OEIS Similars: A008288
↕ Type | ↕ Trait | ↕ Anum | ↕ Sequence |
---|---|---|---|
Std | TriangleT(n, k), 0 ≤ k ≤ n | A008288 | 1 1 1 1 3 1 1 5 5 1 1 7 13 7 1 1 9 25 25 9 1 1 11 41 63 41 11 1 1 13 61 129 129 61 13 1 1 15 85 231 |
Std | RevT(n, n - k), 0 ≤ k ≤ n | A008288 | 1 1 1 1 3 1 1 5 5 1 1 7 13 7 1 1 9 25 25 9 1 1 11 41 63 41 11 1 1 13 61 129 129 61 13 1 1 15 85 231 |
Std | InvT-1(n, k), 0 ≤ k ≤ n | A132372 | 1 -1 1 2 -3 1 -6 10 -5 1 22 -38 22 -7 1 -90 158 -98 38 -9 1 394 -698 450 -194 58 -11 1 -1806 3218 |
Std | RevInvT-1(n, n - k), 0 ≤ k ≤ n | A033878 | 1 1 -1 1 -3 2 1 -5 10 -6 1 -7 22 -38 22 1 -9 38 -98 158 -90 1 -11 58 -194 450 -698 394 1 -13 82 |
Std | InvRev(T(n, n - k))-1, 0 ≤ k ≤ n | A132372 | 1 -1 1 2 -3 1 -6 10 -5 1 22 -38 22 -7 1 -90 158 -98 38 -9 1 394 -698 450 -194 58 -11 1 -1806 3218 |
Std | Accsee docs | missing | 1 1 2 1 4 5 1 6 11 12 1 8 21 28 29 1 10 35 60 69 70 1 12 53 116 157 168 169 1 14 75 204 333 394 407 |
Std | AccRevsee docs | missing | 1 1 2 1 4 5 1 6 11 12 1 8 21 28 29 1 10 35 60 69 70 1 12 53 116 157 168 169 1 14 75 204 333 394 407 |
Std | AntiDiagsee docs | missing | 1 1 1 1 1 3 1 5 1 1 7 5 1 9 13 1 1 11 25 7 1 13 41 25 1 1 15 61 63 9 1 17 85 129 41 1 1 19 113 231 |
Std | Diffx1T(n, k) (k+1) | missing | 1 1 2 1 6 3 1 10 15 4 1 14 39 28 5 1 18 75 100 45 6 1 22 123 252 205 66 7 1 26 183 516 645 366 91 8 |
Std | RowSum∑ k=0..n T(n, k) | A000129 | 1 2 5 12 29 70 169 408 985 2378 5741 13860 33461 80782 195025 470832 1136689 2744210 6625109 |
Std | EvenSum∑ k=0..n T(n, k) even(k) | A116404 | 1 1 2 6 15 35 84 204 493 1189 2870 6930 16731 40391 97512 235416 568345 1372105 3312554 7997214 |
Std | OddSum∑ k=0..n T(n, k) odd(k) | missing | 0 1 3 6 14 35 85 204 492 1189 2871 6930 16730 40391 97513 235416 568344 1372105 3312555 7997214 |
Std | AbsSum∑ k=0..n | T(n, k) | | A000129 | 1 2 5 12 29 70 169 408 985 2378 5741 13860 33461 80782 195025 470832 1136689 2744210 6625109 |
Std | DiagSum∑ k=0..n // 2 T(n - k, k) | A000073 | 1 1 2 4 7 13 24 44 81 149 274 504 927 1705 3136 5768 10609 19513 35890 66012 121415 223317 410744 |
Std | AccSum∑ k=0..n ∑ j=0..k T(n, j) | A026937 | 1 3 10 30 87 245 676 1836 4925 13079 34446 90090 234227 605865 1560200 4002072 10230201 26069995 |
Std | AccRevSum∑ k=0..n ∑ j=0..k T(n, n - j) | A026937 | 1 3 10 30 87 245 676 1836 4925 13079 34446 90090 234227 605865 1560200 4002072 10230201 26069995 |
Std | RowLcmLcm k=0..n | T(n, k) | > 1 | missing | 1 1 3 5 91 225 28413 102297 2100945 493191777 687316036275 1234284016329 15595691983727999 |
Std | RowGcdGcd k=0..n | T(n, k) | > 1 | A126307 | 1 1 3 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Std | RowMaxMax k=0..n | T(n, k) | | A026003 | 1 1 3 5 13 25 63 129 321 681 1683 3653 8989 19825 48639 108545 265729 598417 1462563 3317445 |
Std | ColMiddleT(n, n // 2) | A026003 | 1 1 3 5 13 25 63 129 321 681 1683 3653 8989 19825 48639 108545 265729 598417 1462563 3317445 |
