BINOMIAL[0] 1
[1] 1, 1
[2] 1, 2, 1
[3] 1, 3, 3, 1
[4] 1, 4, 6, 4, 1
[5] 1, 5, 10, 10, 5, 1

      OEIS Similars: A007318, A074909, A108086, A117440, A118433, A130595, A135278, A154926

↕ Type↕ Trait↕ Anum↕ Sequence
StdTriangleT(n, k), 0 ≤ k ≤ nA0073181 1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1 1 6 15 20 15 6 1 1 7 21 35 35 21 7 1 1 8 28 56 70 56 28
StdRevT(n, n - k), 0 ≤ k ≤ nA0073181 1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1 1 6 15 20 15 6 1 1 7 21 35 35 21 7 1 1 8 28 56 70 56 28
StdInvT-1(n, k), 0 ≤ k ≤ nA0073181 -1 1 1 -2 1 -1 3 -3 1 1 -4 6 -4 1 -1 5 -10 10 -5 1 1 -6 15 -20 15 -6 1 -1 7 -21 35 -35 21 -7 1 1
StdRevInvT-1(n, n - k), 0 ≤ k ≤ nA0073181 1 -1 1 -2 1 1 -3 3 -1 1 -4 6 -4 1 1 -5 10 -10 5 -1 1 -6 15 -20 15 -6 1 1 -7 21 -35 35 -21 7 -1 1
StdInvRev(T(n, n - k))-1, 0 ≤ k ≤ nA0073181 -1 1 1 -2 1 -1 3 -3 1 1 -4 6 -4 1 -1 5 -10 10 -5 1 1 -6 15 -20 15 -6 1 -1 7 -21 35 -35 21 -7 1 1
StdAccsee docsA0089491 1 2 1 3 4 1 4 7 8 1 5 11 15 16 1 6 16 26 31 32 1 7 22 42 57 63 64 1 8 29 64 99 120 127 128 1 9 37
StdAccRevsee docsA0089491 1 2 1 3 4 1 4 7 8 1 5 11 15 16 1 6 16 26 31 32 1 7 22 42 57 63 64 1 8 29 64 99 120 127 128 1 9 37
StdAntiDiagsee docsA0119731 1 1 1 1 2 1 3 1 1 4 3 1 5 6 1 1 6 10 4 1 7 15 10 1 1 8 21 20 5 1 9 28 35 15 1 1 10 36 56 35 6 1
StdDiffx1T(n, k) (k+1)A1034061 1 2 1 4 3 1 6 9 4 1 8 18 16 5 1 10 30 40 25 6 1 12 45 80 75 36 7 1 14 63 140 175 126 49 8 1 16 84
StdRowSum k=0..n T(n, k)A0000791 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 1048576
StdEvenSum k=0..n T(n, k) even(k)A0000791 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 1048576
StdOddSum k=0..n T(n, k) odd(k)A0000790 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 1048576
StdAltSum k=0..n T(n, k) (-1)^kA0000071 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
StdAbsSum k=0..n | T(n, k) |A0000791 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 1048576
StdDiagSum k=0..n // 2 T(n - k, k)A0000451 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181 6765 10946 17711 28657 46368 75025
StdAccSum k=0..n j=0..k T(n, j)A0017921 3 8 20 48 112 256 576 1280 2816 6144 13312 28672 61440 131072 278528 589824 1245184 2621440
StdAccRevSum k=0..n j=0..k T(n, n - j)A0017921 3 8 20 48 112 256 576 1280 2816 6144 13312 28672 61440 131072 278528 589824 1245184 2621440
StdRowLcmLcm k=0..n | T(n, k) | > 1A0029441 1 2 3 12 10 60 105 280 252 2520 2310 27720 25740 24024 45045 720720 680680 12252240 11639628
StdRowGcdGcd k=0..n | T(n, k) | > 1A0149631 1 2 3 2 5 1 7 2 3 1 11 1 13 1 1 2 17 1 19 1 1 1 23 1 5 1 3 1 29 1 31 2 1 1 1 1 37 1 1 1 41 1 43 1
StdRowMaxMax k=0..n | T(n, k) |A0014051 1 2 3 6 10 20 35 70 126 252 462 924 1716 3432 6435 12870 24310 48620 92378 184756 352716 705432
StdColMiddleT(n, n // 2)A0014051 1 2 3 6 10 20 35 70 126 252 462 924 1716 3432 6435 12870 24310 48620 92378 184756 352716 705432
