BESSEL2[0] 1
[1] 1, 0
[2] 1, 0, 1
[3] 1, 0, 3, 0
[4] 1, 0, 6, 0, 3
[5] 1, 0, 10, 0, 15, 0

      OEIS Similars: A359760, A073278, A066325, A099174, A111924, A144299, A104556

↕ Type↕ Trait↕ Anum↕ Sequence
StdTriangleT(n, k), 0 ≤ k ≤ nA3597601 1 0 1 0 1 1 0 3 0 1 0 6 0 3 1 0 10 0 15 0 1 0 15 0 45 0 15 1 0 21 0 105 0 105 0 1 0 28 0 210 0
StdRevT(n, n - k), 0 ≤ k ≤ nA0991741 0 1 1 0 1 0 3 0 1 3 0 6 0 1 0 15 0 10 0 1 15 0 45 0 15 0 1 0 105 0 105 0 21 0 1 105 0 420 0 210 0
StdAccsee docsmissing1 1 1 1 1 2 1 1 4 4 1 1 7 7 10 1 1 11 11 26 26 1 1 16 16 61 61 76 1 1 22 22 127 127 232 232 1 1 29
StdAccRevsee docsmissing1 0 1 1 1 2 0 3 3 4 3 3 9 9 10 0 15 15 25 25 26 15 15 60 60 75 75 76 0 105 105 210 210 231 231 232
StdAntiDiagsee docsmissing1 1 1 0 1 0 1 0 1 1 0 3 1 0 6 0 1 0 10 0 1 0 15 0 3 1 0 21 0 15 1 0 28 0 45 0 1 0 36 0 105 0 1 0 45
StdDiffx1T(n, k) (k+1)missing1 1 0 1 0 3 1 0 9 0 1 0 18 0 15 1 0 30 0 75 0 1 0 45 0 225 0 105 1 0 63 0 525 0 735 0 1 0 84 0 1050
StdRowSum k=0..n T(n, k)A0000851 1 2 4 10 26 76 232 764 2620 9496 35696 140152 568504 2390480 10349536 46206736 211799312
StdEvenSum k=0..n T(n, k) even(k)A0000851 1 2 4 10 26 76 232 764 2620 9496 35696 140152 568504 2390480 10349536 46206736 211799312
StdAltSum k=0..n T(n, k) (-1)^kA0000851 1 2 4 10 26 76 232 764 2620 9496 35696 140152 568504 2390480 10349536 46206736 211799312
StdAbsSum k=0..n | T(n, k) |A0000851 1 2 4 10 26 76 232 764 2620 9496 35696 140152 568504 2390480 10349536 46206736 211799312
StdDiagSum k=0..n // 2 T(n - k, k)missing1 1 1 1 2 4 7 11 19 37 74 142 271 539 1117 2329 4832 10126 21709 47297 103579 227917 507176 1143424
StdAccSum k=0..n j=0..k T(n, j)A0000851 2 4 10 26 76 232 764 2620 9496 35696 140152 568504 2390480 10349536 46206736 211799312 997313824
StdAccRevSum k=0..n j=0..k T(n, n - j)missing1 1 4 10 34 106 376 1324 5020 19324 78256 323896 1393624 6137080 27898144 129735376 619921936
StdRowLcmLcm k=0..n | T(n, k) | > 1missing1 1 1 3 6 30 45 105 420 3780 9450 103950 623700 540540 945945 14189175 113513400 1929727800
StdRowGcdGcd k=0..n | T(n, k) | > 1A0698341 1 1 3 3 5 15 21 7 9 45 55 33 39 91 105 15 17 153 171 95 105 231 253 69 75 325 351 189 203 435 465
StdRowMaxMax k=0..n | T(n, k) |missing1 1 1 3 6 15 45 105 420 1260 4725 17325 62370 270270 945945 4729725 18918900 91891800 413513100
StdColMiddleT(n, n // 2)missing1 1 0 0 6 10 0 0 210 378 0 0 13860 25740 0 0 1351350 2552550 0 0 174594420 333316620 0 0
StdCentralET(2 n, n)A3597611 0 6 0 210 0 13860 0 1351350 0 174594420 0 28109701620 0 5421156741000 0 1218404977539750 0
StdCentralOT(2 n + 1, n)missing1 0 10 0 378 0 25740 0 2552550 0 333316620 0 54057118500 0 10480903032600 0 2365139074047750 0
