DELANNOY[0] 1
[1] 1, 1
[2] 1, 3, 1
[3] 1, 5, 5, 1
[4] 1, 7, 13, 7, 1
[5] 1, 9, 25, 25, 9, 1

      OEIS Similars: A008288

↕ Type↕ Trait↕ Anum↕ Sequence
StdTriangleT(n, k), 0 ≤ k ≤ nA0082881 1 1 1 3 1 1 5 5 1 1 7 13 7 1 1 9 25 25 9 1 1 11 41 63 41 11 1 1 13 61 129 129 61 13 1 1 15 85 231
StdRevT(n, n - k), 0 ≤ k ≤ nA0082881 1 1 1 3 1 1 5 5 1 1 7 13 7 1 1 9 25 25 9 1 1 11 41 63 41 11 1 1 13 61 129 129 61 13 1 1 15 85 231
StdInvT-1(n, k), 0 ≤ k ≤ nA1323721 -1 1 2 -3 1 -6 10 -5 1 22 -38 22 -7 1 -90 158 -98 38 -9 1 394 -698 450 -194 58 -11 1 -1806 3218
StdRevInvT-1(n, n - k), 0 ≤ k ≤ nA0338781 1 -1 1 -3 2 1 -5 10 -6 1 -7 22 -38 22 1 -9 38 -98 158 -90 1 -11 58 -194 450 -698 394 1 -13 82
StdInvRev(T(n, n - k))-1, 0 ≤ k ≤ nA1323721 -1 1 2 -3 1 -6 10 -5 1 22 -38 22 -7 1 -90 158 -98 38 -9 1 394 -698 450 -194 58 -11 1 -1806 3218
StdAccsee docsmissing1 1 2 1 4 5 1 6 11 12 1 8 21 28 29 1 10 35 60 69 70 1 12 53 116 157 168 169 1 14 75 204 333 394 407
StdAccRevsee docsmissing1 1 2 1 4 5 1 6 11 12 1 8 21 28 29 1 10 35 60 69 70 1 12 53 116 157 168 169 1 14 75 204 333 394 407
StdAntiDiagsee docsmissing1 1 1 1 1 3 1 5 1 1 7 5 1 9 13 1 1 11 25 7 1 13 41 25 1 1 15 61 63 9 1 17 85 129 41 1 1 19 113 231
StdDiffx1T(n, k) (k+1)missing1 1 2 1 6 3 1 10 15 4 1 14 39 28 5 1 18 75 100 45 6 1 22 123 252 205 66 7 1 26 183 516 645 366 91 8
StdRowSum k=0..n T(n, k)A0001291 2 5 12 29 70 169 408 985 2378 5741 13860 33461 80782 195025 470832 1136689 2744210 6625109
StdEvenSum k=0..n T(n, k) even(k)A1164041 1 2 6 15 35 84 204 493 1189 2870 6930 16731 40391 97512 235416 568345 1372105 3312554 7997214
StdOddSum k=0..n T(n, k) odd(k)missing0 1 3 6 14 35 85 204 492 1189 2871 6930 16730 40391 97513 235416 568344 1372105 3312555 7997214
StdAbsSum k=0..n | T(n, k) |A0001291 2 5 12 29 70 169 408 985 2378 5741 13860 33461 80782 195025 470832 1136689 2744210 6625109
StdDiagSum k=0..n // 2 T(n - k, k)A0000731 1 2 4 7 13 24 44 81 149 274 504 927 1705 3136 5768 10609 19513 35890 66012 121415 223317 410744
StdAccSum k=0..n j=0..k T(n, j)A0269371 3 10 30 87 245 676 1836 4925 13079 34446 90090 234227 605865 1560200 4002072 10230201 26069995
StdAccRevSum k=0..n j=0..k T(n, n - j)A0269371 3 10 30 87 245 676 1836 4925 13079 34446 90090 234227 605865 1560200 4002072 10230201 26069995
StdRowLcmLcm k=0..n | T(n, k) | > 1missing1 1 3 5 91 225 28413 102297 2100945 493191777 687316036275 1234284016329 15595691983727999
StdRowGcdGcd k=0..n | T(n, k) | > 1A1263071 1 3 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
StdRowMaxMax k=0..n | T(n, k) |A0260031 1 3 5 13 25 63 129 321 681 1683 3653 8989 19825 48639 108545 265729 598417 1462563 3317445
StdColMiddleT(n, n // 2)A0260031 1 3 5 13 25 63 129 321 681 1683 3653 8989 19825 48639 108545 265729 598417 1462563 3317445