Std | CentralET(2 n, n) | A001850 | 1 3 13 63 321 1683 8989 48639 265729 1462563 8097453 45046719 251595969 1409933619 7923848253 |
Std | CentralOT(2 n + 1, n) | A002002 | 1 5 25 129 681 3653 19825 108545 598417 3317445 18474633 103274625 579168825 3256957317 18359266785 |
Std | ColLeftT(n, 0) | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Std | ColRightT(n, n) | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Std | BinConv∑ k=0..n C(n, k) T(n, k) | A006139 | 1 2 8 32 136 592 2624 11776 53344 243392 1116928 5149696 23835904 110690816 515483648 2406449152 |
Std | InvBinConv∑ k=0..n C(n, k) T(n, n - k) (-1)^k | A059304 | 1 0 -4 0 24 0 -160 0 1120 0 -8064 0 59136 0 -439296 0 3294720 0 -24893440 0 189190144 0 -1444724736 |
Std | TransNat0∑ k=0..n T(n, k) k | A364553 | 0 1 5 18 58 175 507 1428 3940 10701 28705 76230 200766 525083 1365175 3531240 9093512 23325785 |
Std | TransNat1∑ k=0..n T(n, k) (k + 1) | A026937 | 1 3 10 30 87 245 676 1836 4925 13079 34446 90090 234227 605865 1560200 4002072 10230201 26069995 |
Std | TransSqrs∑ k=0..n T(n, k) k^2 | missing | 0 1 7 34 138 503 1709 5524 17204 52061 153971 446934 1277310 3602867 10048985 27757160 76021992 |
Std | PosHalf∑ k=0..n 2^n T(n, k) (1/2)^k | A007482 | 1 3 11 39 139 495 1763 6279 22363 79647 283667 1010295 3598219 12815247 45642179 162557031 |
Std | NegHalf∑ k=0..n (-2)^n T(n, k) (-1/2)^k | A077020 | 1 -1 -1 3 -1 -5 7 3 -17 11 23 -45 -1 91 -89 -93 271 -85 -457 627 287 -1541 967 2115 -4049 -181 8279 |
Std | DiagRow1T(n + 1, n) | A005408 | 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 |
Std | DiagRow2T(n + 2, n) | A001844 | 1 5 13 25 41 61 85 113 145 181 221 265 313 365 421 481 545 613 685 761 841 925 1013 1105 1201 1301 |
Std | DiagRow3T(n + 3, n) | A001845 | 1 7 25 63 129 231 377 575 833 1159 1561 2047 2625 3303 4089 4991 6017 7175 8473 9919 11521 13287 |
Std | DiagCol1T(n + 1, 1) | A005408 | 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 |
Std | DiagCol2T(n + 2, 2) | A001844 | 1 5 13 25 41 61 85 113 145 181 221 265 313 365 421 481 545 613 685 761 841 925 1013 1105 1201 1301 |
Std | DiagCol3T(n + 3, 3) | A001845 | 1 7 25 63 129 231 377 575 833 1159 1561 2047 2625 3303 4089 4991 6017 7175 8473 9919 11521 13287 |
Std | Polysee docs | missing | 1 1 1 1 2 1 1 5 3 1 1 12 11 4 1 1 29 39 19 5 1 1 70 139 88 29 6 1 1 169 495 409 165 41 7 1 1 408 |
Std | PolyRow1∑ k=0..1 T(1, k) n^k | A000027 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
Std | PolyRow2∑ k=0..2 T(2, k) n^k | A028387 | 1 5 11 19 29 41 55 71 89 109 131 155 181 209 239 271 305 341 379 419 461 505 551 599 649 701 755 |
Std | PolyRow3∑ k=0..3 T(3, k) n^k | missing | 1 12 39 88 165 276 427 624 873 1180 1551 1992 2509 3108 3795 4576 5457 6444 7543 8760 10101 11572 |
Std | PolyCol2∑ k=0..n T(n, k) 2^k | A007482 | 1 3 11 39 139 495 1763 6279 22363 79647 283667 1010295 3598219 12815247 45642179 162557031 |