StdColLeftT(n, 0)A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
StdColRightT(n, n)A1230231 0 1 0 3 0 15 0 105 0 945 0 10395 0 135135 0 2027025 0 34459425 0 654729075 0 13749310575 0
StdBinConv k=0..n C(n, k) T(n, k)A3445011 1 2 10 40 176 916 4852 27350 163270 1009396 6504356 43400512 298682320 2118282440 15433768456
StdInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kA3445011 -1 2 -10 40 -176 916 -4852 27350 -163270 1009396 -6504356 43400512 -298682320 2118282440
StdTransNat0 k=0..n T(n, k) kmissing0 0 2 6 24 80 300 1092 4256 16704 68760 288200 1253472 5568576 25507664 119385840 573715200
StdTransNat1 k=0..n T(n, k) (k + 1)missing1 1 4 10 34 106 376 1324 5020 19324 78256 323896 1393624 6137080 27898144 129735376 619921936
StdTransSqrs k=0..n T(n, k) k^2missing0 0 4 12 72 280 1320 5544 25312 112032 520560 2413840 11583264 56096352 279147232 1408172640
StdPosHalf k=0..n 2^n T(n, k) (1/2)^kA0054251 2 5 14 43 142 499 1850 7193 29186 123109 538078 2430355 11317646 54229907 266906858 1347262321
StdNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kA0054251 -2 5 -14 43 -142 499 -1850 7193 -29186 123109 -538078 2430355 -11317646 54229907 -266906858
StdDiagRow1T(n + 1, n)A1230231 0 3 0 15 0 105 0 945 0 10395 0 135135 0 2027025 0 34459425 0 654729075 0 13749310575 0
StdDiagRow2T(n + 2, n)A0018791 0 6 0 45 0 420 0 4725 0 62370 0 945945 0 16216200 0 310134825 0 6547290750 0 151242416325 0
StdDiagRow3T(n + 3, n)A0004571 0 10 0 105 0 1260 0 17325 0 270270 0 4729725 0 91891800 0 1964187225 0 45831035250 0
StdDiagCol2T(n + 2, 2)A0002171 3 6 10 15 21 28 36 45 55 66 78 91 105 120 136 153 171 190 210 231 253 276 300 325 351 378 406 435
StdPolysee docsmissing1 1 1 1 1 1 1 2 1 1 1 4 5 1 1 1 10 13 10 1 1 1 26 73 28 17 1 1 1 76 281 298 49 26 1 1 1 232 1741
StdPolyRow1 k=0..1 T(1, k) n^kA0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
StdPolyRow2 k=0..2 T(2, k) n^kA0025221 2 5 10 17 26 37 50 65 82 101 122 145 170 197 226 257 290 325 362 401 442 485 530 577 626 677 730
StdPolyRow3 k=0..3 T(3, k) n^kA0561071 4 13 28 49 76 109 148 193 244 301 364 433 508 589 676 769 868 973 1084 1201 1324 1453 1588 1729
StdPolyCol2 k=0..n T(n, k) 2^kA1153291 1 5 13 73 281 1741 8485 57233 328753 2389141 15539261 120661465 866545993 7140942173 55667517781
StdPolyCol3 k=0..n T(n, k) 3^kmissing1 1 10 28 298 1306 14716 85240 1012348 7149628 89149816 732616336 9558448120 88681012408
StdPolyDiag k=0..n T(n, k) n^kA3597391 1 5 28 865 9626 758701 12606280 1872570113 41351249980 9925656304501 273345587759696