StdCentralET(2 n, n)A0018501 3 13 63 321 1683 8989 48639 265729 1462563 8097453 45046719 251595969 1409933619 7923848253
StdCentralOT(2 n + 1, n)A0020021 5 25 129 681 3653 19825 108545 598417 3317445 18474633 103274625 579168825 3256957317 18359266785
StdColLeftT(n, 0)A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
StdColRightT(n, n)A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
StdBinConv k=0..n C(n, k) T(n, k)A0061391 2 8 32 136 592 2624 11776 53344 243392 1116928 5149696 23835904 110690816 515483648 2406449152
StdInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kA0593041 0 -4 0 24 0 -160 0 1120 0 -8064 0 59136 0 -439296 0 3294720 0 -24893440 0 189190144 0 -1444724736
StdTransNat0 k=0..n T(n, k) kA3645530 1 5 18 58 175 507 1428 3940 10701 28705 76230 200766 525083 1365175 3531240 9093512 23325785
StdTransNat1 k=0..n T(n, k) (k + 1)A0269371 3 10 30 87 245 676 1836 4925 13079 34446 90090 234227 605865 1560200 4002072 10230201 26069995
StdTransSqrs k=0..n T(n, k) k^2missing0 1 7 34 138 503 1709 5524 17204 52061 153971 446934 1277310 3602867 10048985 27757160 76021992
StdPosHalf k=0..n 2^n T(n, k) (1/2)^kA0074821 3 11 39 139 495 1763 6279 22363 79647 283667 1010295 3598219 12815247 45642179 162557031
StdNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kA0770201 -1 -1 3 -1 -5 7 3 -17 11 23 -45 -1 91 -89 -93 271 -85 -457 627 287 -1541 967 2115 -4049 -181 8279
StdDiagRow1T(n + 1, n)A0054081 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69
StdDiagRow2T(n + 2, n)A0018441 5 13 25 41 61 85 113 145 181 221 265 313 365 421 481 545 613 685 761 841 925 1013 1105 1201 1301
StdDiagRow3T(n + 3, n)A0018451 7 25 63 129 231 377 575 833 1159 1561 2047 2625 3303 4089 4991 6017 7175 8473 9919 11521 13287
StdDiagCol1T(n + 1, 1)A0054081 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69
StdDiagCol2T(n + 2, 2)A0018441 5 13 25 41 61 85 113 145 181 221 265 313 365 421 481 545 613 685 761 841 925 1013 1105 1201 1301
StdDiagCol3T(n + 3, 3)A0018451 7 25 63 129 231 377 575 833 1159 1561 2047 2625 3303 4089 4991 6017 7175 8473 9919 11521 13287
StdPolysee docsmissing1 1 1 1 2 1 1 5 3 1 1 12 11 4 1 1 29 39 19 5 1 1 70 139 88 29 6 1 1 169 495 409 165 41 7 1 1 408
StdPolyRow1 k=0..1 T(1, k) n^kA0000271 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
StdPolyRow2 k=0..2 T(2, k) n^kA0283871 5 11 19 29 41 55 71 89 109 131 155 181 209 239 271 305 341 379 419 461 505 551 599 649 701 755
StdPolyRow3 k=0..3 T(3, k) n^kmissing1 12 39 88 165 276 427 624 873 1180 1551 1992 2509 3108 3795 4576 5457 6444 7543 8760 10101 11572
StdPolyCol2 k=0..n T(n, k) 2^kA0074821 3 11 39 139 495 1763 6279 22363 79647 283667 1010295 3598219 12815247 45642179 162557031