Std | PolyCol3∑ k=0..n T(n, k) 3^k | A015530 | 1 4 19 88 409 1900 8827 41008 190513 885076 4111843 19102600 88745929 412291516 1915403851 |
Std | PolyDiag∑ k=0..n T(n, k) n^k | A376871 | 1 2 11 88 941 12546 200479 3735264 79524793 1905008050 50720779691 1486111590360 47524305052069 |
Alt | InvT-1(n, k), 0 ≤ k ≤ n | missing | 1 -1 1 -4 3 1 14 -10 -5 1 142 -102 -48 7 1 -838 602 282 -38 -9 1 -14006 10062 4714 -642 -140 11 1 |
Alt | RevInvT-1(n, n - k), 0 ≤ k ≤ n | missing | 1 1 -1 1 3 -4 1 -5 -10 14 1 7 -48 -102 142 1 -9 -38 282 602 -838 1 11 -140 -642 4714 10062 -14006 1 |
Alt | InvRev(T(n, n - k))-1, 0 ≤ k ≤ n | A132372 | 1 1 1 2 3 1 6 10 5 1 22 38 22 7 1 90 158 98 38 9 1 394 698 450 194 58 11 1 1806 3218 2126 978 334 |
Alt | Accsee docs | missing | 1 1 0 1 -2 -1 1 -4 1 0 1 -6 7 0 1 1 -8 17 -8 1 0 1 -10 31 -32 9 -2 -1 1 -12 49 -80 49 -12 1 0 1 -14 |
Alt | AntiDiagsee docs | missing | 1 1 1 -1 1 -3 1 -5 1 1 -7 5 1 -9 13 -1 1 -11 25 -7 1 -13 41 -25 1 1 -15 61 -63 9 1 -17 85 -129 41 |
Alt | EvenSum∑ k=0..n T(n, k) even(k) | A116404 | 1 1 2 6 15 35 84 204 493 1189 2870 6930 16731 40391 97512 235416 568345 1372105 3312554 7997214 |
Alt | OddSum∑ k=0..n T(n, k) odd(k) | missing | 0 -1 -3 -6 -14 -35 -85 -204 -492 -1189 -2871 -6930 -16730 -40391 -97513 -235416 -568344 -1372105 |
Alt | AltSum∑ k=0..n T(n, k) (-1)^k | A000129 | 1 2 5 12 29 70 169 408 985 2378 5741 13860 33461 80782 195025 470832 1136689 2744210 6625109 |
Alt | AbsSum∑ k=0..n | T(n, k) | | A000129 | 1 2 5 12 29 70 169 408 985 2378 5741 13860 33461 80782 195025 470832 1136689 2744210 6625109 |
Alt | DiagSum∑ k=0..n // 2 T(n - k, k) | A057597 | 1 1 0 -2 -3 -1 4 8 5 -7 -20 -18 9 47 56 0 -103 -159 -56 206 421 271 -356 -1048 -963 441 2452 2974 |
Alt | AccSum∑ k=0..n ∑ j=0..k T(n, j) | A004526 | 1 1 -2 -2 3 3 -4 -4 5 5 -6 -6 7 7 -8 -8 9 9 -10 -10 11 11 -12 -12 13 13 -14 -14 15 15 -16 -16 17 17 |
Alt | RowLcmLcm k=0..n | T(n, k) | > 1 | missing | 1 1 3 5 91 225 28413 102297 2100945 493191777 687316036275 1234284016329 15595691983727999 |
Alt | RowGcdGcd k=0..n | T(n, k) | > 1 | A126307 | 1 1 3 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Alt | RowMaxMax k=0..n | T(n, k) | | A026003 | 1 1 3 5 13 25 63 129 321 681 1683 3653 8989 19825 48639 108545 265729 598417 1462563 3317445 |
Alt | ColMiddleT(n, n // 2) | A026003 | 1 1 -3 -5 13 25 -63 -129 321 681 -1683 -3653 8989 19825 -48639 -108545 265729 598417 -1462563 |
Alt | CentralET(2 n, n) | A001850 | 1 -3 13 -63 321 -1683 8989 -48639 265729 -1462563 8097453 -45046719 251595969 -1409933619 |
Alt | CentralOT(2 n + 1, n) | A002002 | 1 -5 25 -129 681 -3653 19825 -108545 598417 -3317445 18474633 -103274625 579168825 -3256957317 |
Alt | ColLeftT(n, 0) | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Alt | BinConv∑ k=0..n C(n, k) T(n, k) | A059304 | 1 0 -4 0 24 0 -160 0 1120 0 -8064 0 59136 0 -439296 0 3294720 0 -24893440 0 189190144 0 -1444724736 |