StdCentralET(2 n, n)A0009841 2 6 20 70 252 924 3432 12870 48620 184756 705432 2704156 10400600 40116600 155117520 601080390
StdCentralOT(2 n + 1, n)A0017001 3 10 35 126 462 1716 6435 24310 92378 352716 1352078 5200300 20058300 77558760 300540195
StdColLeftT(n, 0)A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
StdColRightT(n, n)A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
StdBinConv k=0..n C(n, k) T(n, k)A0009841 2 6 20 70 252 924 3432 12870 48620 184756 705432 2704156 10400600 40116600 155117520 601080390
StdInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kA1268691 0 -2 0 6 0 -20 0 70 0 -252 0 924 0 -3432 0 12870 0 -48620 0 184756 0 -705432 0 2704156 0
StdTransNat0 k=0..n T(n, k) kA0017870 1 4 12 32 80 192 448 1024 2304 5120 11264 24576 53248 114688 245760 524288 1114112 2359296
StdTransNat1 k=0..n T(n, k) (k + 1)A0017921 3 8 20 48 112 256 576 1280 2816 6144 13312 28672 61440 131072 278528 589824 1245184 2621440
StdTransSqrs k=0..n T(n, k) k^2A0017880 1 6 24 80 240 672 1792 4608 11520 28160 67584 159744 372736 860160 1966080 4456448 10027008
StdPosHalf k=0..n 2^n T(n, k) (1/2)^kA0002441 3 9 27 81 243 729 2187 6561 19683 59049 177147 531441 1594323 4782969 14348907 43046721 129140163
StdDiagRow1T(n + 1, n)A0000271 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
StdDiagRow2T(n + 2, n)A0002171 3 6 10 15 21 28 36 45 55 66 78 91 105 120 136 153 171 190 210 231 253 276 300 325 351 378 406 435
StdDiagRow3T(n + 3, n)A0002921 4 10 20 35 56 84 120 165 220 286 364 455 560 680 816 969 1140 1330 1540 1771 2024 2300 2600 2925
StdDiagCol1T(n + 1, 1)A0000271 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
StdDiagCol2T(n + 2, 2)A0002171 3 6 10 15 21 28 36 45 55 66 78 91 105 120 136 153 171 190 210 231 253 276 300 325 351 378 406 435
StdDiagCol3T(n + 3, 3)A0002921 4 10 20 35 56 84 120 165 220 286 364 455 560 680 816 969 1140 1330 1540 1771 2024 2300 2600 2925
StdPolysee docsA0099981 1 1 1 2 1 1 4 3 1 1 8 9 4 1 1 16 27 16 5 1 1 32 81 64 25 6 1 1 64 243 256 125 36 7 1 1 128 729
StdPolyRow1 k=0..1 T(1, k) n^kA0000271 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
StdPolyRow2 k=0..2 T(2, k) n^kA0002901 4 9 16 25 36 49 64 81 100 121 144 169 196 225 256 289 324 361 400 441 484 529 576 625 676 729 784
StdPolyRow3 k=0..3 T(3, k) n^kA0005781 8 27 64 125 216 343 512 729 1000 1331 1728 2197 2744 3375 4096 4913 5832 6859 8000 9261 10648
StdPolyCol2 k=0..n T(n, k) 2^kA0002441 3 9 27 81 243 729 2187 6561 19683 59049 177147 531441 1594323 4782969 14348907 43046721 129140163
StdPolyCol3 k=0..n T(n, k) 3^kA0003021 4 16 64 256 1024 4096 16384 65536 262144 1048576 4194304 16777216 67108864 268435456 1073741824
StdPolyDiag k=0..n T(n, k) n^kA0001691 2 9 64 625 7776 117649 2097152 43046721 1000000000 25937424601 743008370688 23298085122481
AltTriangleT(n, k), 0 ≤ k ≤ nA0073181 1 -1 1 -2 1 1 -3 3 -1 1 -4 6 -4 1 1 -5 10 -10 5 -1 1 -6 15 -20 15 -6 1 1 -7 21 -35 35 -21 7 -1 1