StdPolyCol3 k=0..n T(n, k) 3^kA0155301 4 19 88 409 1900 8827 41008 190513 885076 4111843 19102600 88745929 412291516 1915403851
StdPolyDiag k=0..n T(n, k) n^kA3768711 2 11 88 941 12546 200479 3735264 79524793 1905008050 50720779691 1486111590360 47524305052069
AltInvT-1(n, k), 0 ≤ k ≤ nmissing1 -1 1 -4 3 1 14 -10 -5 1 142 -102 -48 7 1 -838 602 282 -38 -9 1 -14006 10062 4714 -642 -140 11 1
AltRevInvT-1(n, n - k), 0 ≤ k ≤ nmissing1 1 -1 1 3 -4 1 -5 -10 14 1 7 -48 -102 142 1 -9 -38 282 602 -838 1 11 -140 -642 4714 10062 -14006 1
AltInvRev(T(n, n - k))-1, 0 ≤ k ≤ nA1323721 1 1 2 3 1 6 10 5 1 22 38 22 7 1 90 158 98 38 9 1 394 698 450 194 58 11 1 1806 3218 2126 978 334
AltAccsee docsmissing1 1 0 1 -2 -1 1 -4 1 0 1 -6 7 0 1 1 -8 17 -8 1 0 1 -10 31 -32 9 -2 -1 1 -12 49 -80 49 -12 1 0 1 -14
AltAntiDiagsee docsmissing1 1 1 -1 1 -3 1 -5 1 1 -7 5 1 -9 13 -1 1 -11 25 -7 1 -13 41 -25 1 1 -15 61 -63 9 1 -17 85 -129 41
AltEvenSum k=0..n T(n, k) even(k)A1164041 1 2 6 15 35 84 204 493 1189 2870 6930 16731 40391 97512 235416 568345 1372105 3312554 7997214
AltOddSum k=0..n T(n, k) odd(k)missing0 -1 -3 -6 -14 -35 -85 -204 -492 -1189 -2871 -6930 -16730 -40391 -97513 -235416 -568344 -1372105
AltAltSum k=0..n T(n, k) (-1)^kA0001291 2 5 12 29 70 169 408 985 2378 5741 13860 33461 80782 195025 470832 1136689 2744210 6625109
AltAbsSum k=0..n | T(n, k) |A0001291 2 5 12 29 70 169 408 985 2378 5741 13860 33461 80782 195025 470832 1136689 2744210 6625109
AltDiagSum k=0..n // 2 T(n - k, k)A0575971 1 0 -2 -3 -1 4 8 5 -7 -20 -18 9 47 56 0 -103 -159 -56 206 421 271 -356 -1048 -963 441 2452 2974
AltAccSum k=0..n j=0..k T(n, j)A0045261 1 -2 -2 3 3 -4 -4 5 5 -6 -6 7 7 -8 -8 9 9 -10 -10 11 11 -12 -12 13 13 -14 -14 15 15 -16 -16 17 17
AltRowLcmLcm k=0..n | T(n, k) | > 1missing1 1 3 5 91 225 28413 102297 2100945 493191777 687316036275 1234284016329 15595691983727999
AltRowGcdGcd k=0..n | T(n, k) | > 1A1263071 1 3 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
AltRowMaxMax k=0..n | T(n, k) |A0260031 1 3 5 13 25 63 129 321 681 1683 3653 8989 19825 48639 108545 265729 598417 1462563 3317445
AltColMiddleT(n, n // 2)A0260031 1 -3 -5 13 25 -63 -129 321 681 -1683 -3653 8989 19825 -48639 -108545 265729 598417 -1462563
AltCentralET(2 n, n)A0018501 -3 13 -63 321 -1683 8989 -48639 265729 -1462563 8097453 -45046719 251595969 -1409933619
AltCentralOT(2 n + 1, n)A0020021 -5 25 -129 681 -3653 19825 -108545 598417 -3317445 18474633 -103274625 579168825 -3256957317
AltColLeftT(n, 0)A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
AltBinConv k=0..n C(n, k) T(n, k)A0593041 0 -4 0 24 0 -160 0 1120 0 -8064 0 59136 0 -439296 0 3294720 0 -24893440 0 189190144 0 -1444724736
AltInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kA0061391 -2 8 -32 136 -592 2624 -11776 53344 -243392 1116928 -5149696 23835904 -110690816 515483648
AltTransSqrs k=0..n T(n, k) k^2missing0 -1 1 6 -2 -15 3 28 -4 -45 5 66 -6 -91 7 120 -8 -153 9 190 -10 -231 11 276 -12 -325 13 378 -14
AltPosHalf k=0..n 2^n T(n, k) (1/2)^kA0770201 1 -1 -3 -1 5 7 -3 -17 -11 23 45 -1 -91 -89 93 271 85 -457 -627 287 1541 967 -2115 -4049 181 8279
AltNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kA0074821 -3 11 -39 139 -495 1763 -6279 22363 -79647 283667 -1010295 3598219 -12815247 45642179 -162557031
AltDiagRow1T(n + 1, n)A0054081 -3 5 -7 9 -11 13 -15 17 -19 21 -23 25 -27 29 -31 33 -35 37 -39 41 -43 45 -47 49 -51 53 -55 57 -59
AltDiagRow2T(n + 2, n)A0018441 -5 13 -25 41 -61 85 -113 145 -181 221 -265 313 -365 421 -481 545 -613 685 -761 841 -925 1013
AltDiagRow3T(n + 3, n)A0018451 -7 25 -63 129 -231 377 -575 833 -1159 1561 -2047 2625 -3303 4089 -4991 6017 -7175 8473 -9919
AltDiagCol1T(n + 1, 1)A005408-1 -3 -5 -7 -9 -11 -13 -15 -17 -19 -21 -23 -25 -27 -29 -31 -33 -35 -37 -39 -41 -43 -45 -47 -49 -51
AltDiagCol2T(n + 2, 2)A0018441 5 13 25 41 61 85 113 145 181 221 265 313 365 421 481 545 613 685 761 841 925 1013 1105 1201 1301
AltDiagCol3T(n + 3, 3)A001845-1 -7 -25 -63 -129 -231 -377 -575 -833 -1159 -1561 -2047 -2625 -3303 -4089 -4991 -6017 -7175 -8473
AltPolysee docsmissing1 1 1 1 0 1 1 -1 -1 1 1 0 -1 -2 1 1 1 3 1 -3 1 1 0 -1 4 5 -4 1 1 -1 -5 -11 -3 11 -5 1 1 0 7 10 -11
AltPolyRow1 k=0..1 T(1, k) n^kA0000271 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25 -26
AltPolyRow2 k=0..2 T(2, k) n^kA0283871 -1 -1 1 5 11 19 29 41 55 71 89 109 131 155 181 209 239 271 305 341 379 419 461 505 551 599 649
AltPolyRow3 k=0..3 T(3, k) n^kmissing1 0 3 4 -3 -24 -65 -132 -231 -368 -549 -780 -1067 -1416 -1833 -2324 -2895 -3552 -4301 -5148 -6099
AltPolyCol2 k=0..n T(n, k) 2^kA0770201 -1 -1 3 -1 -5 7 3 -17 11 23 -45 -1 91 -89 -93 271 -85 -457 627 287 -1541 967 2115 -4049 -181 8279
AltPolyCol3 k=0..n T(n, k) 3^kA0881371 -2 1 4 -11 10 13 -56 73 22 -263 460 -131 -1118 2629 -1904 -4079 13870 -15503 -10604 67717 -103622
AltPolyDiag k=0..n T(n, k) n^kmissing1 0 -1 4 -11 -44 2059 -50952 1234633 -31758632 883029311 -26609171940 867210664189 -30457304468148
InvTriangleT(n, k), 0 ≤ k ≤ nA1323721 -1 1 2 -3 1 -6 10 -5 1 22 -38 22 -7 1 -90 158 -98 38 -9 1 394 -698 450 -194 58 -11 1 -1806 3218
InvRevT(n, n - k), 0 ≤ k ≤ nA0338781 1 -1 1 -3 2 1 -5 10 -6 1 -7 22 -38 22 1 -9 38 -98 158 -90 1 -11 58 -194 450 -698 394 1 -13 82
InvRevInvT-1(n, n - k), 0 ≤ k ≤ nA0082881 1 1 1 3 1 1 5 5 1 1 7 13 7 1 1 9 25 25 9 1 1 11 41 63 41 11 1 1 13 61 129 129 61 13 1 1 15 85 231