AltTriangleT(n, k), 0 ≤ k ≤ nA3597601 1 0 1 0 1 1 0 3 0 1 0 6 0 3 1 0 10 0 15 0 1 0 15 0 45 0 15 1 0 21 0 105 0 105 0 1 0 28 0 210 0
AltRevT(n, n - k), 0 ≤ k ≤ nA0991741 0 1 1 0 1 0 3 0 1 3 0 6 0 1 0 15 0 10 0 1 15 0 45 0 15 0 1 0 105 0 105 0 21 0 1 105 0 420 0 210 0
AltAccsee docsmissing1 1 1 1 1 2 1 1 4 4 1 1 7 7 10 1 1 11 11 26 26 1 1 16 16 61 61 76 1 1 22 22 127 127 232 232 1 1 29
AltAccRevsee docsmissing1 0 1 1 1 2 0 3 3 4 3 3 9 9 10 0 15 15 25 25 26 15 15 60 60 75 75 76 0 105 105 210 210 231 231 232
AltAntiDiagsee docsmissing1 1 1 0 1 0 1 0 1 1 0 3 1 0 6 0 1 0 10 0 1 0 15 0 3 1 0 21 0 15 1 0 28 0 45 0 1 0 36 0 105 0 1 0 45
AltDiffx1T(n, k) (k+1)missing1 1 0 1 0 3 1 0 9 0 1 0 18 0 15 1 0 30 0 75 0 1 0 45 0 225 0 105 1 0 63 0 525 0 735 0 1 0 84 0 1050
AltRowSum k=0..n T(n, k)A0000851 1 2 4 10 26 76 232 764 2620 9496 35696 140152 568504 2390480 10349536 46206736 211799312
AltEvenSum k=0..n T(n, k) even(k)A0000851 1 2 4 10 26 76 232 764 2620 9496 35696 140152 568504 2390480 10349536 46206736 211799312
AltAltSum k=0..n T(n, k) (-1)^kA0000851 1 2 4 10 26 76 232 764 2620 9496 35696 140152 568504 2390480 10349536 46206736 211799312
AltAbsSum k=0..n | T(n, k) |A0000851 1 2 4 10 26 76 232 764 2620 9496 35696 140152 568504 2390480 10349536 46206736 211799312
AltDiagSum k=0..n // 2 T(n - k, k)missing1 1 1 1 2 4 7 11 19 37 74 142 271 539 1117 2329 4832 10126 21709 47297 103579 227917 507176 1143424
AltAccSum k=0..n j=0..k T(n, j)A0000851 2 4 10 26 76 232 764 2620 9496 35696 140152 568504 2390480 10349536 46206736 211799312 997313824
AltAccRevSum k=0..n j=0..k T(n, n - j)missing1 1 4 10 34 106 376 1324 5020 19324 78256 323896 1393624 6137080 27898144 129735376 619921936
AltRowLcmLcm k=0..n | T(n, k) | > 1missing1 1 1 3 6 30 45 105 420 3780 9450 103950 623700 540540 945945 14189175 113513400 1929727800
AltRowGcdGcd k=0..n | T(n, k) | > 1A0698341 1 1 3 3 5 15 21 7 9 45 55 33 39 91 105 15 17 153 171 95 105 231 253 69 75 325 351 189 203 435 465
AltRowMaxMax k=0..n | T(n, k) |missing1 1 1 3 6 15 45 105 420 1260 4725 17325 62370 270270 945945 4729725 18918900 91891800 413513100
AltColMiddleT(n, n // 2)missing1 1 0 0 6 10 0 0 210 378 0 0 13860 25740 0 0 1351350 2552550 0 0 174594420 333316620 0 0
AltCentralET(2 n, n)A3597611 0 6 0 210 0 13860 0 1351350 0 174594420 0 28109701620 0 5421156741000 0 1218404977539750 0
AltCentralOT(2 n + 1, n)missing1 0 10 0 378 0 25740 0 2552550 0 333316620 0 54057118500 0 10480903032600 0 2365139074047750 0
AltColLeftT(n, 0)A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
AltColRightT(n, n)A1230231 0 1 0 3 0 15 0 105 0 945 0 10395 0 135135 0 2027025 0 34459425 0 654729075 0 13749310575 0