AltRevT(n, n - k), 0 ≤ k ≤ nA0073181 -1 1 1 -2 1 -1 3 -3 1 1 -4 6 -4 1 -1 5 -10 10 -5 1 1 -6 15 -20 15 -6 1 -1 7 -21 35 -35 21 -7 1 1
AltInvT-1(n, k), 0 ≤ k ≤ nmissing1 -1 1 -3 2 1 5 -3 -3 1 33 -20 -18 4 1 -91 55 50 -10 -5 1 -903 546 495 -100 -45 6 1 3485 -2107
AltRevInvT-1(n, n - k), 0 ≤ k ≤ nmissing1 1 -1 1 2 -3 1 -3 -3 5 1 4 -18 -20 33 1 -5 -10 50 55 -91 1 6 -45 -100 495 546 -903 1 -7 -21 175
AltInvRev(T(n, n - k))-1, 0 ≤ k ≤ nA0073181 1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1 1 6 15 20 15 6 1 1 7 21 35 35 21 7 1 1 8 28 56 70 56 28
AltAccsee docsA0719191 1 0 1 -1 0 1 -2 1 0 1 -3 3 -1 0 1 -4 6 -4 1 0 1 -5 10 -10 5 -1 0 1 -6 15 -20 15 -6 1 0 1 -7 21
AltRowSum k=0..n T(n, k)A0000071 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
AltEvenSum k=0..n T(n, k) even(k)A0000791 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 1048576
AltOddSum k=0..n T(n, k) odd(k)A0000790 -1 -2 -4 -8 -16 -32 -64 -128 -256 -512 -1024 -2048 -4096 -8192 -16384 -32768 -65536 -131072
AltAltSum k=0..n T(n, k) (-1)^kA0000791 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 1048576
AltAbsSum k=0..n | T(n, k) |A0000791 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 1048576
AltAccSum k=0..n j=0..k T(n, j)A0195901 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
AltRowLcmLcm k=0..n | T(n, k) | > 1A0029441 1 2 3 12 10 60 105 280 252 2520 2310 27720 25740 24024 45045 720720 680680 12252240 11639628
AltRowGcdGcd k=0..n | T(n, k) | > 1A0149631 1 2 3 2 5 1 7 2 3 1 11 1 13 1 1 2 17 1 19 1 1 1 23 1 5 1 3 1 29 1 31 2 1 1 1 1 37 1 1 1 41 1 43 1
AltRowMaxMax k=0..n | T(n, k) |A0014051 1 2 3 6 10 20 35 70 126 252 462 924 1716 3432 6435 12870 24310 48620 92378 184756 352716 705432
AltColMiddleT(n, n // 2)A0014051 1 -2 -3 6 10 -20 -35 70 126 -252 -462 924 1716 -3432 -6435 12870 24310 -48620 -92378 184756
AltCentralET(2 n, n)A0009841 -2 6 -20 70 -252 924 -3432 12870 -48620 184756 -705432 2704156 -10400600 40116600 -155117520
AltCentralOT(2 n + 1, n)A0017001 -3 10 -35 126 -462 1716 -6435 24310 -92378 352716 -1352078 5200300 -20058300 77558760 -300540195
AltColLeftT(n, 0)A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
AltBinConv k=0..n C(n, k) T(n, k)A1268691 0 -2 0 6 0 -20 0 70 0 -252 0 924 0 -3432 0 12870 0 -48620 0 184756 0 -705432 0 2704156 0
AltInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kA0009841 -2 6 -20 70 -252 924 -3432 12870 -48620 184756 -705432 2704156 -10400600 40116600 -155117520
AltTransNat0 k=0..n T(n, k) kA0635240 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
AltTransSqrs k=0..n T(n, k) k^2A0399680 -1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
AltPosHalf k=0..n 2^n T(n, k) (1/2)^kA0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
AltNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kA0002441 -3 9 -27 81 -243 729 -2187 6561 -19683 59049 -177147 531441 -1594323 4782969 -14348907 43046721
