BINARYPELL[0] 1
[1] 2, 1
[2] 4, 4, 1
[3] 8, 12, 6, 1
[4] 16, 32, 24, 8, 1
[5] 32, 80, 80, 40, 10, 1

      OEIS Similars: A038207

↕ Type↕ Trait↕ Anum↕ Sequence
StdTriangleT(n, k), 0 ≤ k ≤ nA0382071 2 1 4 4 1 8 12 6 1 16 32 24 8 1 32 80 80 40 10 1 64 192 240 160 60 12 1 128 448 672 560 280 84 14
StdRevT(n, n - k), 0 ≤ k ≤ nA0136091 1 2 1 4 4 1 6 12 8 1 8 24 32 16 1 10 40 80 80 32 1 12 60 160 240 192 64 1 14 84 280 560 672 448
StdAccsee docsmissing1 2 3 4 8 9 8 20 26 27 16 48 72 80 81 32 112 192 232 242 243 64 256 496 656 716 728 729 128 576
StdAccRevsee docsmissing1 1 3 1 5 9 1 7 19 27 1 9 33 65 81 1 11 51 131 211 243 1 13 73 233 473 665 729 1 15 99 379 939 1611
StdAntiDiagsee docsA2075381 2 4 1 8 4 16 12 1 32 32 6 64 80 24 1 128 192 80 8 256 448 240 40 1 512 1024 672 160 10 1024 2304
StdDiffx1T(n, k) (k+1)missing1 2 2 4 8 3 8 24 18 4 16 64 72 32 5 32 160 240 160 50 6 64 384 720 640 300 72 7 128 896 2016 2240
StdRowSum k=0..n T(n, k)A0002441 3 9 27 81 243 729 2187 6561 19683 59049 177147 531441 1594323 4782969 14348907 43046721 129140163
StdEvenSum k=0..n T(n, k) even(k)A0070511 2 5 14 41 122 365 1094 3281 9842 29525 88574 265721 797162 2391485 7174454 21523361 64570082
StdOddSum k=0..n T(n, k) odd(k)A0034620 1 4 13 40 121 364 1093 3280 9841 29524 88573 265720 797161 2391484 7174453 21523360 64570081
StdAltSum k=0..n T(n, k) (-1)^kA0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
StdAbsSum k=0..n | T(n, k) |A0002441 3 9 27 81 243 729 2187 6561 19683 59049 177147 531441 1594323 4782969 14348907 43046721 129140163
StdDiagSum k=0..n // 2 T(n - k, k)A0001291 2 5 12 29 70 169 408 985 2378 5741 13860 33461 80782 195025 470832 1136689 2744210 6625109
StdAccSum k=0..n j=0..k T(n, j)A0810381 5 21 81 297 1053 3645 12393 41553 137781 452709 1476225 4782969 15411789 49424013 157837977
StdAccRevSum k=0..n j=0..k T(n, n - j)A0062341 4 15 54 189 648 2187 7290 24057 78732 255879 826686 2657205 8503056 27103491 86093442 272629233
StdRowLcmLcm k=0..n | T(n, k) | > 1missing1 2 4 24 96 160 960 13440 35840 32256 322560 2365440 28385280 52715520 49201152 1476034560
StdRowGcdGcd k=0..n | T(n, k) | > 1A1719771 2 4 2 8 2 4 2 16 2 4 2 8 2 4 2 32 2 4 2 8 2 4 2 16 2 4 2 8 2 4 2 64 2 4 2 8 2 4 2 16 2 4 2 8 2 4
StdRowMaxMax k=0..n | T(n, k) |A1093881 2 4 12 32 80 240 672 1792 5376 15360 42240 126720 366080 1025024 3075072 8945664 25346048
StdColMiddleT(n, n // 2)missing1 2 4 12 24 80 160 560 1120 4032 8064 29568 59136 219648 439296 1647360 3294720 12446720 24893440
StdCentralET(2 n, n)A0593041 4 24 160 1120 8064 59136 439296 3294720 24893440 189190144 1444724736 11076222976 85201715200
StdCentralOT(2 n + 1, n)A0697232 12 80 560 4032 29568 219648 1647360 12446720 94595072 722362368 5538111488 42600857600
StdColLeftT(n, 0)A0000791 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 1048576
StdColRightT(n, n)A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
StdBinConv k=0..n C(n, k) T(n, k)A0018501 3 13 63 321 1683 8989 48639 265729 1462563 8097453 45046719 251595969 1409933619 7923848253
StdInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kA0983321 -1 -3 11 1 -81 141 363 -1791 479 13597 -29877 -54911 353807 -223443 -2539989 6806529 8302527
StdTransNat0 k=0..n T(n, k) kA0274710 1 6 27 108 405 1458 5103 17496 59049 196830 649539 2125764 6908733 22320522 71744535 229582512
