 0 0 0 -1 -1 |
Inv:Rev | AntiDiagsee docs | missing | 1 1 1 -1 1 0 1 -1 -1 1 0 -1 1 -1 -1 1 1 0 -1 0 1 -1 -1 1 0 1 0 -1 0 0 1 -1 -1 1 0 0 1 0 -1 0 0 0 1 |
Inv:Rev | Diffx1T(n, k) (k+1) | missing | 1 1 -2 1 0 -3 1 -2 -3 4 1 0 -3 0 0 1 -2 -3 4 0 0 1 0 -3 0 0 0 0 1 -2 -3 4 0 0 0 0 1 0 -3 0 0 0 0 0 |
Inv:Rev | RowSum∑ k=0..n T(n, k) | A000007 | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Inv:Rev | EvenSum∑ k=0..n T(n, k) even(k) | A019590 | 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Inv:Rev | OddSum∑ k=0..n T(n, k) odd(k) | A063524 | 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Inv:Rev | AltSum∑ k=0..n T(n, k) (-1)^k | A130706 | 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Inv:Rev | AbsSum∑ k=0..n | T(n, k) | | A105397 | 1 2 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 |
Inv:Rev | DiagSum∑ k=0..n // 2 T(n - k, k) | A039966 | 1 1 0 1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Inv:Rev | AccSum∑ k=0..n ∑ j=0..k T(n, j) | A010673 | 1 1 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 |
Inv:Rev | AccRevSum∑ k=0..n ∑ j=0..k T(n, n - j) | A010673 | 1 -1 -2 0 -2 0 -2 0 -2 0 -2 0 -2 0 -2 0 -2 0 -2 0 -2 0 -2 0 -2 0 -2 0 -2 0 -2 0 -2 0 -2 0 -2 0 -2 0 |
Inv:Rev | RowLcmLcm k=0..n | T(n, k) | > 1 | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Inv:Rev | RowGcdGcd k=0..n | T(n, k) | > 1 | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Inv:Rev | RowMaxMax k=0..n | T(n, k) | | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Inv:Rev | ColLeftT(n, 0) | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Inv:Rev | BinConv∑ k=0..n C(n, k) T(n, k) | missing | 1 0 0 -4 -5 -4 -14 8 -27 40 -44 100 -65 196 -90 336 -119 528 -152 780 -189 1100 -230 1496 -275 1976 |
Inv:Rev | InvBinConv∑ k=0..n C(n, k) T(n, n - k) (-1)^k | missing | 1 -2 0 0 -5 14 -14 48 -27 110 -44 208 -65 350 -90 544 -119 798 -152 1120 -189 1518 -230 2000 -275 |
Inv:Rev | TransNat0∑ k=0..n T(n, k) k | A010673 | 0 -1 -2 0 -2 0 -2 0 -2 0 -2 0 -2 0 -2 0 -2 0 -2 0 -2 0 -2 0 -2 0 -2 0 -2 0 -2 0 -2 0 -2 0 -2 0 -2 0 |
Inv:Rev | TransNat1∑ k=0..n T(n, k) (k + 1) | A010673 | 1 -1 -2 0 -2 0 -2 0 -2 0 -2 0 -2 0 -2 0 -2 0 -2 0 -2 0 -2 0 -2 0 -2 0 -2 0 -2 0 -2 0 -2 0 -2 0 -2 0 |
Inv:Rev | TransSqrs∑ k=0..n T(n, k) k^2 | A084558 | 0 -1 -4 4 -4 4 -4 4 -4 4 -4 4 -4 4 -4 4 -4 4 -4 4 -4 4 -4 4 -4 4 -4 4 -4 4 -4 4 -4 4 -4 4 -4 4 -4 4 |
Inv:Rev | PosHalf∑ k=0..n 2^n T(n, k) (1/2)^k | A117856 | 1 1 3 3 12 12 48 48 192 192 768 768 3072 3072 12288 12288 49152 49152 196608 196608 786432 786432 |
Inv:Rev | NegHalf∑ k=0..n (-2)^n T(n, k) (-1/2)^k | A137344 | 1 -3 3 -9 12 -36 48 -144 192 -576 768 -2304 3072 -9216 12288 -36864 49152 -147456 196608 -589824 |
Inv:Rev | DiagCol1T(n + 1, 1) | A000035 | -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 |
Inv:Rev | DiagCol2T(n + 2, 2) | A000012 | -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 |
Inv:Rev | DiagCol3T(n + 3, 3) | A000035 | 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 |
Inv:Rev | Polysee docs | missing | 1 1 1 1 0 1 1 0 -1 1 1 0 -3 -2 1 1 0 3 -8 -3 1 1 0 -3 16 -15 -4 1 1 0 3 -8 45 -24 -5 1 1 0 -3 16 |
Inv:Rev | PolyRow1∑ k=0..1 T(1, k) n^k | A000027 | 1 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25 -26 |
Inv:Rev | PolyRow2∑ k=0..2 T(2, k) n^k | A005563 | 1 0 -3 -8 -15 -24 -35 -48 -63 -80 -99 -120 -143 -168 -195 -224 -255 -288 -323 -360 -399 -440 -483 |
Inv:Rev | PolyRow3∑ k=0..3 T(3, k) n^k | A152618 | 1 0 3 16 45 96 175 288 441 640 891 1200 1573 2016 2535 3136 3825 4608 5491 6480 7581 8800 10143 |
Inv:Rev | PolyCol3∑ k=0..n T(n, k) 3^k | A040057 | 1 -2 -8 16 -8 16 -8 16 -8 16 -8 16 -8 16 -8 16 -8 16 -8 16 -8 16 -8 16 -8 16 -8 16 -8 16 -8 16 -8 |
Inv:Rev | PolyDiag∑ k=0..n T(n, k) n^k | missing | 1 0 -3 16 -15 96 -35 288 -63 640 -99 1200 -143 2016 -195 3136 -255 4608 -323 6480 -399 8800 -483 |
<< | Table | Source | Similars | Index | >> |
Note: The A-numbers are based on a finite number of numerical comparisons. They ignore the sign and the OEIS-offset. Sometimes they differ in the first few values. In such cases, we consider our version to be the better one because it has a common formula as a root. Since the offset of all triangles is 0 also the offset of all sequences is 0.