AltDiagRow1T(n + 1, n)A0000271 -2 3 -4 5 -6 7 -8 9 -10 11 -12 13 -14 15 -16 17 -18 19 -20 21 -22 23 -24 25 -26 27 -28 29 -30 31
AltDiagRow2T(n + 2, n)A0002171 -3 6 -10 15 -21 28 -36 45 -55 66 -78 91 -105 120 -136 153 -171 190 -210 231 -253 276 -300 325
AltDiagRow3T(n + 3, n)A0002921 -4 10 -20 35 -56 84 -120 165 -220 286 -364 455 -560 680 -816 969 -1140 1330 -1540 1771 -2024 2300
AltDiagCol1T(n + 1, 1)A000027-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25 -26 -27
AltDiagCol2T(n + 2, 2)A0002171 3 6 10 15 21 28 36 45 55 66 78 91 105 120 136 153 171 190 210 231 253 276 300 325 351 378 406 435
AltDiagCol3T(n + 3, 3)A000292-1 -4 -10 -20 -35 -56 -84 -120 -165 -220 -286 -364 -455 -560 -680 -816 -969 -1140 -1330 -1540 -1771
AltPolysee docsmissing1 1 1 1 0 1 1 0 -1 1 1 0 1 -2 1 1 0 -1 4 -3 1 1 0 1 -8 9 -4 1 1 0 -1 16 -27 16 -5 1 1 0 1 -32 81
AltPolyRow1 k=0..1 T(1, k) n^kA0000271 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25 -26
AltPolyRow2 k=0..2 T(2, k) n^kA0002901 0 1 4 9 16 25 36 49 64 81 100 121 144 169 196 225 256 289 324 361 400 441 484 529 576 625 676 729
AltPolyRow3 k=0..3 T(3, k) n^kA0005781 0 -1 -8 -27 -64 -125 -216 -343 -512 -729 -1000 -1331 -1728 -2197 -2744 -3375 -4096 -4913 -5832
AltPolyCol3 k=0..n T(n, k) 3^kA0000791 -2 4 -8 16 -32 64 -128 256 -512 1024 -2048 4096 -8192 16384 -32768 65536 -131072 262144 -524288
AltPolyDiag k=0..n T(n, k) n^kA0077781 0 1 -8 81 -1024 15625 -279936 5764801 -134217728 3486784401 -100000000000 3138428376721
InvTriangleT(n, k), 0 ≤ k ≤ nA0073181 -1 1 1 -2 1 -1 3 -3 1 1 -4 6 -4 1 -1 5 -10 10 -5 1 1 -6 15 -20 15 -6 1 -1 7 -21 35 -35 21 -7 1 1
InvRevT(n, n - k), 0 ≤ k ≤ nA0073181 1 -1 1 -2 1 1 -3 3 -1 1 -4 6 -4 1 1 -5 10 -10 5 -1 1 -6 15 -20 15 -6 1 1 -7 21 -35 35 -21 7 -1 1
InvRevInvT-1(n, n - k), 0 ≤ k ≤ nA0073181 1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1 1 6 15 20 15 6 1 1 7 21 35 35 21 7 1 1 8 28 56 70 56 28
InvInvRev(T(n, n - k))-1, 0 ≤ k ≤ nmissing1 -1 1 -3 2 1 5 -3 -3 1 33 -20 -18 4 1 -91 55 50 -10 -5 1 -903 546 495 -100 -45 6 1 3485 -2107
InvAccRevsee docsA0719191 1 0 1 -1 0 1 -2 1 0 1 -3 3 -1 0 1 -4 6 -4 1 0 1 -5 10 -10 5 -1 0 1 -6 15 -20 15 -6 1 0 1 -7 21
InvAntiDiagsee docsA0119731 -1 1 1 -1 -2 1 3 1 -1 -4 -3 1 5 6 1 -1 -6 -10 -4 1 7 15 10 1 -1 -8 -21 -20 -5 1 9 28 35 15 1 -1
InvDiffx1T(n, k) (k+1)A1034061 -1 2 1 -4 3 -1 6 -9 4 1 -8 18 -16 5 -1 10 -30 40 -25 6 1 -12 45 -80 75 -36 7 -1 14 -63 140 -175
InvRowSum k=0..n T(n, k)A0000071 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
InvEvenSum k=0..n T(n, k) even(k)A0000791 -1 2 -4 8 -16 32 -64 128 -256 512 -1024 2048 -4096 8192 -16384 32768 -65536 131072 -262144 524288
InvOddSum k=0..n T(n, k) odd(k)A0000790 1 -2 4 -8 16 -32 64 -128 256 -512 1024 -2048 4096 -8192 16384 -32768 65536 -131072 262144 -524288