Alt | InvBinConv∑ k=0..n C(n, k) T(n, n - k) (-1)^k | A006139 | 1 -2 8 -32 136 -592 2624 -11776 53344 -243392 1116928 -5149696 23835904 -110690816 515483648 |
Alt | TransSqrs∑ k=0..n T(n, k) k^2 | missing | 0 -1 1 6 -2 -15 3 28 -4 -45 5 66 -6 -91 7 120 -8 -153 9 190 -10 -231 11 276 -12 -325 13 378 -14 |
Alt | PosHalf∑ k=0..n 2^n T(n, k) (1/2)^k | A077020 | 1 1 -1 -3 -1 5 7 -3 -17 -11 23 45 -1 -91 -89 93 271 85 -457 -627 287 1541 967 -2115 -4049 181 8279 |
Alt | NegHalf∑ k=0..n (-2)^n T(n, k) (-1/2)^k | A007482 | 1 -3 11 -39 139 -495 1763 -6279 22363 -79647 283667 -1010295 3598219 -12815247 45642179 -162557031 |
Alt | DiagRow1T(n + 1, n) | A005408 | 1 -3 5 -7 9 -11 13 -15 17 -19 21 -23 25 -27 29 -31 33 -35 37 -39 41 -43 45 -47 49 -51 53 -55 57 -59 |
Alt | DiagRow2T(n + 2, n) | A001844 | 1 -5 13 -25 41 -61 85 -113 145 -181 221 -265 313 -365 421 -481 545 -613 685 -761 841 -925 1013 |
Alt | DiagRow3T(n + 3, n) | A001845 | 1 -7 25 -63 129 -231 377 -575 833 -1159 1561 -2047 2625 -3303 4089 -4991 6017 -7175 8473 -9919 |
Alt | DiagCol1T(n + 1, 1) | A005408 | -1 -3 -5 -7 -9 -11 -13 -15 -17 -19 -21 -23 -25 -27 -29 -31 -33 -35 -37 -39 -41 -43 -45 -47 -49 -51 |
Alt | DiagCol2T(n + 2, 2) | A001844 | 1 5 13 25 41 61 85 113 145 181 221 265 313 365 421 481 545 613 685 761 841 925 1013 1105 1201 1301 |
Alt | DiagCol3T(n + 3, 3) | A001845 | -1 -7 -25 -63 -129 -231 -377 -575 -833 -1159 -1561 -2047 -2625 -3303 -4089 -4991 -6017 -7175 -8473 |
Alt | Polysee docs | missing | 1 1 1 1 0 1 1 -1 -1 1 1 0 -1 -2 1 1 1 3 1 -3 1 1 0 -1 4 5 -4 1 1 -1 -5 -11 -3 11 -5 1 1 0 7 10 -11 |
Alt | PolyRow1∑ k=0..1 T(1, k) n^k | A000027 | 1 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25 -26 |
Alt | PolyRow2∑ k=0..2 T(2, k) n^k | A028387 | 1 -1 -1 1 5 11 19 29 41 55 71 89 109 131 155 181 209 239 271 305 341 379 419 461 505 551 599 649 |
Alt | PolyRow3∑ k=0..3 T(3, k) n^k | missing | 1 0 3 4 -3 -24 -65 -132 -231 -368 -549 -780 -1067 -1416 -1833 -2324 -2895 -3552 -4301 -5148 -6099 |
Alt | PolyCol2∑ k=0..n T(n, k) 2^k | A077020 | 1 -1 -1 3 -1 -5 7 3 -17 11 23 -45 -1 91 -89 -93 271 -85 -457 627 287 -1541 967 2115 -4049 -181 8279 |
Alt | PolyCol3∑ k=0..n T(n, k) 3^k | A088137 | 1 -2 1 4 -11 10 13 -56 73 22 -263 460 -131 -1118 2629 -1904 -4079 13870 -15503 -10604 67717 -103622 |
Alt | PolyDiag∑ k=0..n T(n, k) n^k | missing | 1 0 -1 4 -11 -44 2059 -50952 1234633 -31758632 883029311 -26609171940 867210664189 -30457304468148 |
Inv | TriangleT(n, k), 0 ≤ k ≤ n | A132372 | 1 -1 1 2 -3 1 -6 10 -5 1 22 -38 22 -7 1 -90 158 -98 38 -9 1 394 -698 450 -194 58 -11 1 -1806 3218 |
Inv | RevT(n, n - k), 0 ≤ k ≤ n | A033878 | 1 1 -1 1 -3 2 1 -5 10 -6 1 -7 22 -38 22 1 -9 38 -98 158 -90 1 -11 58 -194 450 -698 394 1 -13 82 |
Inv | RevInvT-1(n, n - k), 0 ≤ k ≤ n | A008288 | 1 1 1 1 3 1 1 5 5 1 1 7 13 7 1 1 9 25 25 9 1 1 11 41 63 41 11 1 1 13 61 129 129 61 13 1 1 15 85 231 |
Inv | Accsee docs | A122538 | 1 -1 0 2 -1 0 -6 4 -1 0 22 -16 6 -1 0 -90 68 -30 8 -1 0 394 -304 146 -48 10 -1 0 -1806 1412 -714 |
