ABELINV[0] 1
[1] 0, 1
[2] 0, 2, 1
[3] 0, 3, 6, 1
[4] 0, 4, 24, 12, 1
[5] 0, 5, 80, 90, 20, 1

      OEIS Similars: A059297, A059298

↕ Type↕ Trait↕ Anum↕ Sequence
StdTriangleT(n, k), 0 ≤ k ≤ nA0592971 0 1 0 2 1 0 3 6 1 0 4 24 12 1 0 5 80 90 20 1 0 6 240 540 240 30 1 0 7 672 2835 2240 525 42 1 0 8
StdRevT(n, n - k), 0 ≤ k ≤ nA0592991 1 0 1 2 0 1 6 3 0 1 12 24 4 0 1 20 90 80 5 0 1 30 240 540 240 6 0 1 42 525 2240 2835 672 7 0 1 56
StdInvT-1(n, k), 0 ≤ k ≤ nA1374521 0 1 0 -2 1 0 9 -6 1 0 -64 48 -12 1 0 625 -500 150 -20 1 0 -7776 6480 -2160 360 -30 1 0 117649
StdRevInvT-1(n, n - k), 0 ≤ k ≤ nmissing1 1 0 1 -2 0 1 -6 9 0 1 -12 48 -64 0 1 -20 150 -500 625 0 1 -30 360 -2160 6480 -7776 0 1 -42 735
StdAccsee docsmissing1 0 1 0 2 3 0 3 9 10 0 4 28 40 41 0 5 85 175 195 196 0 6 246 786 1026 1056 1057 0 7 679 3514 5754
StdAccRevsee docsmissing1 1 1 1 3 3 1 7 10 10 1 13 37 41 41 1 21 111 191 196 196 1 31 271 811 1051 1057 1057 1 43 568 2808
StdAntiDiagsee docsmissing1 0 0 1 0 2 0 3 1 0 4 6 0 5 24 1 0 6 80 12 0 7 240 90 1 0 8 672 540 20 0 9 1792 2835 240 1 0 10
StdDiffx1T(n, k) (k+1)missing1 0 2 0 4 3 0 6 18 4 0 8 72 48 5 0 10 240 360 100 6 0 12 720 2160 1200 180 7 0 14 2016 11340 11200
StdRowSum k=0..n T(n, k)A0002481 1 3 10 41 196 1057 6322 41393 293608 2237921 18210094 157329097 1436630092 13810863809
StdEvenSum k=0..n T(n, k) even(k)A0091211 0 1 6 25 100 481 2954 20721 151848 1146721 9111982 77652169 710421452 6891125697 69961213170
StdOddSum k=0..n T(n, k) odd(k)A0095650 1 2 4 16 96 576 3368 20672 141760 1091200 9098112 79676928 726208640 6919738112 69344336896
StdAltSum k=0..n T(n, k) (-1)^kA0037251 -1 -1 2 9 4 -95 -414 49 10088 55521 13870 -2024759 -15787188 -28612415 616876274 7476967905
StdAbsSum k=0..n | T(n, k) |A0002481 1 3 10 41 196 1057 6322 41393 293608 2237921 18210094 157329097 1436630092 13810863809
StdDiagSum k=0..n // 2 T(n - k, k)A3608141 0 1 2 4 10 30 98 338 1240 4877 20496 91213 426678 2090081 10702438 57193760 318283388 1840036058
StdAccSum k=0..n j=0..k T(n, j)missing1 1 5 22 113 656 4177 28876 214993 1711504 14483681 129678044 1223446105 12120448120 125704088161
StdAccRevSum k=0..n j=0..k T(n, n - j)missing1 2 7 28 133 716 4279 28022 198937 1518184 12371371 107053178 979161253 9429003260 95269732783
StdRowLcmLcm k=0..n | T(n, k) | > 1missing1 1 2 6 24 720 2160 907200 108864000 137168640000 57610828800000 266162029056000000
StdRowGcdGcd k=0..n | T(n, k) | > 1A0000271 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
StdRowMaxMax k=0..n | T(n, k) |missing1 1 2 6 24 90 540 2835 17920 129024 860160 7218750 61875000 502734375 5043886848 50438868480
StdColMiddleT(n, n // 2)missing1 0 2 3 24 80 540 2835 17920 129024 787500 7218750 43110144 480370176 2826399576 37096494435
StdCentralET(2 n, n)A3672711 2 24 540 17920 787500 43110144 2826399576 215922769920 18836384175180 1847560000000000
StdCentralOT(2 n + 1, n)missing0 3 80 2835 129024 7218750 480370176 37096494435 3262832967680 322102169395578 35271600000000000