InvAltSum k=0..n T(n, k) (-1)^kA0000791 -2 4 -8 16 -32 64 -128 256 -512 1024 -2048 4096 -8192 16384 -32768 65536 -131072 262144 -524288
InvAbsSum k=0..n | T(n, k) |A0000791 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 1048576
InvDiagSum k=0..n // 2 T(n - k, k)A0000451 -1 2 -3 5 -8 13 -21 34 -55 89 -144 233 -377 610 -987 1597 -2584 4181 -6765 10946 -17711 28657
InvAccRevSum k=0..n j=0..k T(n, n - j)A0195901 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
InvRowLcmLcm k=0..n | T(n, k) | > 1A0029441 1 2 3 12 10 60 105 280 252 2520 2310 27720 25740 24024 45045 720720 680680 12252240 11639628
InvRowGcdGcd k=0..n | T(n, k) | > 1A0149631 1 2 3 2 5 1 7 2 3 1 11 1 13 1 1 2 17 1 19 1 1 1 23 1 5 1 3 1 29 1 31 2 1 1 1 1 37 1 1 1 41 1 43 1
InvRowMaxMax k=0..n | T(n, k) |A0014051 1 2 3 6 10 20 35 70 126 252 462 924 1716 3432 6435 12870 24310 48620 92378 184756 352716 705432
InvColMiddleT(n, n // 2)A0014051 -1 -2 3 6 -10 -20 35 70 -126 -252 462 924 -1716 -3432 6435 12870 -24310 -48620 92378 184756
InvCentralET(2 n, n)A0009841 -2 6 -20 70 -252 924 -3432 12870 -48620 184756 -705432 2704156 -10400600 40116600 -155117520
InvCentralOT(2 n + 1, n)A001700-1 3 -10 35 -126 462 -1716 6435 -24310 92378 -352716 1352078 -5200300 20058300 -77558760 300540195
InvColRightT(n, n)A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
InvBinConv k=0..n C(n, k) T(n, k)A1268691 0 -2 0 6 0 -20 0 70 0 -252 0 924 0 -3432 0 12870 0 -48620 0 184756 0 -705432 0 2704156 0
InvInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kA0009841 2 6 20 70 252 924 3432 12870 48620 184756 705432 2704156 10400600 40116600 155117520 601080390
InvTransNat0 k=0..n T(n, k) kA0635240 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
InvTransNat1 k=0..n T(n, k) (k + 1)A0195901 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
InvTransSqrs k=0..n T(n, k) k^2A0399680 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
InvNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kA0002441 3 9 27 81 243 729 2187 6561 19683 59049 177147 531441 1594323 4782969 14348907 43046721 129140163
InvDiagRow1T(n + 1, n)A000027-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25 -26 -27
InvDiagRow2T(n + 2, n)A0002171 3 6 10 15 21 28 36 45 55 66 78 91 105 120 136 153 171 190 210 231 253 276 300 325 351 378 406 435
InvDiagRow3T(n + 3, n)A000292-1 -4 -10 -20 -35 -56 -84 -120 -165 -220 -286 -364 -455 -560 -680 -816 -969 -1140 -1330 -1540 -1771
InvDiagCol1T(n + 1, 1)A0000271 -2 3 -4 5 -6 7 -8 9 -10 11 -12 13 -14 15 -16 17 -18 19 -20 21 -22 23 -24 25 -26 27 -28 29 -30 31
InvDiagCol2T(n + 2, 2)A0002171 -3 6 -10 15 -21 28 -36 45 -55 66 -78 91 -105 120 -136 153 -171 190 -210 231 -253 276 -300 325
InvDiagCol3T(n + 3, 3)A0002921 -4 10 -20 35 -56 84 -120 165 -220 286 -364 455 -560 680 -816 969 -1140 1330 -1540 1771 -2024 2300
InvPolysee docsmissing1 -1 1 1 0 1 -1 0 1 1 1 0 1 2 1 -1 0 1 4 3 1 1 0 1 8 9 4 1 -1 0 1 16 27 16 5 1 1 0 1 32 81 64 25 6