Inv | AccRevsee docs | A106579 | 1 1 0 1 -2 0 1 -4 6 0 1 -6 16 -22 0 1 -8 30 -68 90 0 1 -10 48 -146 304 -394 0 1 -12 70 -264 714 |
Inv | AntiDiagsee docs | missing | 1 -1 2 1 -6 -3 22 10 1 -90 -38 -5 394 158 22 1 -1806 -698 -98 -7 8558 3218 450 38 1 -41586 -15310 |
Inv | Diffx1T(n, k) (k+1) | missing | 1 -1 2 2 -6 3 -6 20 -15 4 22 -76 66 -28 5 -90 316 -294 152 -45 6 394 -1396 1350 -776 290 -66 7 |
Inv | RowSum∑ k=0..n T(n, k) | A000007 | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Inv | EvenSum∑ k=0..n T(n, k) even(k) | A001003 | 1 -1 3 -11 45 -197 903 -4279 20793 -103049 518859 -2646723 13648869 -71039373 372693519 -1968801519 |
Inv | OddSum∑ k=0..n T(n, k) odd(k) | A001003 | 0 1 -3 11 -45 197 -903 4279 -20793 103049 -518859 2646723 -13648869 71039373 -372693519 1968801519 |
Inv | AltSum∑ k=0..n T(n, k) (-1)^k | A006318 | 1 -2 6 -22 90 -394 1806 -8558 41586 -206098 1037718 -5293446 27297738 -142078746 745387038 |
Inv | AbsSum∑ k=0..n | T(n, k) | | A006318 | 1 2 6 22 90 394 1806 8558 41586 206098 1037718 5293446 27297738 142078746 745387038 3937603038 |
Inv | DiagSum∑ k=0..n // 2 T(n - k, k) | missing | 1 -1 3 -9 33 -133 575 -2609 12265 -59225 292035 -1464361 7444265 -38279053 198746911 -1040489377 |
Inv | AccSum∑ k=0..n ∑ j=0..k T(n, j) | A001003 | 1 -1 1 -3 11 -45 197 -903 4279 -20793 103049 -518859 2646723 -13648869 71039373 -372693519 |
Inv | AccRevSum∑ k=0..n ∑ j=0..k T(n, n - j) | A001003 | 1 1 -1 3 -11 45 -197 903 -4279 20793 -103049 518859 -2646723 13648869 -71039373 372693519 |
Inv | RowLcmLcm k=0..n | T(n, k) | > 1 | missing | 1 1 6 30 2926 6619410 957340835550 44816541527197986 603669538270861563270 |
Inv | RowGcdGcd k=0..n | T(n, k) | > 1 | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Inv | RowMaxMax k=0..n | T(n, k) | | A103138 | 1 1 3 10 38 158 698 3218 15310 74614 370610 1869338 9549174 49302030 256859754 1348695330 |
Inv | ColMiddleT(n, n // 2) | missing | 1 -1 -3 10 22 -98 -194 978 1838 -9922 -18082 101946 182054 -1057730 -1861890 11058466 19258078 |
Inv | CentralET(2 n, n) | A367393 | 1 -3 22 -194 1838 -18082 182054 -1861890 19258078 -200898626 2109785654 -22275498434 236225927182 |
Inv | CentralOT(2 n + 1, n) | missing | -1 10 -98 978 -9922 101946 -1057730 11058466 -116323586 1229718378 -13053926690 139056632050 |
Inv | ColLeftT(n, 0) | A006318 | 1 -1 2 -6 22 -90 394 -1806 8558 -41586 206098 -1037718 5293446 -27297738 142078746 -745387038 |
Inv | ColRightT(n, n) | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Inv | BinConv∑ k=0..n C(n, k) T(n, k) | A000247 | 1 0 -3 10 -25 56 -119 246 -501 1012 -2035 4082 -8177 16368 -32751 65518 -131053 262124 -524267 |
Inv | InvBinConv∑ k=0..n C(n, k) T(n, n - k) (-1)^k | missing | 1 2 9 52 335 2286 16149 116712 857115 6369250 47759393 360677340 2739503143 20906246102 |
Inv | TransNat0∑ k=0..n T(n, k) k | A001003 | 0 1 -1 3 -11 45 -197 903 -4279 20793 -103049 518859 -2646723 13648869 -71039373 372693519 |