AltBinConv k=0..n C(n, k) T(n, k)A3445011 1 2 10 40 176 916 4852 27350 163270 1009396 6504356 43400512 298682320 2118282440 15433768456
AltInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kA3445011 -1 2 -10 40 -176 916 -4852 27350 -163270 1009396 -6504356 43400512 -298682320 2118282440
AltTransNat0 k=0..n T(n, k) kmissing0 0 2 6 24 80 300 1092 4256 16704 68760 288200 1253472 5568576 25507664 119385840 573715200
AltTransNat1 k=0..n T(n, k) (k + 1)missing1 1 4 10 34 106 376 1324 5020 19324 78256 323896 1393624 6137080 27898144 129735376 619921936
AltTransSqrs k=0..n T(n, k) k^2missing0 0 4 12 72 280 1320 5544 25312 112032 520560 2413840 11583264 56096352 279147232 1408172640
AltPosHalf k=0..n 2^n T(n, k) (1/2)^kA0054251 2 5 14 43 142 499 1850 7193 29186 123109 538078 2430355 11317646 54229907 266906858 1347262321
AltNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kA0054251 -2 5 -14 43 -142 499 -1850 7193 -29186 123109 -538078 2430355 -11317646 54229907 -266906858
AltDiagRow1T(n + 1, n)A1230231 0 3 0 15 0 105 0 945 0 10395 0 135135 0 2027025 0 34459425 0 654729075 0 13749310575 0
AltDiagRow2T(n + 2, n)A0018791 0 6 0 45 0 420 0 4725 0 62370 0 945945 0 16216200 0 310134825 0 6547290750 0 151242416325 0
AltDiagRow3T(n + 3, n)A0004571 0 10 0 105 0 1260 0 17325 0 270270 0 4729725 0 91891800 0 1964187225 0 45831035250 0
AltDiagCol2T(n + 2, 2)A0002171 3 6 10 15 21 28 36 45 55 66 78 91 105 120 136 153 171 190 210 231 253 276 300 325 351 378 406 435
AltPolysee docsmissing1 1 1 1 1 1 1 2 1 1 1 4 5 1 1 1 10 13 10 1 1 1 26 73 28 17 1 1 1 76 281 298 49 26 1 1 1 232 1741
AltPolyRow1 k=0..1 T(1, k) n^kA0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
AltPolyRow2 k=0..2 T(2, k) n^kA0025221 2 5 10 17 26 37 50 65 82 101 122 145 170 197 226 257 290 325 362 401 442 485 530 577 626 677 730
AltPolyRow3 k=0..3 T(3, k) n^kA0561071 4 13 28 49 76 109 148 193 244 301 364 433 508 589 676 769 868 973 1084 1201 1324 1453 1588 1729
AltPolyCol2 k=0..n T(n, k) 2^kA1153291 1 5 13 73 281 1741 8485 57233 328753 2389141 15539261 120661465 866545993 7140942173 55667517781
AltPolyCol3 k=0..n T(n, k) 3^kmissing1 1 10 28 298 1306 14716 85240 1012348 7149628 89149816 732616336 9558448120 88681012408
AltPolyDiag k=0..n T(n, k) n^kA3597391 1 5 28 865 9626 758701 12606280 1872570113 41351249980 9925656304501 273345587759696
RevTriangleT(n, k), 0 ≤ k ≤ nA0991741 0 1 1 0 1 0 3 0 1 3 0 6 0 1 0 15 0 10 0 1 15 0 45 0 15 0 1 0 105 0 105 0 21 0 1 105 0 420 0 210 0
RevAccsee docsmissing1 0 1 1 1 2 0 3 3 4 3 3 9 9 10 0 15 15 25 25 26 15 15 60 60 75 75 76 0 105 105 210 210 231 231 232