StdTransNat1 k=0..n T(n, k) (k + 1)A0062341 4 15 54 189 648 2187 7290 24057 78732 255879 826686 2657205 8503056 27103491 86093442 272629233
StdTransSqrs k=0..n T(n, k) k^2missing0 1 8 45 216 945 3888 15309 58320 216513 787320 2814669 9920232 34543665 119042784 406552365
StdPosHalf k=0..n 2^n T(n, k) (1/2)^kA0003511 5 25 125 625 3125 15625 78125 390625 1953125 9765625 48828125 244140625 1220703125 6103515625
StdNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kA0002441 -3 9 -27 81 -243 729 -2187 6561 -19683 59049 -177147 531441 -1594323 4782969 -14348907 43046721
StdDiagRow1T(n + 1, n)A0058432 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68
StdDiagRow2T(n + 2, n)A0460924 12 24 40 60 84 112 144 180 220 264 312 364 420 480 544 612 684 760 840 924 1012 1104 1200 1300
StdDiagRow3T(n + 3, n)A1308098 32 80 160 280 448 672 960 1320 1760 2288 2912 3640 4480 5440 6528 7752 9120 10640 12320 14168
StdDiagCol1T(n + 1, 1)A0017871 4 12 32 80 192 448 1024 2304 5120 11264 24576 53248 114688 245760 524288 1114112 2359296 4980736
StdDiagCol2T(n + 2, 2)A0017881 6 24 80 240 672 1792 4608 11520 28160 67584 159744 372736 860160 1966080 4456448 10027008
StdDiagCol3T(n + 3, 3)A0017891 8 40 160 560 1792 5376 15360 42240 112640 292864 745472 1863680 4587520 11141120 26738688
StdPolysee docsA0511291 2 1 4 3 1 8 9 4 1 16 27 16 5 1 32 81 64 25 6 1 64 243 256 125 36 7 1 128 729 1024 625 216 49 8 1
StdPolyRow1 k=0..1 T(1, k) n^kA0000272 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
StdPolyRow2 k=0..2 T(2, k) n^kA0002904 9 16 25 36 49 64 81 100 121 144 169 196 225 256 289 324 361 400 441 484 529 576 625 676 729 784
StdPolyRow3 k=0..3 T(3, k) n^kA0005788 27 64 125 216 343 512 729 1000 1331 1728 2197 2744 3375 4096 4913 5832 6859 8000 9261 10648 12167
StdPolyCol2 k=0..n T(n, k) 2^kA0003021 4 16 64 256 1024 4096 16384 65536 262144 1048576 4194304 16777216 67108864 268435456 1073741824
StdPolyCol3 k=0..n T(n, k) 3^kA0003511 5 25 125 625 3125 15625 78125 390625 1953125 9765625 48828125 244140625 1220703125 6103515625
StdPolyDiag k=0..n T(n, k) n^kA0002721 3 16 125 1296 16807 262144 4782969 100000000 2357947691 61917364224 1792160394037 56693912375296
AltTriangleT(n, k), 0 ≤ k ≤ nA0382071 2 -1 4 -4 1 8 -12 6 -1 16 -32 24 -8 1 32 -80 80 -40 10 -1 64 -192 240 -160 60 -12 1 128 -448 672
AltRevT(n, n - k), 0 ≤ k ≤ nA0136091 -1 2 1 -4 4 -1 6 -12 8 1 -8 24 -32 16 -1 10 -40 80 -80 32 1 -12 60 -160 240 -192 64 -1 14 -84 280
AltInvT-1(n, k), 0 ≤ k ≤ nmissing1 -2 1 -12 4 1 40 -12 -6 1 528 -160 -72 8 1 -2912 880 400 -40 -10 1 -57792 17472 7920 -800 -180 12
AltRevInvT-1(n, n - k), 0 ≤ k ≤ nmissing1 1 -2 1 4 -12 1 -6 -12 40 1 8 -72 -160 528 1 -10 -40 400 880 -2912 1 12 -180 -800 7920 17472
AltAccsee docsmissing1 2 1 4 0 1 8 -4 2 1 16 -16 8 0 1 32 -48 32 -8 2 1 64 -128 112 -48 12 0 1 128 -320 352 -208 72 -12
AltAccRevsee docsA1192581 -1 1 1 -3 1 -1 5 -7 1 1 -7 17 -15 1 -1 9 -31 49 -31 1 1 -11 49 -111 129 -63 1 -1 13 -71 209 -351
AltAntiDiagsee docsA2075381 2 4 -1 8 -4 16 -12 1 32 -32 6 64 -80 24 -1 128 -192 80 -8 256 -448 240 -40 1 512 -1024 672 -160
AltDiffx1T(n, k) (k+1)missing1 2 -2 4 -8 3 8 -24 18 -4 16 -64 72 -32 5 32 -160 240 -160 50 -6 64 -384 720 -640 300 -72 7 128
AltRowSum k=0..n T(n, k)A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