Inv | TransNat1∑ k=0..n T(n, k) (k + 1) | A001003 | 1 1 -1 3 -11 45 -197 903 -4279 20793 -103049 518859 -2646723 13648869 -71039373 372693519 |
Inv | TransSqrs∑ k=0..n T(n, k) k^2 | A001003 | 0 1 1 -1 3 -11 45 -197 903 -4279 20793 -103049 518859 -2646723 13648869 -71039373 372693519 |
Inv | PosHalf∑ k=0..n 2^n T(n, k) (1/2)^k | A330803 | 1 -1 3 -17 123 -1001 8739 -79969 756939 -7349657 72798003 -732681489 7471545435 -77031538377 |
Inv | NegHalf∑ k=0..n (-2)^n T(n, k) (-1/2)^k | missing | 1 3 15 99 759 6363 56559 523827 5001063 48872907 486514335 4916196387 50297275287 519977383227 |
Inv | DiagRow1T(n + 1, n) | A005408 | -1 -3 -5 -7 -9 -11 -13 -15 -17 -19 -21 -23 -25 -27 -29 -31 -33 -35 -37 -39 -41 -43 -45 -47 -49 -51 |
Inv | DiagRow2T(n + 2, n) | A090288 | 2 10 22 38 58 82 110 142 178 218 262 310 362 418 478 542 610 682 758 838 922 1010 1102 1198 1298 |
Inv | DiagRow3T(n + 3, n) | missing | -6 -38 -98 -194 -334 -526 -778 -1098 -1494 -1974 -2546 -3218 -3998 -4894 -5914 -7066 -8358 -9798 |
Inv | DiagCol1T(n + 1, 1) | A103138 | 1 -3 10 -38 158 -698 3218 -15310 74614 -370610 1869338 -9549174 49302030 -256859754 1348695330 |
Inv | DiagCol2T(n + 2, 2) | missing | 1 -5 22 -98 450 -2126 10286 -50746 254410 -1292630 6642118 -34459410 180259986 -949756830 |
Inv | DiagCol3T(n + 3, 3) | missing | 1 -7 38 -194 978 -4942 25150 -129050 667610 -3480150 18268118 -96498546 512637090 -2737284510 |
Inv | Polysee docs | missing | 1 -1 1 2 0 1 -6 0 1 1 22 0 0 2 1 -90 0 2 2 3 1 394 0 -6 6 6 4 1 -1806 0 26 -2 18 12 5 1 8558 0 -114 |
Inv | PolyRow1∑ k=0..1 T(1, k) n^k | A000027 | -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 |
Inv | PolyRow2∑ k=0..2 T(2, k) n^k | A002378 | 2 0 0 2 6 12 20 30 42 56 72 90 110 132 156 182 210 240 272 306 342 380 420 462 506 552 600 650 702 |
Inv | PolyRow3∑ k=0..3 T(3, k) n^k | missing | -6 0 2 6 18 44 90 162 266 408 594 830 1122 1476 1898 2394 2970 3632 4386 5238 6194 7260 8442 9746 |
Inv | PolyCol2∑ k=0..n T(n, k) 2^k | A114710 | 1 1 0 2 -6 26 -114 526 -2502 12194 -60570 305526 -1560798 8058714 -41987106 220470942 -1165553718 |
Inv | PolyCol3∑ k=0..n T(n, k) 3^k | missing | 1 2 2 6 -2 42 -134 702 -3226 15954 -79118 400182 -2046450 10579194 -55170582 289937646 -1533895050 |
Inv | PolyDiag∑ k=0..n T(n, k) n^k | missing | 1 0 0 6 30 500 6790 122346 2462334 56634312 1454230998 41308886190 1285755264222 43519683768444 |
Inv:Rev | TriangleT(n, k), 0 ≤ k ≤ n | A033878 | 1 1 -1 1 -3 2 1 -5 10 -6 1 -7 22 -38 22 1 -9 38 -98 158 -90 1 -11 58 -194 450 -698 394 1 -13 82 |
Inv:Rev | RevT(n, n - k), 0 ≤ k ≤ n | A132372 | 1 -1 1 2 -3 1 -6 10 -5 1 22 -38 22 -7 1 -90 158 -98 38 -9 1 394 -698 450 -194 58 -11 1 -1806 3218 |
Inv:Rev | InvRev(T(n, n - k))-1, 0 ≤ k ≤ n | A008288 | 1 1 1 1 3 1 1 5 5 1 1 7 13 7 1 1 9 25 25 9 1 1 11 41 63 41 11 1 1 13 61 129 129 61 13 1 1 15 85 231 |