StdColLeftT(n, 0)A0000071 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
StdColRightT(n, n)A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
StdBinConv k=0..n C(n, k) T(n, k)A3672721 1 5 28 209 1826 18217 203106 2487361 33077566 473318201 7234847126 117435618577 2014339775800
StdInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kA3672731 1 -3 -8 81 26 -3815 17494 178241 -2817746 3552201 315952418 -3635118575 -11060115936 782886068497
StdTransNat0 k=0..n T(n, k) kA1852980 1 4 18 92 520 3222 21700 157544 1224576 10133450 88843084 821832156 7992373168 81458868974
StdTransNat1 k=0..n T(n, k) (k + 1)missing1 2 7 28 133 716 4279 28022 198937 1518184 12371371 107053178 979161253 9429003260 95269732783
StdTransSqrs k=0..n T(n, k) k^2missing0 1 6 36 224 1480 10452 78736 630464 5347008 47864420 450765304 4452802224 46014422272 496222253828
StdPosHalf k=0..n 2^n T(n, k) (1/2)^kA2166891 1 5 25 153 1121 9373 87417 898033 10052353 121492341 1573957529 21729801481 318121178337
StdNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kA3568191 1 -3 1 41 -239 229 8401 -87151 324577 3238541 -70271519 601086265 -142860431 -81504662539
StdDiagRow1T(n + 1, n)A0023780 2 6 12 20 30 42 56 72 90 110 132 156 182 210 240 272 306 342 380 420 462 506 552 600 650 702 756
StdDiagRow2T(n + 2, n)missing0 3 24 90 240 525 1008 1764 2880 4455 6600 9438 13104 17745 23520 30600 39168 49419 61560 75810
StdDiagRow3T(n + 3, n)missing0 4 80 540 2240 7000 18144 41160 84480 160380 286000 484484 786240 1230320 1865920 2754000 3969024
StdDiagCol1T(n + 1, 1)A0000271 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
StdDiagCol2T(n + 2, 2)A0017881 6 24 80 240 672 1792 4608 11520 28160 67584 159744 372736 860160 1966080 4456448 10027008
StdDiagCol3T(n + 3, 3)A0362161 12 90 540 2835 13608 61236 262440 1082565 4330260 16888014 64481508 241805655 892820880
StdPolysee docsmissing1 0 1 0 1 1 0 3 2 1 0 10 8 3 1 0 41 38 15 4 1 0 196 216 90 24 5 1 0 1057 1402 633 172 35 6 1 0 6322
StdPolyRow1 k=0..1 T(1, k) n^kA0000270 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
StdPolyRow2 k=0..2 T(2, k) n^kA0055630 3 8 15 24 35 48 63 80 99 120 143 168 195 224 255 288 323 360 399 440 483 528 575 624 675 728 783
StdPolyRow3 k=0..3 T(3, k) n^kmissing0 10 38 90 172 290 450 658 920 1242 1630 2090 2628 3250 3962 4770 5680 6698 7830 9082 10460 11970
StdPolyCol2 k=0..n T(n, k) 2^kA2757071 2 8 38 216 1402 10156 80838 698704 6498674 64579284 681642238 7605025720 89318058858
StdPolyCol3 k=0..n T(n, k) 3^kA3555011 3 15 90 633 5028 44217 424434 4399953 48858984 577372809 7221983838 95192539641 1317190650636
StdPolyDiag k=0..n T(n, k) n^kA2956231 1 8 90 1424 28900 716292 20972098 708317248 27108056808 1159375192100 54799938951934
AltTriangleT(n, k), 0 ≤ k ≤ nA0592971 0 -1 0 -2 1 0 -3 6 -1 0 -4 24 -12 1 0 -5 80 -90 20 -1 0 -6 240 -540 240 -30 1 0 -7 672 -2835 2240
AltRevT(n, n - k), 0 ≤ k ≤ nA0592991 -1 0 1 -2 0 -1 6 -3 0 1 -12 24 -4 0 -1 20 -90 80 -5 0 1 -30 240 -540 240 -6 0 -1 42 -525 2240