AltEvenSum k=0..n T(n, k) even(k)A0070511 2 5 14 41 122 365 1094 3281 9842 29525 88574 265721 797162 2391485 7174454 21523361 64570082
AltOddSum k=0..n T(n, k) odd(k)A0034620 -1 -4 -13 -40 -121 -364 -1093 -3280 -9841 -29524 -88573 -265720 -797161 -2391484 -7174453
AltAltSum k=0..n T(n, k) (-1)^kA0002441 3 9 27 81 243 729 2187 6561 19683 59049 177147 531441 1594323 4782969 14348907 43046721 129140163
AltAbsSum k=0..n | T(n, k) |A0002441 3 9 27 81 243 729 2187 6561 19683 59049 177147 531441 1594323 4782969 14348907 43046721 129140163
AltDiagSum k=0..n // 2 T(n - k, k)A0000271 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
AltAccSum k=0..n j=0..k T(n, j)A0054081 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69
AltAccRevSum k=0..n j=0..k T(n, n - j)A0000271 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25 -26
AltRowLcmLcm k=0..n | T(n, k) | > 1missing1 2 4 24 96 160 960 13440 35840 32256 322560 2365440 28385280 52715520 49201152 1476034560
AltRowGcdGcd k=0..n | T(n, k) | > 1A1719771 2 4 2 8 2 4 2 16 2 4 2 8 2 4 2 32 2 4 2 8 2 4 2 16 2 4 2 8 2 4 2 64 2 4 2 8 2 4 2 16 2 4 2 8 2 4
AltRowMaxMax k=0..n | T(n, k) |A1093881 2 4 12 32 80 240 672 1792 5376 15360 42240 126720 366080 1025024 3075072 8945664 25346048
AltColMiddleT(n, n // 2)missing1 2 -4 -12 24 80 -160 -560 1120 4032 -8064 -29568 59136 219648 -439296 -1647360 3294720 12446720
AltCentralET(2 n, n)A0593041 -4 24 -160 1120 -8064 59136 -439296 3294720 -24893440 189190144 -1444724736 11076222976
AltCentralOT(2 n + 1, n)A0697232 -12 80 -560 4032 -29568 219648 -1647360 12446720 -94595072 722362368 -5538111488 42600857600
AltColLeftT(n, 0)A0000791 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 1048576
AltBinConv k=0..n C(n, k) T(n, k)A0983321 1 -3 -11 1 81 141 -363 -1791 -479 13597 29877 -54911 -353807 -223443 2539989 6806529 -8302527
AltInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kA0018501 -3 13 -63 321 -1683 8989 -48639 265729 -1462563 8097453 -45046719 251595969 -1409933619
AltTransNat0 k=0..n T(n, k) kA0000270 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25 -26
AltTransNat1 k=0..n T(n, k) (k + 1)A0000271 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25 -26
AltTransSqrs k=0..n T(n, k) k^2A0055630 -1 0 3 8 15 24 35 48 63 80 99 120 143 168 195 224 255 288 323 360 399 440 483 528 575 624 675 728
AltPosHalf k=0..n 2^n T(n, k) (1/2)^kA0002441 3 9 27 81 243 729 2187 6561 19683 59049 177147 531441 1594323 4782969 14348907 43046721 129140163
AltNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kA0003511 -5 25 -125 625 -3125 15625 -78125 390625 -1953125 9765625 -48828125 244140625 -1220703125
AltDiagRow1T(n + 1, n)A0058432 -4 6 -8 10 -12 14 -16 18 -20 22 -24 26 -28 30 -32 34 -36 38 -40 42 -44 46 -48 50 -52 54 -56 58
AltDiagRow2T(n + 2, n)A0460924 -12 24 -40 60 -84 112 -144 180 -220 264 -312 364 -420 480 -544 612 -684 760 -840 924 -1012 1104
AltDiagRow3T(n + 3, n)A1308098 -32 80 -160 280 -448 672 -960 1320 -1760 2288 -2912 3640 -4480 5440 -6528 7752 -9120 10640 -12320
AltDiagCol1T(n + 1, 1)A001787-1 -4 -12 -32 -80 -192 -448 -1024 -2304 -5120 -11264 -24576 -53248 -114688 -245760 -524288 -1114112
AltDiagCol2T(n + 2, 2)A0017881 6 24 80 240 672 1792 4608 11520 28160 67584 159744 372736 860160 1966080 4456448 10027008
AltDiagCol3T(n + 3, 3)A001789-1 -8 -40 -160 -560 -1792 -5376 -15360 -42240 -112640 -292864 -745472 -1863680 -4587520 -11141120