InvAccsee docsA1225381 -1 0 2 -1 0 -6 4 -1 0 22 -16 6 -1 0 -90 68 -30 8 -1 0 394 -304 146 -48 10 -1 0 -1806 1412 -714
InvAccRevsee docsA1065791 1 0 1 -2 0 1 -4 6 0 1 -6 16 -22 0 1 -8 30 -68 90 0 1 -10 48 -146 304 -394 0 1 -12 70 -264 714
InvAntiDiagsee docsmissing1 -1 2 1 -6 -3 22 10 1 -90 -38 -5 394 158 22 1 -1806 -698 -98 -7 8558 3218 450 38 1 -41586 -15310
InvDiffx1T(n, k) (k+1)missing1 -1 2 2 -6 3 -6 20 -15 4 22 -76 66 -28 5 -90 316 -294 152 -45 6 394 -1396 1350 -776 290 -66 7
InvRowSum k=0..n T(n, k)A0000071 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
InvEvenSum k=0..n T(n, k) even(k)A0010031 -1 3 -11 45 -197 903 -4279 20793 -103049 518859 -2646723 13648869 -71039373 372693519 -1968801519
InvOddSum k=0..n T(n, k) odd(k)A0010030 1 -3 11 -45 197 -903 4279 -20793 103049 -518859 2646723 -13648869 71039373 -372693519 1968801519
InvAltSum k=0..n T(n, k) (-1)^kA0063181 -2 6 -22 90 -394 1806 -8558 41586 -206098 1037718 -5293446 27297738 -142078746 745387038
InvAbsSum k=0..n | T(n, k) |A0063181 2 6 22 90 394 1806 8558 41586 206098 1037718 5293446 27297738 142078746 745387038 3937603038
InvDiagSum k=0..n // 2 T(n - k, k)missing1 -1 3 -9 33 -133 575 -2609 12265 -59225 292035 -1464361 7444265 -38279053 198746911 -1040489377
InvAccSum k=0..n j=0..k T(n, j)A0010031 -1 1 -3 11 -45 197 -903 4279 -20793 103049 -518859 2646723 -13648869 71039373 -372693519
InvAccRevSum k=0..n j=0..k T(n, n - j)A0010031 1 -1 3 -11 45 -197 903 -4279 20793 -103049 518859 -2646723 13648869 -71039373 372693519
InvRowLcmLcm k=0..n | T(n, k) | > 1missing1 1 6 30 2926 6619410 957340835550 44816541527197986 603669538270861563270
InvRowGcdGcd k=0..n | T(n, k) | > 1A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
InvRowMaxMax k=0..n | T(n, k) |A1031381 1 3 10 38 158 698 3218 15310 74614 370610 1869338 9549174 49302030 256859754 1348695330
InvColMiddleT(n, n // 2)missing1 -1 -3 10 22 -98 -194 978 1838 -9922 -18082 101946 182054 -1057730 -1861890 11058466 19258078
InvCentralET(2 n, n)A3673931 -3 22 -194 1838 -18082 182054 -1861890 19258078 -200898626 2109785654 -22275498434 236225927182
InvCentralOT(2 n + 1, n)missing-1 10 -98 978 -9922 101946 -1057730 11058466 -116323586 1229718378 -13053926690 139056632050
InvColLeftT(n, 0)A0063181 -1 2 -6 22 -90 394 -1806 8558 -41586 206098 -1037718 5293446 -27297738 142078746 -745387038
InvColRightT(n, n)A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
InvBinConv k=0..n C(n, k) T(n, k)A0002471 0 -3 10 -25 56 -119 246 -501 1012 -2035 4082 -8177 16368 -32751 65518 -131053 262124 -524267
InvInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kmissing1 2 9 52 335 2286 16149 116712 857115 6369250 47759393 360677340 2739503143 20906246102