RevAccRevsee docsmissing1 1 1 1 1 2 1 1 4 4 1 1 7 7 10 1 1 11 11 26 26 1 1 16 16 61 61 76 1 1 22 22 127 127 232 232 1 1 29
RevAntiDiagsee docsmissing1 0 1 1 0 0 3 3 1 0 0 0 15 15 6 1 0 0 0 0 105 105 45 10 1 0 0 0 0 0 945 945 420 105 15 1 0 0 0 0 0
RevDiffx1T(n, k) (k+1)missing1 0 2 1 0 3 0 6 0 4 3 0 18 0 5 0 30 0 40 0 6 15 0 135 0 75 0 7 0 210 0 420 0 126 0 8 105 0 1260 0
RevRowSum k=0..n T(n, k)A0000851 1 2 4 10 26 76 232 764 2620 9496 35696 140152 568504 2390480 10349536 46206736 211799312
RevEvenSum k=0..n T(n, k) even(k)A0662231 0 2 0 10 0 76 0 764 0 9496 0 140152 0 2390480 0 46206736 0 997313824 0 23758664096 0 618884638912
RevOddSum k=0..n T(n, k) odd(k)A0662240 1 0 4 0 26 0 232 0 2620 0 35696 0 568504 0 10349536 0 211799312 0 4809701440 0 119952692896 0
RevAltSum k=0..n T(n, k) (-1)^kA0000851 -1 2 -4 10 -26 76 -232 764 -2620 9496 -35696 140152 -568504 2390480 -10349536 46206736 -211799312
RevAbsSum k=0..n | T(n, k) |A0000851 1 2 4 10 26 76 232 764 2620 9496 35696 140152 568504 2390480 10349536 46206736 211799312
RevDiagSum k=0..n // 2 T(n - k, k)A0015151 0 2 0 7 0 37 0 266 0 2431 0 27007 0 353522 0 5329837 0 90960751 0 1733584106 0 36496226977 0
RevAccSum k=0..n j=0..k T(n, j)missing1 1 4 10 34 106 376 1324 5020 19324 78256 323896 1393624 6137080 27898144 129735376 619921936
RevAccRevSum k=0..n j=0..k T(n, n - j)A0000851 2 4 10 26 76 232 764 2620 9496 35696 140152 568504 2390480 10349536 46206736 211799312 997313824
RevRowLcmLcm k=0..n | T(n, k) | > 1missing1 1 1 3 6 30 45 105 420 3780 9450 103950 623700 540540 945945 14189175 113513400 1929727800
RevRowGcdGcd k=0..n | T(n, k) | > 1A0698341 1 1 3 3 5 15 21 7 9 45 55 33 39 91 105 15 17 153 171 95 105 231 253 69 75 325 351 189 203 435 465
RevRowMaxMax k=0..n | T(n, k) |missing1 1 1 3 6 15 45 105 420 1260 4725 17325 62370 270270 945945 4729725 18918900 91891800 413513100
RevColMiddleT(n, n // 2)missing1 0 0 3 6 0 0 105 210 0 0 6930 13860 0 0 675675 1351350 0 0 87297210 174594420 0 0 14054850810
RevCentralET(2 n, n)A3597611 0 6 0 210 0 13860 0 1351350 0 174594420 0 28109701620 0 5421156741000 0 1218404977539750 0
RevCentralOT(2 n + 1, n)missing0 3 0 105 0 6930 0 675675 0 87297210 0 14054850810 0 2710578370500 0 609202488769875 0
RevColLeftT(n, 0)A1230231 0 1 0 3 0 15 0 105 0 945 0 10395 0 135135 0 2027025 0 34459425 0 654729075 0 13749310575 0
RevColRightT(n, n)A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
RevBinConv k=0..n C(n, k) T(n, k)A3445011 1 2 10 40 176 916 4852 27350 163270 1009396 6504356 43400512 298682320 2118282440 15433768456
RevInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kA3445011 1 2 10 40 176 916 4852 27350 163270 1009396 6504356 43400512 298682320 2118282440 15433768456