AltPolysee docsmissing1 2 1 4 1 1 8 1 0 1 16 1 0 -1 1 32 1 0 1 -2 1 64 1 0 -1 4 -3 1 128 1 0 1 -8 9 -4 1 256 1 0 -1 16
AltPolyRow1 k=0..1 T(1, k) n^kA0000272 1 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25
AltPolyRow2 k=0..2 T(2, k) n^kA0002904 1 0 1 4 9 16 25 36 49 64 81 100 121 144 169 196 225 256 289 324 361 400 441 484 529 576 625 676
AltPolyRow3 k=0..3 T(3, k) n^kA0005788 1 0 -1 -8 -27 -64 -125 -216 -343 -512 -729 -1000 -1331 -1728 -2197 -2744 -3375 -4096 -4913 -5832
AltPolyCol2 k=0..n T(n, k) 2^kA0000071 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
AltPolyDiag k=0..n T(n, k) n^kA0087881 1 0 -1 16 -243 4096 -78125 1679616 -40353607 1073741824 -31381059609 1000000000000
RevTriangleT(n, k), 0 ≤ k ≤ nA0136091 1 2 1 4 4 1 6 12 8 1 8 24 32 16 1 10 40 80 80 32 1 12 60 160 240 192 64 1 14 84 280 560 672 448
RevAccsee docsmissing1 1 3 1 5 9 1 7 19 27 1 9 33 65 81 1 11 51 131 211 243 1 13 73 233 473 665 729 1 15 99 379 939 1611
RevAccRevsee docsmissing1 2 3 4 8 9 8 20 26 27 16 48 72 80 81 32 112 192 232 242 243 64 256 496 656 716 728 729 128 576
RevAntiDiagsee docsA1280991 1 1 2 1 4 1 6 4 1 8 12 1 10 24 8 1 12 40 32 1 14 60 80 16 1 16 84 160 80 1 18 112 280 240 32 1 20
RevDiffx1T(n, k) (k+1)missing1 1 4 1 8 12 1 12 36 32 1 16 72 128 80 1 20 120 320 400 192 1 24 180 640 1200 1152 448 1 28 252
RevRowSum k=0..n T(n, k)A0002441 3 9 27 81 243 729 2187 6561 19683 59049 177147 531441 1594323 4782969 14348907 43046721 129140163
RevEvenSum k=0..n T(n, k) even(k)A0467171 1 5 13 41 121 365 1093 3281 9841 29525 88573 265721 797161 2391485 7174453 21523361 64570081
RevOddSum k=0..n T(n, k) odd(k)A1520110 2 4 14 40 122 364 1094 3280 9842 29524 88574 265720 797162 2391484 7174454 21523360 64570082
RevAbsSum k=0..n | T(n, k) |A0002441 3 9 27 81 243 729 2187 6561 19683 59049 177147 531441 1594323 4782969 14348907 43046721 129140163
RevDiagSum k=0..n // 2 T(n - k, k)A0010451 1 3 5 11 21 43 85 171 341 683 1365 2731 5461 10923 21845 43691 87381 174763 349525 699051 1398101
RevAccSum k=0..n j=0..k T(n, j)A0062341 4 15 54 189 648 2187 7290 24057 78732 255879 826686 2657205 8503056 27103491 86093442 272629233
RevAccRevSum k=0..n j=0..k T(n, n - j)A0810381 5 21 81 297 1053 3645 12393 41553 137781 452709 1476225 4782969 15411789 49424013 157837977
RevRowLcmLcm k=0..n | T(n, k) | > 1missing1 2 4 24 96 160 960 13440 35840 32256 322560 2365440 28385280 52715520 49201152 1476034560
RevRowGcdGcd k=0..n | T(n, k) | > 1A1719771 2 4 2 8 2 4 2 16 2 4 2 8 2 4 2 32 2 4 2 8 2 4 2 16 2 4 2 8 2 4 2 64 2 4 2 8 2 4 2 16 2 4 2 8 2 4
RevRowMaxMax k=0..n | T(n, k) |A1093881 2 4 12 32 80 240 672 1792 5376 15360 42240 126720 366080 1025024 3075072 8945664 25346048
RevColMiddleT(n, n // 2)A0986601 1 4 6 24 40 160 280 1120 2016 8064 14784 59136 109824 439296 823680 3294720 6223360 24893440
RevCentralET(2 n, n)A0593041 4 24 160 1120 8064 59136 439296 3294720 24893440 189190144 1444724736 11076222976 85201715200
RevCentralOT(2 n + 1, n)A0697201 6 40 280 2016 14784 109824 823680 6223360 47297536 361181184 2769055744 21300428800 164317593600
RevColLeftT(n, 0)A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
RevColRightT(n, n)A0000791 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 1048576
RevBinConv k=0..n C(n, k) T(n, k)A0018501 3 13 63 321 1683 8989 48639 265729 1462563 8097453 45046719 251595969 1409933619 7923848253
RevInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kA0983321 1 -3 -11 1 81 141 -363 -1791 -479 13597 29877 -54911 -353807 -223443 2539989 6806529 -8302527
RevTransNat0 k=0..n T(n, k) kA2126970 2 12 54 216 810 2916 10206 34992 118098 393660 1299078 4251528 13817466 44641044 143489070
RevTransNat1 k=0..n T(n, k) (k + 1)A0810381 5 21 81 297 1053 3645 12393 41553 137781 452709 1476225 4782969 15411789 49424013 157837977
RevTransSqrs k=0..n T(n, k) k^2A0621890 2 20 126 648 2970 12636 51030 198288 747954 2755620 9959598 35429400 124357194 431530092
RevPosHalf k=0..n 2^n T(n, k) (1/2)^kA0003021 4 16 64 256 1024 4096 16384 65536 262144 1048576 4194304 16777216 67108864 268435456 1073741824
RevNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kA0000071 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RevDiagRow1T(n + 1, n)A0017871 4 12 32 80 192 448 1024 2304 5120 11264 24576 53248 114688 245760 524288 1114112 2359296 4980736
RevDiagRow2T(n + 2, n)A0017881 6 24 80 240 672 1792 4608 11520 28160 67584 159744 372736 860160 1966080 4456448 10027008
RevDiagRow3T(n + 3, n)A0017891 8 40 160 560 1792 5376 15360 42240 112640 292864 745472 1863680 4587520 11141120 26738688
RevDiagCol1T(n + 1, 1)A0058432 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68
RevDiagCol2T(n + 2, 2)A0460924 12 24 40 60 84 112 144 180 220 264 312 364 420 480 544 612 684 760 840 924 1012 1104 1200 1300
RevDiagCol3T(n + 3, 3)A1308098 32 80 160 280 448 672 960 1320 1760 2288 2912 3640 4480 5440 6528 7752 9120 10640 12320 14168
RevPolysee docsA1459051 1 1 1 3 1 1 9 5 1 1 27 25 7 1 1 81 125 49 9 1 1 243 625 343 81 11 1 1 729 3125 2401 729 121 13 1
RevPolyRow1 k=0..1 T(1, k) n^kA0054081 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69
RevPolyRow2 k=0..2 T(2, k) n^kA0167541 9 25 49 81 121 169 225 289 361 441 529 625 729 841 961 1089 1225 1369 1521 1681 1849 2025 2209
RevPolyRow3 k=0..3 T(3, k) n^kA0167551 27 125 343 729 1331 2197 3375 4913 6859 9261 12167 15625 19683 24389 29791 35937 42875 50653
RevPolyCol2 k=0..n T(n, k) 2^kA0003511 5 25 125 625 3125 15625 78125 390625 1953125 9765625 48828125 244140625 1220703125 6103515625
RevPolyCol3 k=0..n T(n, k) 3^kA0004201 7 49 343 2401 16807 117649 823543 5764801 40353607 282475249 1977326743 13841287201 96889010407
RevPolyDiag k=0..n T(n, k) n^kA0855271 3 25 343 6561 161051 4826809 170859375 6975757441 322687697779 16679880978201 952809757913927
InvRevInvT-1(n, n - k), 0 ≤ k ≤ nA0136091 1 2 1 4 4 1 6 12 8 1 8 24 32 16 1 10 40 80 80 32 1 12 60 160 240 192 64 1 14 84 280 560 672 448
InvAccsee docsmissing1 -2 -1 4 0 1 -8 4 -2 -1 16 -16 8 0 1 -32 48 -32 8 -2 -1 64 -128 112 -48 12 0 1 -128 320 -352 208
InvAccRevsee docsA1192581 1 -1 1 -3 1 1 -5 7 -1 1 -7 17 -15 1 1 -9 31 -49 31 -1 1 -11 49 -111 129 -63 1 1 -13 71 -209 351
InvAntiDiagsee docsA2075381 -2 4 1 -8 -4 16 12 1 -32 -32 -6 64 80 24 1 -128 -192 -80 -8 256 448 240 40 1 -512 -1024 -672 -160
InvDiffx1T(n, k) (k+1)missing1 -2 2 4 -8 3 -8 24 -18 4 16 -64 72 -32 5 -32 160 -240 160 -50 6 64 -384 720 -640 300 -72 7 -128
InvEvenSum k=0..n T(n, k) even(k)A0070511 -2 5 -14 41 -122 365 -1094 3281 -9842 29525 -88574 265721 -797162 2391485 -7174454 21523361
InvOddSum k=0..n T(n, k) odd(k)A0034620 1 -4 13 -40 121 -364 1093 -3280 9841 -29524 88573 -265720 797161 -2391484 7174453 -21523360