InvTransNat0 k=0..n T(n, k) kA0010030 1 -1 3 -11 45 -197 903 -4279 20793 -103049 518859 -2646723 13648869 -71039373 372693519
InvTransNat1 k=0..n T(n, k) (k + 1)A0010031 1 -1 3 -11 45 -197 903 -4279 20793 -103049 518859 -2646723 13648869 -71039373 372693519
InvTransSqrs k=0..n T(n, k) k^2A0010030 1 1 -1 3 -11 45 -197 903 -4279 20793 -103049 518859 -2646723 13648869 -71039373 372693519
InvPosHalf k=0..n 2^n T(n, k) (1/2)^kA3308031 -1 3 -17 123 -1001 8739 -79969 756939 -7349657 72798003 -732681489 7471545435 -77031538377
InvNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kmissing1 3 15 99 759 6363 56559 523827 5001063 48872907 486514335 4916196387 50297275287 519977383227
InvDiagRow1T(n + 1, n)A005408-1 -3 -5 -7 -9 -11 -13 -15 -17 -19 -21 -23 -25 -27 -29 -31 -33 -35 -37 -39 -41 -43 -45 -47 -49 -51
InvDiagRow2T(n + 2, n)A0902882 10 22 38 58 82 110 142 178 218 262 310 362 418 478 542 610 682 758 838 922 1010 1102 1198 1298
InvDiagRow3T(n + 3, n)missing-6 -38 -98 -194 -334 -526 -778 -1098 -1494 -1974 -2546 -3218 -3998 -4894 -5914 -7066 -8358 -9798
InvDiagCol1T(n + 1, 1)A1031381 -3 10 -38 158 -698 3218 -15310 74614 -370610 1869338 -9549174 49302030 -256859754 1348695330
InvDiagCol2T(n + 2, 2)missing1 -5 22 -98 450 -2126 10286 -50746 254410 -1292630 6642118 -34459410 180259986 -949756830
InvDiagCol3T(n + 3, 3)missing1 -7 38 -194 978 -4942 25150 -129050 667610 -3480150 18268118 -96498546 512637090 -2737284510
InvPolysee docsmissing1 -1 1 2 0 1 -6 0 1 1 22 0 0 2 1 -90 0 2 2 3 1 394 0 -6 6 6 4 1 -1806 0 26 -2 18 12 5 1 8558 0 -114
InvPolyRow1 k=0..1 T(1, k) n^kA000027-1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
InvPolyRow2 k=0..2 T(2, k) n^kA0023782 0 0 2 6 12 20 30 42 56 72 90 110 132 156 182 210 240 272 306 342 380 420 462 506 552 600 650 702
InvPolyRow3 k=0..3 T(3, k) n^kmissing-6 0 2 6 18 44 90 162 266 408 594 830 1122 1476 1898 2394 2970 3632 4386 5238 6194 7260 8442 9746
InvPolyCol2 k=0..n T(n, k) 2^kA1147101 1 0 2 -6 26 -114 526 -2502 12194 -60570 305526 -1560798 8058714 -41987106 220470942 -1165553718
InvPolyCol3 k=0..n T(n, k) 3^kmissing1 2 2 6 -2 42 -134 702 -3226 15954 -79118 400182 -2046450 10579194 -55170582 289937646 -1533895050
InvPolyDiag k=0..n T(n, k) n^kmissing1 0 0 6 30 500 6790 122346 2462334 56634312 1454230998 41308886190 1285755264222 43519683768444
Inv:RevTriangleT(n, k), 0 ≤ k ≤ nA0338781 1 -1 1 -3 2 1 -5 10 -6 1 -7 22 -38 22 1 -9 38 -98 158 -90 1 -11 58 -194 450 -698 394 1 -13 82
Inv:RevRevT(n, n - k), 0 ≤ k ≤ nA1323721 -1 1 2 -3 1 -6 10 -5 1 22 -38 22 -7 1 -90 158 -98 38 -9 1 394 -698 450 -194 58 -11 1 -1806 3218
Inv:RevInvRev(T(n, n - k))-1, 0 ≤ k ≤ nA0082881 1 1 1 3 1 1 5 5 1 1 7 13 7 1 1 9 25 25 9 1 1 11 41 63 41 11 1 1 13 61 129 129 61 13 1 1 15 85 231