RevTransNat0 k=0..n T(n, k) kA0139890 1 2 6 16 50 156 532 1856 6876 26200 104456 428352 1821976 7959056 35857200 165592576 785514512
RevTransNat1 k=0..n T(n, k) (k + 1)A0000851 2 4 10 26 76 232 764 2620 9496 35696 140152 568504 2390480 10349536 46206736 211799312 997313824
RevTransSqrs k=0..n T(n, k) k^2missing0 1 4 12 40 130 456 1624 6112 23580 94960 392656 1681824 7390552 33466720 155243040 739307776
RevPosHalf k=0..n 2^n T(n, k) (1/2)^kA1153291 1 5 13 73 281 1741 8485 57233 328753 2389141 15539261 120661465 866545993 7140942173 55667517781
RevNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kA1153291 1 5 13 73 281 1741 8485 57233 328753 2389141 15539261 120661465 866545993 7140942173 55667517781
RevDiagRow2T(n + 2, n)A0002171 3 6 10 15 21 28 36 45 55 66 78 91 105 120 136 153 171 190 210 231 253 276 300 325 351 378 406 435
RevDiagCol1T(n + 1, 1)A1230231 0 3 0 15 0 105 0 945 0 10395 0 135135 0 2027025 0 34459425 0 654729075 0 13749310575 0
RevDiagCol2T(n + 2, 2)A0018791 0 6 0 45 0 420 0 4725 0 62370 0 945945 0 16216200 0 310134825 0 6547290750 0 151242416325 0
RevDiagCol3T(n + 3, 3)A0004571 0 10 0 105 0 1260 0 17325 0 270270 0 4729725 0 91891800 0 1964187225 0 45831035250 0
RevPolysee docsmissing1 0 1 1 1 1 0 2 2 1 3 4 5 3 1 0 10 14 10 4 1 15 26 43 36 17 5 1 0 76 142 138 76 26 6 1 105 232 499
RevPolyRow1 k=0..1 T(1, k) n^kA0000270 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
RevPolyRow2 k=0..2 T(2, k) n^kA0025221 2 5 10 17 26 37 50 65 82 101 122 145 170 197 226 257 290 325 362 401 442 485 530 577 626 677 730
RevPolyRow3 k=0..3 T(3, k) n^kA0799080 4 14 36 76 140 234 364 536 756 1030 1364 1764 2236 2786 3420 4144 4964 5886 6916 8060 9324 10714
RevPolyCol2 k=0..n T(n, k) 2^kA0054251 2 5 14 43 142 499 1850 7193 29186 123109 538078 2430355 11317646 54229907 266906858 1347262321
RevPolyCol3 k=0..n T(n, k) 3^kA2028341 3 10 36 138 558 2364 10440 47868 227124 1112184 5607792 29057400 154465704 841143312 4685949792
RevPolyDiag k=0..n T(n, k) n^kmissing1 1 5 36 355 4450 67731 1213240 25004393 582854940 15161973445 435430350256 13683641789115
Rev:InvInvT-1(n, k), 0 ≤ k ≤ nA0991741 0 1 1 0 1 0 3 0 1 3 0 6 0 1 0 15 0 10 0 1 15 0 45 0 15 0 1 0 105 0 105 0 21 0 1 105 0 420 0 210 0
Rev:InvRevInvT-1(n, n - k), 0 ≤ k ≤ nA3597601 1 0 1 0 1 1 0 3 0 1 0 6 0 3 1 0 10 0 15 0 1 0 15 0 45 0 15 1 0 21 0 105 0 105 0 1 0 28 0 210 0
Rev:InvAccsee docsmissing1 0 1 -1 -1 0 0 -3 -3 -2 3 3 -3 -3 -2 0 15 15 5 5 6 -15 -15 30 30 15 15 16 0 -105 -105 0 0 -21 -21
Rev:InvAccRevsee docsmissing1 1 1 1 1 0 1 1 -2 -2 1 1 -5 -5 -2 1 1 -9 -9 6 6 1 1 -14 -14 31 31 16 1 1 -20 -20 85 85 -20 -20 1 1