InvAltSum k=0..n T(n, k) (-1)^kA0002441 -3 9 -27 81 -243 729 -2187 6561 -19683 59049 -177147 531441 -1594323 4782969 -14348907 43046721
InvAbsSum k=0..n | T(n, k) |A0002441 3 9 27 81 243 729 2187 6561 19683 59049 177147 531441 1594323 4782969 14348907 43046721 129140163
InvDiagSum k=0..n // 2 T(n - k, k)A0001291 -2 5 -12 29 -70 169 -408 985 -2378 5741 -13860 33461 -80782 195025 -470832 1136689 -2744210
InvAccSum k=0..n j=0..k T(n, j)A0054081 -3 5 -7 9 -11 13 -15 17 -19 21 -23 25 -27 29 -31 33 -35 37 -39 41 -43 45 -47 49 -51 53 -55 57 -59
InvAccRevSum k=0..n j=0..k T(n, n - j)A0000271 0 -1 2 -3 4 -5 6 -7 8 -9 10 -11 12 -13 14 -15 16 -17 18 -19 20 -21 22 -23 24 -25 26 -27 28 -29 30
InvRowLcmLcm k=0..n | T(n, k) | > 1missing1 2 4 24 96 160 960 13440 35840 32256 322560 2365440 28385280 52715520 49201152 1476034560
InvRowGcdGcd k=0..n | T(n, k) | > 1A1719771 2 4 2 8 2 4 2 16 2 4 2 8 2 4 2 32 2 4 2 8 2 4 2 16 2 4 2 8 2 4 2 64 2 4 2 8 2 4 2 16 2 4 2 8 2 4
InvRowMaxMax k=0..n | T(n, k) |A1093881 2 4 12 32 80 240 672 1792 5376 15360 42240 126720 366080 1025024 3075072 8945664 25346048
InvColMiddleT(n, n // 2)missing1 -2 -4 12 24 -80 -160 560 1120 -4032 -8064 29568 59136 -219648 -439296 1647360 3294720 -12446720
InvCentralET(2 n, n)A0593041 -4 24 -160 1120 -8064 59136 -439296 3294720 -24893440 189190144 -1444724736 11076222976
InvCentralOT(2 n + 1, n)A069723-2 12 -80 560 -4032 29568 -219648 1647360 -12446720 94595072 -722362368 5538111488 -42600857600
InvColLeftT(n, 0)A0000791 -2 4 -8 16 -32 64 -128 256 -512 1024 -2048 4096 -8192 16384 -32768 65536 -131072 262144 -524288
InvColRightT(n, n)A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
InvBinConv k=0..n C(n, k) T(n, k)A0983321 -1 -3 11 1 -81 141 363 -1791 479 13597 -29877 -54911 353807 -223443 -2539989 6806529 8302527
InvInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kA0018501 3 13 63 321 1683 8989 48639 265729 1462563 8097453 45046719 251595969 1409933619 7923848253
InvTransNat0 k=0..n T(n, k) kA0000270 1 -2 3 -4 5 -6 7 -8 9 -10 11 -12 13 -14 15 -16 17 -18 19 -20 21 -22 23 -24 25 -26 27 -28 29 -30
InvTransNat1 k=0..n T(n, k) (k + 1)A0000271 0 -1 2 -3 4 -5 6 -7 8 -9 10 -11 12 -13 14 -15 16 -17 18 -19 20 -21 22 -23 24 -25 26 -27 28 -29 30
InvTransSqrs k=0..n T(n, k) k^2A0055630 1 0 -3 8 -15 24 -35 48 -63 80 -99 120 -143 168 -195 224 -255 288 -323 360 -399 440 -483 528 -575
InvPosHalf k=0..n 2^n T(n, k) (1/2)^kA0002441 -3 9 -27 81 -243 729 -2187 6561 -19683 59049 -177147 531441 -1594323 4782969 -14348907 43046721
InvNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kA0003511 5 25 125 625 3125 15625 78125 390625 1953125 9765625 48828125 244140625 1220703125 6103515625
InvDiagRow1T(n + 1, n)A005843-2 -4 -6 -8 -10 -12 -14 -16 -18 -20 -22 -24 -26 -28 -30 -32 -34 -36 -38 -40 -42 -44 -46 -48 -50 -52
InvDiagRow2T(n + 2, n)A0460924 12 24 40 60 84 112 144 180 220 264 312 364 420 480 544 612 684 760 840 924 1012 1104 1200 1300
InvDiagRow3T(n + 3, n)A130809-8 -32 -80 -160 -280 -448 -672 -960 -1320 -1760 -2288 -2912 -3640 -4480 -5440 -6528 -7752 -9120
InvDiagCol1T(n + 1, 1)A0017871 -4 12 -32 80 -192 448 -1024 2304 -5120 11264 -24576 53248 -114688 245760 -524288 1114112 -2359296
InvDiagCol2T(n + 2, 2)A0017881 -6 24 -80 240 -672 1792 -4608 11520 -28160 67584 -159744 372736 -860160 1966080 -4456448 10027008