InvPolyRow1 k=0..1 T(1, k) n^kA000027-1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
InvPolyRow2 k=0..2 T(2, k) n^kA0002901 0 1 4 9 16 25 36 49 64 81 100 121 144 169 196 225 256 289 324 361 400 441 484 529 576 625 676 729
InvPolyRow3 k=0..3 T(3, k) n^kA000578-1 0 1 8 27 64 125 216 343 512 729 1000 1331 1728 2197 2744 3375 4096 4913 5832 6859 8000 9261
InvPolyCol2 k=0..n T(n, k) 2^kA0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
InvPolyCol3 k=0..n T(n, k) 3^kA0000791 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 1048576
InvPolyDiag k=0..n T(n, k) n^kA0077781 0 1 8 81 1024 15625 279936 5764801 134217728 3486784401 100000000000 3138428376721
Inv:RevTriangleT(n, k), 0 ≤ k ≤ nA0073181 1 -1 1 -2 1 1 -3 3 -1 1 -4 6 -4 1 1 -5 10 -10 5 -1 1 -6 15 -20 15 -6 1 1 -7 21 -35 35 -21 7 -1 1
Inv:RevRevT(n, n - k), 0 ≤ k ≤ nA0073181 -1 1 1 -2 1 -1 3 -3 1 1 -4 6 -4 1 -1 5 -10 10 -5 1 1 -6 15 -20 15 -6 1 -1 7 -21 35 -35 21 -7 1 1
Inv:RevInvT-1(n, k), 0 ≤ k ≤ nmissing1 -1 1 -3 2 1 5 -3 -3 1 33 -20 -18 4 1 -91 55 50 -10 -5 1 -903 546 495 -100 -45 6 1 3485 -2107
Inv:RevRevInvT-1(n, n - k), 0 ≤ k ≤ nmissing1 1 -1 1 2 -3 1 -3 -3 5 1 4 -18 -20 33 1 -5 -10 50 55 -91 1 6 -45 -100 495 546 -903 1 -7 -21 175
Inv:RevInvRev(T(n, n - k))-1, 0 ≤ k ≤ nA0073181 1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1 1 6 15 20 15 6 1 1 7 21 35 35 21 7 1 1 8 28 56 70 56 28
Inv:RevAccsee docsA0719191 1 0 1 -1 0 1 -2 1 0 1 -3 3 -1 0 1 -4 6 -4 1 0 1 -5 10 -10 5 -1 0 1 -6 15 -20 15 -6 1 0 1 -7 21
Inv:RevRowSum k=0..n T(n, k)A0000071 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Inv:RevEvenSum k=0..n T(n, k) even(k)A0000791 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 1048576
Inv:RevOddSum k=0..n T(n, k) odd(k)A0000790 -1 -2 -4 -8 -16 -32 -64 -128 -256 -512 -1024 -2048 -4096 -8192 -16384 -32768 -65536 -131072
Inv:RevAltSum k=0..n T(n, k) (-1)^kA0000791 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 1048576
Inv:RevAbsSum k=0..n | T(n, k) |A0000791 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 1048576
Inv:RevAccSum k=0..n j=0..k T(n, j)A0195901 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Inv:RevRowLcmLcm k=0..n | T(n, k) | > 1A0029441 1 2 3 12 10 60 105 280 252 2520 2310 27720 25740 24024 45045 720720 680680 12252240 11639628
Inv:RevRowGcdGcd k=0..n | T(n, k) | > 1A0149631 1 2 3 2 5 1 7 2 3 1 11 1 13 1 1 2 17 1 19 1 1 1 23 1 5 1 3 1 29 1 31 2 1 1 1 1 37 1 1 1 41 1 43 1
Inv:RevRowMaxMax k=0..n | T(n, k) |A0014051 1 2 3 6 10 20 35 70 126 252 462 924 1716 3432 6435 12870 24310 48620 92378 184756 352716 705432
Inv:RevColMiddleT(n, n // 2)A0014051 1 -2 -3 6 10 -20 -35 70 126 -252 -462 924 1716 -3432 -6435 12870 24310 -48620 -92378 184756
Inv:RevCentralET(2 n, n)A0009841 -2 6 -20 70 -252 924 -3432 12870 -48620 184756 -705432 2704156 -10400600 40116600 -155117520