Inv:RevAccsee docsA1065791 1 0 1 -2 0 1 -4 6 0 1 -6 16 -22 0 1 -8 30 -68 90 0 1 -10 48 -146 304 -394 0 1 -12 70 -264 714
Inv:RevAccRevsee docsA1225381 -1 0 2 -1 0 -6 4 -1 0 22 -16 6 -1 0 -90 68 -30 8 -1 0 394 -304 146 -48 10 -1 0 -1806 1412 -714
Inv:RevAntiDiagsee docsmissing1 1 1 -1 1 -3 1 -5 2 1 -7 10 1 -9 22 -6 1 -11 38 -38 1 -13 58 -98 22 1 -15 82 -194 158 1 -17 110
Inv:RevDiffx1T(n, k) (k+1)missing1 1 -2 1 -6 6 1 -10 30 -24 1 -14 66 -152 110 1 -18 114 -392 790 -540 1 -22 174 -776 2250 -4188 2758
Inv:RevRowSum k=0..n T(n, k)A0000071 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Inv:RevEvenSum k=0..n T(n, k) even(k)A0010031 1 3 11 45 197 903 4279 20793 103049 518859 2646723 13648869 71039373 372693519 1968801519
Inv:RevOddSum k=0..n T(n, k) odd(k)A0010030 -1 -3 -11 -45 -197 -903 -4279 -20793 -103049 -518859 -2646723 -13648869 -71039373 -372693519
Inv:RevAltSum k=0..n T(n, k) (-1)^kA0063181 2 6 22 90 394 1806 8558 41586 206098 1037718 5293446 27297738 142078746 745387038 3937603038
Inv:RevAbsSum k=0..n | T(n, k) |A0063181 2 6 22 90 394 1806 8558 41586 206098 1037718 5293446 27297738 142078746 745387038 3937603038
Inv:RevAccSum k=0..n j=0..k T(n, j)A0010031 1 -1 3 -11 45 -197 903 -4279 20793 -103049 518859 -2646723 13648869 -71039373 372693519
Inv:RevAccRevSum k=0..n j=0..k T(n, n - j)A0010031 -1 1 -3 11 -45 197 -903 4279 -20793 103049 -518859 2646723 -13648869 71039373 -372693519
Inv:RevRowLcmLcm k=0..n | T(n, k) | > 1missing1 1 6 30 2926 6619410 957340835550 44816541527197986 603669538270861563270
Inv:RevRowGcdGcd k=0..n | T(n, k) | > 1A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Inv:RevRowMaxMax k=0..n | T(n, k) |A1031381 1 3 10 38 158 698 3218 15310 74614 370610 1869338 9549174 49302030 256859754 1348695330
Inv:RevColMiddleT(n, n // 2)missing1 1 -3 -5 22 38 -194 -334 1838 3142 -18082 -30710 182054 307526 -1861890 -3131166 19258078 32268038
Inv:RevCentralET(2 n, n)A3673931 -3 22 -194 1838 -18082 182054 -1861890 19258078 -200898626 2109785654 -22275498434 236225927182
Inv:RevCentralOT(2 n + 1, n)missing1 -5 38 -334 3142 -30710 307526 -3131166 32268038 -335589094 3515178086 -37032111214 391969355078
Inv:RevColLeftT(n, 0)A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Inv:RevColRightT(n, n)A0063181 -1 2 -6 22 -90 394 -1806 8558 -41586 206098 -1037718 5293446 -27297738 142078746 -745387038
Inv:RevBinConv k=0..n C(n, k) T(n, k)A0002471 0 -3 10 -25 56 -119 246 -501 1012 -2035 4082 -8177 16368 -32751 65518 -131053 262124 -524267
Inv:RevInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kmissing1 -2 9 -52 335 -2286 16149 -116712 857115 -6369250 47759393 -360677340 2739503143 -20906246102
Inv:RevTransNat0 k=0..n T(n, k) kA0010030 -1 1 -3 11 -45 197 -903 4279 -20793 103049 -518859 2646723 -13648869 71039373 -372693519