Rev:InvAntiDiagsee docsmissing1 0 -1 1 0 0 3 -3 1 0 0 0 -15 15 -6 1 0 0 0 0 105 -105 45 -10 1 0 0 0 0 0 -945 945 -420 105 -15 1 0
Rev:InvDiffx1T(n, k) (k+1)missing1 0 2 -1 0 3 0 -6 0 4 3 0 -18 0 5 0 30 0 -40 0 6 -15 0 135 0 -75 0 7 0 -210 0 420 0 -126 0 8 105 0
Rev:InvRowSum k=0..n T(n, k)A0014641 1 0 -2 -2 6 16 -20 -132 28 1216 936 -12440 -23672 138048 469456 -1601264 -9112560 18108928
Rev:InvEvenSum k=0..n T(n, k) even(k)A3627181 0 0 0 -2 0 16 0 -132 0 1216 0 -12440 0 138048 0 -1601264 0 18108928 0 -161934624 0 -404007680 0
Rev:InvOddSum k=0..n T(n, k) odd(k)A1314410 1 0 -2 0 6 0 -20 0 28 0 936 0 -23672 0 469456 0 -9112560 0 182135008 0 -3804634784 0 83297957568
Rev:InvAltSum k=0..n T(n, k) (-1)^kA0014641 -1 0 2 -2 -6 16 20 -132 -28 1216 -936 -12440 23672 138048 -469456 -1601264 9112560 18108928
Rev:InvAbsSum k=0..n | T(n, k) |A0000851 1 2 4 10 26 76 232 764 2620 9496 35696 140152 568504 2390480 10349536 46206736 211799312
Rev:InvDiagSum k=0..n // 2 T(n - k, k)A2789901 0 0 0 1 0 -5 0 36 0 -329 0 3655 0 -47844 0 721315 0 -12310199 0 234615096 0 -4939227215 0
Rev:InvAccSum k=0..n j=0..k T(n, j)missing1 1 -2 -8 -2 46 76 -272 -1028 1468 13096 -2144 -172952 -169688 2402128 5440576 -34732784 -136804592
Rev:InvAccRevSum k=0..n j=0..k T(n, n - j)missing1 2 2 -2 -10 -4 52 92 -292 -1160 1496 14312 -1208 -185392 -193360 2540176 5910032 -36334048
Rev:InvRowLcmLcm k=0..n | T(n, k) | > 1missing1 1 1 3 6 30 45 105 420 3780 9450 103950 623700 540540 945945 14189175 113513400 1929727800
Rev:InvRowGcdGcd k=0..n | T(n, k) | > 1A0698341 1 1 3 3 5 15 21 7 9 45 55 33 39 91 105 15 17 153 171 95 105 231 253 69 75 325 351 189 203 435 465
Rev:InvRowMaxMax k=0..n | T(n, k) |missing1 1 1 3 6 15 45 105 420 1260 4725 17325 62370 270270 945945 4729725 18918900 91891800 413513100
Rev:InvColMiddleT(n, n // 2)missing1 0 0 -3 -6 0 0 105 210 0 0 -6930 -13860 0 0 675675 1351350 0 0 -87297210 -174594420 0 0
Rev:InvCentralET(2 n, n)A3597611 0 -6 0 210 0 -13860 0 1351350 0 -174594420 0 28109701620 0 -5421156741000 0 1218404977539750 0
Rev:InvCentralOT(2 n + 1, n)missing0 -3 0 105 0 -6930 0 675675 0 -87297210 0 14054850810 0 -2710578370500 0 609202488769875 0
Rev:InvColLeftT(n, 0)A1230231 0 -1 0 3 0 -15 0 105 0 -945 0 10395 0 -135135 0 2027025 0 -34459425 0 654729075 0 -13749310575 0
Rev:InvColRightT(n, n)A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Rev:InvBinConv k=0..n C(n, k) T(n, k)missing1 1 0 -8 -32 -24 436 2500 2262 -51002 -319544 -133704 9545680 55736032 -46326552 -2422602104