Inv:RevCentralOT(2 n + 1, n)A0017001 -3 10 -35 126 -462 1716 -6435 24310 -92378 352716 -1352078 5200300 -20058300 77558760 -300540195
Inv:RevColLeftT(n, 0)A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Inv:RevBinConv k=0..n C(n, k) T(n, k)A1268691 0 -2 0 6 0 -20 0 70 0 -252 0 924 0 -3432 0 12870 0 -48620 0 184756 0 -705432 0 2704156 0
Inv:RevInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kA0009841 -2 6 -20 70 -252 924 -3432 12870 -48620 184756 -705432 2704156 -10400600 40116600 -155117520
Inv:RevTransNat0 k=0..n T(n, k) kA0635240 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Inv:RevTransSqrs k=0..n T(n, k) k^2A0399680 -1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Inv:RevPosHalf k=0..n 2^n T(n, k) (1/2)^kA0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Inv:RevNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kA0002441 -3 9 -27 81 -243 729 -2187 6561 -19683 59049 -177147 531441 -1594323 4782969 -14348907 43046721
Inv:RevDiagRow1T(n + 1, n)A0000271 -2 3 -4 5 -6 7 -8 9 -10 11 -12 13 -14 15 -16 17 -18 19 -20 21 -22 23 -24 25 -26 27 -28 29 -30 31
Inv:RevDiagRow2T(n + 2, n)A0002171 -3 6 -10 15 -21 28 -36 45 -55 66 -78 91 -105 120 -136 153 -171 190 -210 231 -253 276 -300 325
Inv:RevDiagRow3T(n + 3, n)A0002921 -4 10 -20 35 -56 84 -120 165 -220 286 -364 455 -560 680 -816 969 -1140 1330 -1540 1771 -2024 2300
Inv:RevDiagCol1T(n + 1, 1)A000027-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25 -26 -27
Inv:RevDiagCol2T(n + 2, 2)A0002171 3 6 10 15 21 28 36 45 55 66 78 91 105 120 136 153 171 190 210 231 253 276 300 325 351 378 406 435
Inv:RevDiagCol3T(n + 3, 3)A000292-1 -4 -10 -20 -35 -56 -84 -120 -165 -220 -286 -364 -455 -560 -680 -816 -969 -1140 -1330 -1540 -1771
Inv:RevPolysee docsmissing1 1 1 1 0 1 1 0 -1 1 1 0 1 -2 1 1 0 -1 4 -3 1 1 0 1 -8 9 -4 1 1 0 -1 16 -27 16 -5 1 1 0 1 -32 81
Inv:RevPolyRow1 k=0..1 T(1, k) n^kA0000271 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25 -26
Inv:RevPolyRow2 k=0..2 T(2, k) n^kA0002901 0 1 4 9 16 25 36 49 64 81 100 121 144 169 196 225 256 289 324 361 400 441 484 529 576 625 676 729
Inv:RevPolyRow3 k=0..3 T(3, k) n^kA0005781 0 -1 -8 -27 -64 -125 -216 -343 -512 -729 -1000 -1331 -1728 -2197 -2744 -3375 -4096 -4913 -5832
Inv:RevPolyCol3 k=0..n T(n, k) 3^kA0000791 -2 4 -8 16 -32 64 -128 256 -512 1024 -2048 4096 -8192 16384 -32768 65536 -131072 262144 -524288
Inv:RevPolyDiag k=0..n T(n, k) n^kA0077781 0 1 -8 81 -1024 15625 -279936 5764801 -134217728 3486784401 -100000000000 3138428376721
 << TableSourceSimilarsIndex >> 

Note: The A-numbers are based on a finite number of numerical comparisons. They ignore the sign and the OEIS-offset. Sometimes they differ in the first few values. In such cases, we consider our version to be the better one because it has a common formula as a root. Since the offset of all triangles is 0 also the offset of all sequences is 0.