InvDiagCol3T(n + 3, 3)A0017891 -8 40 -160 560 -1792 5376 -15360 42240 -112640 292864 -745472 1863680 -4587520 11141120 -26738688
InvPolysee docsmissing1 -2 1 4 -1 1 -8 1 0 1 16 -1 0 1 1 -32 1 0 1 2 1 64 -1 0 1 4 3 1 -128 1 0 1 8 9 4 1 256 -1 0 1 16
InvPolyRow1 k=0..1 T(1, k) n^kA000027-2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
InvPolyRow2 k=0..2 T(2, k) n^kA0002904 1 0 1 4 9 16 25 36 49 64 81 100 121 144 169 196 225 256 289 324 361 400 441 484 529 576 625 676
InvPolyRow3 k=0..3 T(3, k) n^kA000578-8 -1 0 1 8 27 64 125 216 343 512 729 1000 1331 1728 2197 2744 3375 4096 4913 5832 6859 8000 9261
InvPolyCol2 k=0..n T(n, k) 2^kA0000071 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
InvPolyCol3 k=0..n T(n, k) 3^kA0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
InvPolyDiag k=0..n T(n, k) n^kA0087881 -1 0 1 16 243 4096 78125 1679616 40353607 1073741824 31381059609 1000000000000 34522712143931
Inv:RevInvRev(T(n, n - k))-1, 0 ≤ k ≤ nA0382071 2 1 4 4 1 8 12 6 1 16 32 24 8 1 32 80 80 40 10 1 64 192 240 160 60 12 1 128 448 672 560 280 84 14
Inv:RevAccsee docsA1192581 1 -1 1 -3 1 1 -5 7 -1 1 -7 17 -15 1 1 -9 31 -49 31 -1 1 -11 49 -111 129 -63 1 1 -13 71 -209 351
Inv:RevAccRevsee docsmissing1 -2 -1 4 0 1 -8 4 -2 -1 16 -16 8 0 1 -32 48 -32 8 -2 -1 64 -128 112 -48 12 0 1 -128 320 -352 208
Inv:RevAntiDiagsee docsA1280991 1 1 -2 1 -4 1 -6 4 1 -8 12 1 -10 24 -8 1 -12 40 -32 1 -14 60 -80 16 1 -16 84 -160 80 1 -18 112
Inv:RevDiffx1T(n, k) (k+1)missing1 1 -4 1 -8 12 1 -12 36 -32 1 -16 72 -128 80 1 -20 120 -320 400 -192 1 -24 180 -640 1200 -1152 448
Inv:RevEvenSum k=0..n T(n, k) even(k)A0467171 1 5 13 41 121 365 1093 3281 9841 29525 88573 265721 797161 2391485 7174453 21523361 64570081
Inv:RevOddSum k=0..n T(n, k) odd(k)A1520110 -2 -4 -14 -40 -122 -364 -1094 -3280 -9842 -29524 -88574 -265720 -797162 -2391484 -7174454
Inv:RevAltSum k=0..n T(n, k) (-1)^kA0002441 3 9 27 81 243 729 2187 6561 19683 59049 177147 531441 1594323 4782969 14348907 43046721 129140163
Inv:RevAbsSum k=0..n | T(n, k) |A0002441 3 9 27 81 243 729 2187 6561 19683 59049 177147 531441 1594323 4782969 14348907 43046721 129140163
Inv:RevDiagSum k=0..n // 2 T(n - k, k)A0770201 1 -1 -3 -1 5 7 -3 -17 -11 23 45 -1 -91 -89 93 271 85 -457 -627 287 1541 967 -2115 -4049 181 8279
Inv:RevAccSum k=0..n j=0..k T(n, j)A0000271 0 -1 2 -3 4 -5 6 -7 8 -9 10 -11 12 -13 14 -15 16 -17 18 -19 20 -21 22 -23 24 -25 26 -27 28 -29 30
Inv:RevAccRevSum k=0..n j=0..k T(n, n - j)A0054081 -3 5 -7 9 -11 13 -15 17 -19 21 -23 25 -27 29 -31 33 -35 37 -39 41 -43 45 -47 49 -51 53 -55 57 -59
Inv:RevRowLcmLcm k=0..n | T(n, k) | > 1missing1 2 4 24 96 160 960 13440 35840 32256 322560 2365440 28385280 52715520 49201152 1476034560
Inv:RevRowGcdGcd k=0..n | T(n, k) | > 1A1719771 2 4 2 8 2 4 2 16 2 4 2 8 2 4 2 32 2 4 2 8 2 4 2 16 2 4 2 8 2 4 2 64 2 4 2 8 2 4 2 16 2 4 2 8 2 4
Inv:RevRowMaxMax k=0..n | T(n, k) |A1093881 2 4 12 32 80 240 672 1792 5376 15360 42240 126720 366080 1025024 3075072 8945664 25346048
Inv:RevColMiddleT(n, n // 2)A0986601 1 -4 -6 24 40 -160 -280 1120 2016 -8064 -14784 59136 109824 -439296 -823680 3294720 6223360
Inv:RevCentralET(2 n, n)A0593041 -4 24 -160 1120 -8064 59136 -439296 3294720 -24893440 189190144 -1444724736 11076222976
Inv:RevCentralOT(2 n + 1, n)A0697201 -6 40 -280 2016 -14784 109824 -823680 6223360 -47297536 361181184 -2769055744 21300428800