Inv:RevTransNat1 k=0..n T(n, k) (k + 1)A0010031 -1 1 -3 11 -45 197 -903 4279 -20793 103049 -518859 2646723 -13648869 71039373 -372693519
Inv:RevTransSqrs k=0..n T(n, k) k^2missing0 -1 5 -19 91 -461 2409 -12839 69367 -378553 2081773 -11517947 64040211 -357517317 2002751313
Inv:RevPosHalf k=0..n 2^n T(n, k) (1/2)^kA1147101 1 0 2 -6 26 -114 526 -2502 12194 -60570 305526 -1560798 8058714 -41987106 220470942 -1165553718
Inv:RevNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kmissing1 -3 12 -54 258 -1278 6486 -33498 175314 -927126 4944462 -26553618 143441370 -778755006 4246293798
Inv:RevDiagRow1T(n + 1, n)A1031381 -3 10 -38 158 -698 3218 -15310 74614 -370610 1869338 -9549174 49302030 -256859754 1348695330
Inv:RevDiagRow2T(n + 2, n)missing1 -5 22 -98 450 -2126 10286 -50746 254410 -1292630 6642118 -34459410 180259986 -949756830
Inv:RevDiagRow3T(n + 3, n)missing1 -7 38 -194 978 -4942 25150 -129050 667610 -3480150 18268118 -96498546 512637090 -2737284510
Inv:RevDiagCol1T(n + 1, 1)A005408-1 -3 -5 -7 -9 -11 -13 -15 -17 -19 -21 -23 -25 -27 -29 -31 -33 -35 -37 -39 -41 -43 -45 -47 -49 -51
Inv:RevDiagCol2T(n + 2, 2)A0902882 10 22 38 58 82 110 142 178 218 262 310 362 418 478 542 610 682 758 838 922 1010 1102 1198 1298
Inv:RevDiagCol3T(n + 3, 3)missing-6 -38 -98 -194 -334 -526 -778 -1098 -1494 -1974 -2546 -3218 -3998 -4894 -5914 -7066 -8358 -9798
Inv:RevPolysee docsmissing1 1 1 1 0 1 1 0 -1 1 1 0 3 -2 1 1 0 -17 10 -3 1 1 0 123 -86 21 -4 1 1 0 -1001 934 -243 36 -5 1 1 0
Inv:RevPolyRow1 k=0..1 T(1, k) n^kA0000271 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25 -26
Inv:RevPolyRow2 k=0..2 T(2, k) n^kA0141051 0 3 10 21 36 55 78 105 136 171 210 253 300 351 406 465 528 595 666 741 820 903 990 1081 1176 1275
Inv:RevPolyRow3 k=0..3 T(3, k) n^kmissing1 0 -17 -86 -243 -524 -965 -1602 -2471 -3608 -5049 -6830 -8987 -11556 -14573 -18074 -22095 -26672
Inv:RevPolyCol2 k=0..n T(n, k) 2^kA3308031 -1 3 -17 123 -1001 8739 -79969 756939 -7349657 72798003 -732681489 7471545435 -77031538377
Inv:RevPolyCol3 k=0..n T(n, k) 3^kmissing1 -2 10 -86 934 -11402 149314 -2049518 29099278 -423818258 6296849530 -95062740038 1454108487862
Inv:RevPolyDiag k=0..n T(n, k) n^kmissing1 0 3 -86 3525 -193844 13498135 -1142218314 114013757193 -13129297043912 1714571894899611
 << TableSourceSimilarsIndex >> 

Note: The A-numbers are based on a finite number of numerical comparisons. They ignore the sign and the OEIS-offset. Sometimes they differ in the first few values. In such cases, we consider our version to be the better one because it has a common formula as a root. Since the offset of all triangles is 0 also the offset of all sequences is 0.