Inv:Rev | Accsee docs | A106579 | 1 1 0 1 -2 0 1 -4 6 0 1 -6 16 -22 0 1 -8 30 -68 90 0 1 -10 48 -146 304 -394 0 1 -12 70 -264 714 |
Inv:Rev | AccRevsee docs | A122538 | 1 -1 0 2 -1 0 -6 4 -1 0 22 -16 6 -1 0 -90 68 -30 8 -1 0 394 -304 146 -48 10 -1 0 -1806 1412 -714 |
Inv:Rev | AntiDiagsee docs | missing | 1 1 1 -1 1 -3 1 -5 2 1 -7 10 1 -9 22 -6 1 -11 38 -38 1 -13 58 -98 22 1 -15 82 -194 158 1 -17 110 |
Inv:Rev | Diffx1T(n, k) (k+1) | missing | 1 1 -2 1 -6 6 1 -10 30 -24 1 -14 66 -152 110 1 -18 114 -392 790 -540 1 -22 174 -776 2250 -4188 2758 |
Inv:Rev | RowSum∑ k=0..n T(n, k) | A000007 | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Inv:Rev | EvenSum∑ k=0..n T(n, k) even(k) | A001003 | 1 1 3 11 45 197 903 4279 20793 103049 518859 2646723 13648869 71039373 372693519 1968801519 |
Inv:Rev | OddSum∑ k=0..n T(n, k) odd(k) | A001003 | 0 -1 -3 -11 -45 -197 -903 -4279 -20793 -103049 -518859 -2646723 -13648869 -71039373 -372693519 |
Inv:Rev | AltSum∑ k=0..n T(n, k) (-1)^k | A006318 | 1 2 6 22 90 394 1806 8558 41586 206098 1037718 5293446 27297738 142078746 745387038 3937603038 |
Inv:Rev | AbsSum∑ k=0..n | T(n, k) | | A006318 | 1 2 6 22 90 394 1806 8558 41586 206098 1037718 5293446 27297738 142078746 745387038 3937603038 |
Inv:Rev | AccSum∑ k=0..n ∑ j=0..k T(n, j) | A001003 | 1 1 -1 3 -11 45 -197 903 -4279 20793 -103049 518859 -2646723 13648869 -71039373 372693519 |
Inv:Rev | AccRevSum∑ k=0..n ∑ j=0..k T(n, n - j) | A001003 | 1 -1 1 -3 11 -45 197 -903 4279 -20793 103049 -518859 2646723 -13648869 71039373 -372693519 |
Inv:Rev | RowLcmLcm k=0..n | T(n, k) | > 1 | missing | 1 1 6 30 2926 6619410 957340835550 44816541527197986 603669538270861563270 |
Inv:Rev | RowGcdGcd k=0..n | T(n, k) | > 1 | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Inv:Rev | RowMaxMax k=0..n | T(n, k) | | A103138 | 1 1 3 10 38 158 698 3218 15310 74614 370610 1869338 9549174 49302030 256859754 1348695330 |
Inv:Rev | ColMiddleT(n, n // 2) | missing | 1 1 -3 -5 22 38 -194 -334 1838 3142 -18082 -30710 182054 307526 -1861890 -3131166 19258078 32268038 |
Inv:Rev | CentralET(2 n, n) | A367393 | 1 -3 22 -194 1838 -18082 182054 -1861890 19258078 -200898626 2109785654 -22275498434 236225927182 |
Inv:Rev | CentralOT(2 n + 1, n) | missing | 1 -5 38 -334 3142 -30710 307526 -3131166 32268038 -335589094 3515178086 -37032111214 391969355078 |
Inv:Rev | ColLeftT(n, 0) | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Inv:Rev | ColRightT(n, n) | A006318 | 1 -1 2 -6 22 -90 394 -1806 8558 -41586 206098 -1037718 5293446 -27297738 142078746 -745387038 |
Inv:Rev | BinConv∑ k=0..n C(n, k) T(n, k) | A000247 | 1 0 -3 10 -25 56 -119 246 -501 1012 -2035 4082 -8177 16368 -32751 65518 -131053 262124 -524267 |
Inv:Rev | InvBinConv∑ k=0..n C(n, k) T(n, n - k) (-1)^k | missing | 1 -2 9 -52 335 -2286 16149 -116712 857115 -6369250 47759393 -360677340 2739503143 -20906246102 |