Inv:RevColLeftT(n, 0)A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Inv:RevColRightT(n, n)A0000791 -2 4 -8 16 -32 64 -128 256 -512 1024 -2048 4096 -8192 16384 -32768 65536 -131072 262144 -524288
Inv:RevBinConv k=0..n C(n, k) T(n, k)A0983321 -1 -3 11 1 -81 141 363 -1791 479 13597 -29877 -54911 353807 -223443 -2539989 6806529 8302527
Inv:RevInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kA0018501 -3 13 -63 321 -1683 8989 -48639 265729 -1462563 8097453 -45046719 251595969 -1409933619
Inv:RevTransNat0 k=0..n T(n, k) kA0058430 -2 4 -6 8 -10 12 -14 16 -18 20 -22 24 -26 28 -30 32 -34 36 -38 40 -42 44 -46 48 -50 52 -54 56 -58
Inv:RevTransNat1 k=0..n T(n, k) (k + 1)A0054081 -3 5 -7 9 -11 13 -15 17 -19 21 -23 25 -27 29 -31 33 -35 37 -39 41 -43 45 -47 49 -51 53 -55 57 -59
Inv:RevTransSqrs k=0..n T(n, k) k^2A0029390 -2 12 -30 56 -90 132 -182 240 -306 380 -462 552 -650 756 -870 992 -1122 1260 -1406 1560 -1722
Inv:RevPosHalf k=0..n 2^n T(n, k) (1/2)^kA0000071 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Inv:RevNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kA0003021 -4 16 -64 256 -1024 4096 -16384 65536 -262144 1048576 -4194304 16777216 -67108864 268435456
Inv:RevDiagRow1T(n + 1, n)A0017871 -4 12 -32 80 -192 448 -1024 2304 -5120 11264 -24576 53248 -114688 245760 -524288 1114112 -2359296
Inv:RevDiagRow2T(n + 2, n)A0017881 -6 24 -80 240 -672 1792 -4608 11520 -28160 67584 -159744 372736 -860160 1966080 -4456448 10027008
Inv:RevDiagRow3T(n + 3, n)A0017891 -8 40 -160 560 -1792 5376 -15360 42240 -112640 292864 -745472 1863680 -4587520 11141120 -26738688
Inv:RevDiagCol1T(n + 1, 1)A005843-2 -4 -6 -8 -10 -12 -14 -16 -18 -20 -22 -24 -26 -28 -30 -32 -34 -36 -38 -40 -42 -44 -46 -48 -50 -52
Inv:RevDiagCol2T(n + 2, 2)A0460924 12 24 40 60 84 112 144 180 220 264 312 364 420 480 544 612 684 760 840 924 1012 1104 1200 1300
Inv:RevDiagCol3T(n + 3, 3)A130809-8 -32 -80 -160 -280 -448 -672 -960 -1320 -1760 -2288 -2912 -3640 -4480 -5440 -6528 -7752 -9120
Inv:RevPolysee docsmissing1 1 1 1 -1 1 1 1 -3 1 1 -1 9 -5 1 1 1 -27 25 -7 1 1 -1 81 -125 49 -9 1 1 1 -243 625 -343 81 -11 1 1
Inv:RevPolyRow1 k=0..1 T(1, k) n^kA0054081 -1 -3 -5 -7 -9 -11 -13 -15 -17 -19 -21 -23 -25 -27 -29 -31 -33 -35 -37 -39 -41 -43 -45 -47 -49
Inv:RevPolyRow2 k=0..2 T(2, k) n^kA0167541 1 9 25 49 81 121 169 225 289 361 441 529 625 729 841 961 1089 1225 1369 1521 1681 1849 2025 2209
Inv:RevPolyRow3 k=0..3 T(3, k) n^kA0167551 -1 -27 -125 -343 -729 -1331 -2197 -3375 -4913 -6859 -9261 -12167 -15625 -19683 -24389 -29791
Inv:RevPolyCol2 k=0..n T(n, k) 2^kA0002441 -3 9 -27 81 -243 729 -2187 6561 -19683 59049 -177147 531441 -1594323 4782969 -14348907 43046721
Inv:RevPolyCol3 k=0..n T(n, k) 3^kA0003511 -5 25 -125 625 -3125 15625 -78125 390625 -1953125 9765625 -48828125 244140625 -1220703125
Inv:RevPolyDiag k=0..n T(n, k) n^kA0855281 -1 9 -125 2401 -59049 1771561 -62748517 2562890625 -118587876497 6131066257801 -350277500542221
 << TableSourceSimilarsIndex >> 

Note: The A-numbers are based on a finite number of numerical comparisons. They ignore the sign and the OEIS-offset. Sometimes they differ in the first few values. In such cases, we consider our version to be the better one because it has a common formula as a root. Since the offset of all triangles is 0 also the offset of all sequences is 0.