Rev:InvInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kmissing1 1 0 -8 -32 -24 436 2500 2262 -51002 -319544 -133704 9545680 55736032 -46326552 -2422602104
Rev:InvTransNat0 k=0..n T(n, k) kmissing0 1 2 0 -8 -10 36 112 -160 -1188 280 13376 11232 -161720 -331408 2070720 7511296 -27221488
Rev:InvTransNat1 k=0..n T(n, k) (k + 1)missing1 2 2 -2 -10 -4 52 92 -292 -1160 1496 14312 -1208 -185392 -193360 2540176 5910032 -36334048
Rev:InvTransSqrs k=0..n T(n, k) k^2missing0 1 4 6 -8 -50 -24 364 736 -2628 -11600 16456 171744 -15704 -2595488 -2900400 40642816 100470544
Rev:InvPosHalf k=0..n 2^n T(n, k) (1/2)^kA3621761 1 -3 -11 25 201 -299 -5123 3249 167185 50221 -6637179 -8846903 309737689 769776645 -16575533939
Rev:InvNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kA3621761 1 -3 -11 25 201 -299 -5123 3249 167185 50221 -6637179 -8846903 309737689 769776645 -16575533939
Rev:InvDiagRow2T(n + 2, n)A000217-1 -3 -6 -10 -15 -21 -28 -36 -45 -55 -66 -78 -91 -105 -120 -136 -153 -171 -190 -210 -231 -253 -276
Rev:InvDiagCol1T(n + 1, 1)A1230231 0 -3 0 15 0 -105 0 945 0 -10395 0 135135 0 -2027025 0 34459425 0 -654729075 0 13749310575 0
Rev:InvDiagCol2T(n + 2, 2)A0018791 0 -6 0 45 0 -420 0 4725 0 -62370 0 945945 0 -16216200 0 310134825 0 -6547290750 0 151242416325 0
Rev:InvDiagCol3T(n + 3, 3)A0004571 0 -10 0 105 0 -1260 0 17325 0 -270270 0 4729725 0 -91891800 0 1964187225 0 -45831035250 0
Rev:InvPolysee docsmissing1 0 1 -1 1 1 0 0 2 1 3 -2 3 3 1 0 -2 2 8 4 1 -15 6 -5 18 15 5 1 0 16 -18 30 52 24 6 1 105 -20 -11
Rev:InvPolyRow1 k=0..1 T(1, k) n^kA0000270 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
Rev:InvPolyRow2 k=0..2 T(2, k) n^kA005563-1 0 3 8 15 24 35 48 63 80 99 120 143 168 195 224 255 288 323 360 399 440 483 528 575 624 675 728
Rev:InvPolyRow3 k=0..3 T(3, k) n^kA0587940 -2 2 18 52 110 198 322 488 702 970 1298 1692 2158 2702 3330 4048 4862 5778 6802 7940 9198 10582
Rev:InvPolyCol2 k=0..n T(n, k) 2^kmissing1 2 3 2 -5 -18 -11 86 249 -190 -2621 -3342 22147 84398 -119115 -1419802 -1052879 20611074 59121091
Rev:InvPolyCol3 k=0..n T(n, k) 3^kmissing1 3 8 18 30 18 -96 -396 -516 1620 9504 12312 -67608 -350568 -172800 4389552 15760656 -22950864
Rev:InvPolyDiag k=0..n T(n, k) n^kA0894661 1 3 18 163 1950 28821 505876 10270569 236644092 6098971555 173823708696 5427760272507
 << TableSourceSimilarsIndex >> 

Note: The A-numbers are based on a finite number of numerical comparisons. They ignore the sign and the OEIS-offset. Sometimes they differ in the first few values. In such cases, we consider our version to be the better one because it has a common formula as a root. Since the offset of all triangles is 0 also the offset of all sequences is 0.