Inv:Rev | TransNat0∑ k=0..n T(n, k) k | A001003 | 0 -1 1 -3 11 -45 197 -903 4279 -20793 103049 -518859 2646723 -13648869 71039373 -372693519 |
Inv:Rev | TransNat1∑ k=0..n T(n, k) (k + 1) | A001003 | 1 -1 1 -3 11 -45 197 -903 4279 -20793 103049 -518859 2646723 -13648869 71039373 -372693519 |
Inv:Rev | TransSqrs∑ k=0..n T(n, k) k^2 | missing | 0 -1 5 -19 91 -461 2409 -12839 69367 -378553 2081773 -11517947 64040211 -357517317 2002751313 |
Inv:Rev | PosHalf∑ k=0..n 2^n T(n, k) (1/2)^k | A114710 | 1 1 0 2 -6 26 -114 526 -2502 12194 -60570 305526 -1560798 8058714 -41987106 220470942 -1165553718 |
Inv:Rev | NegHalf∑ k=0..n (-2)^n T(n, k) (-1/2)^k | missing | 1 -3 12 -54 258 -1278 6486 -33498 175314 -927126 4944462 -26553618 143441370 -778755006 4246293798 |
Inv:Rev | DiagRow1T(n + 1, n) | A103138 | 1 -3 10 -38 158 -698 3218 -15310 74614 -370610 1869338 -9549174 49302030 -256859754 1348695330 |
Inv:Rev | DiagRow2T(n + 2, n) | missing | 1 -5 22 -98 450 -2126 10286 -50746 254410 -1292630 6642118 -34459410 180259986 -949756830 |
Inv:Rev | DiagRow3T(n + 3, n) | missing | 1 -7 38 -194 978 -4942 25150 -129050 667610 -3480150 18268118 -96498546 512637090 -2737284510 |
Inv:Rev | DiagCol1T(n + 1, 1) | A005408 | -1 -3 -5 -7 -9 -11 -13 -15 -17 -19 -21 -23 -25 -27 -29 -31 -33 -35 -37 -39 -41 -43 -45 -47 -49 -51 |
Inv:Rev | DiagCol2T(n + 2, 2) | A090288 | 2 10 22 38 58 82 110 142 178 218 262 310 362 418 478 542 610 682 758 838 922 1010 1102 1198 1298 |
Inv:Rev | DiagCol3T(n + 3, 3) | missing | -6 -38 -98 -194 -334 -526 -778 -1098 -1494 -1974 -2546 -3218 -3998 -4894 -5914 -7066 -8358 -9798 |
Inv:Rev | Polysee docs | missing | 1 1 1 1 0 1 1 0 -1 1 1 0 3 -2 1 1 0 -17 10 -3 1 1 0 123 -86 21 -4 1 1 0 -1001 934 -243 36 -5 1 1 0 |
Inv:Rev | PolyRow1∑ k=0..1 T(1, k) n^k | A000027 | 1 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25 -26 |
Inv:Rev | PolyRow2∑ k=0..2 T(2, k) n^k | A014105 | 1 0 3 10 21 36 55 78 105 136 171 210 253 300 351 406 465 528 595 666 741 820 903 990 1081 1176 1275 |
Inv:Rev | PolyRow3∑ k=0..3 T(3, k) n^k | missing | 1 0 -17 -86 -243 -524 -965 -1602 -2471 -3608 -5049 -6830 -8987 -11556 -14573 -18074 -22095 -26672 |
Inv:Rev | PolyCol2∑ k=0..n T(n, k) 2^k | A330803 | 1 -1 3 -17 123 -1001 8739 -79969 756939 -7349657 72798003 -732681489 7471545435 -77031538377 |
Inv:Rev | PolyCol3∑ k=0..n T(n, k) 3^k | missing | 1 -2 10 -86 934 -11402 149314 -2049518 29099278 -423818258 6296849530 -95062740038 1454108487862 |
Inv:Rev | PolyDiag∑ k=0..n T(n, k) n^k | missing | 1 0 3 -86 3525 -193844 13498135 -1142218314 114013757193 -13129297043912 1714571894899611 |
<< | Table | Source | Similars | Index | >> |
Note: The A-numbers are based on a finite number of numerical comparisons. They ignore the sign and the OEIS-offset. Sometimes they differ in the first few values. In such cases, we consider our version to be the better one because it has a common formula as a root. Since the offset of all triangles is 0 also the offset of all sequences is 0.