AltInvT-1(n, k), 0 ≤ k ≤ nmissing1 0 1 0 2 1 0 -9 -6 1 0 -152 -96 12 1 0 2075 1300 -150 -20 1 0 93396 58560 -6840 -840 30 1 0
AltRevInvT-1(n, n - k), 0 ≤ k ≤ nmissing1 1 0 1 2 0 1 -6 -9 0 1 12 -96 -152 0 1 -20 -150 1300 2075 0 1 30 -840 -6840 58560 93396 0 1 -42
AltAccsee docsmissing1 0 -1 0 -2 -1 0 -3 3 2 0 -4 20 8 9 0 -5 75 -15 5 4 0 -6 234 -306 -66 -96 -95 0 -7 665 -2170 70
AltAccRevsee docsmissing1 -1 -1 1 -1 -1 -1 5 2 2 1 -11 13 9 9 -1 19 -71 9 4 4 1 -29 211 -329 -89 -95 -95 -1 41 -484 1756
AltAntiDiagsee docsmissing1 0 0 -1 0 -2 0 -3 1 0 -4 6 0 -5 24 -1 0 -6 80 -12 0 -7 240 -90 1 0 -8 672 -540 20 0 -9 1792 -2835
AltDiffx1T(n, k) (k+1)missing1 0 -2 0 -4 3 0 -6 18 -4 0 -8 72 -48 5 0 -10 240 -360 100 -6 0 -12 720 -2160 1200 -180 7 0 -14 2016
AltRowSum k=0..n T(n, k)A0037251 -1 -1 2 9 4 -95 -414 49 10088 55521 13870 -2024759 -15787188 -28612415 616876274 7476967905
AltEvenSum k=0..n T(n, k) even(k)A0091211 0 1 6 25 100 481 2954 20721 151848 1146721 9111982 77652169 710421452 6891125697 69961213170
AltOddSum k=0..n T(n, k) odd(k)A0095650 -1 -2 -4 -16 -96 -576 -3368 -20672 -141760 -1091200 -9098112 -79676928 -726208640 -6919738112
AltAltSum k=0..n T(n, k) (-1)^kA0002481 1 3 10 41 196 1057 6322 41393 293608 2237921 18210094 157329097 1436630092 13810863809
AltAbsSum k=0..n | T(n, k) |A0002481 1 3 10 41 196 1057 6322 41393 293608 2237921 18210094 157329097 1436630092 13810863809
AltDiagSum k=0..n // 2 T(n - k, k)missing1 0 -1 -2 -2 2 18 62 144 144 -813 -6800 -32331 -112226 -232577 466778 8976674 65488020 349371302
AltAccSum k=0..n j=0..k T(n, j)missing1 -1 -3 2 33 64 -335 -2724 -4655 55952 504801 1179100 -14176679 -173674632 -691456415 4550929124
AltAccRevSum k=0..n j=0..k T(n, n - j)missing1 -2 -1 8 21 -36 -425 -1002 5145 55016 161451 -998790 -14169947 -63133188 233657775 5935967534
AltRowLcmLcm k=0..n | T(n, k) | > 1missing1 1 2 6 24 720 2160 907200 108864000 137168640000 57610828800000 266162029056000000
AltRowGcdGcd k=0..n | T(n, k) | > 1A0000271 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
AltRowMaxMax k=0..n | T(n, k) |missing1 1 2 6 24 90 540 2835 17920 129024 860160 7218750 61875000 502734375 5043886848 50438868480
AltColMiddleT(n, n // 2)missing1 0 -2 -3 24 80 -540 -2835 17920 129024 -787500 -7218750 43110144 480370176 -2826399576
AltCentralET(2 n, n)A3672711 -2 24 -540 17920 -787500 43110144 -2826399576 215922769920 -18836384175180 1847560000000000
AltCentralOT(2 n + 1, n)missing0 -3 80 -2835 129024 -7218750 480370176 -37096494435 3262832967680 -322102169395578
AltColLeftT(n, 0)A0000071 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
AltBinConv k=0..n C(n, k) T(n, k)A3672731 -1 -3 8 81 -26 -3815 -17494 178241 2817746 3552201 -315952418 -3635118575 11060115936
AltInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kA3672721 -1 5 -28 209 -1826 18217 -203106 2487361 -33077566 473318201 -7234847126 117435618577
AltTransNat0 k=0..n T(n, k) kmissing0 -1 0 6 12 -40 -330 -588 5096 44928 105930 -1012660 -12145188 -47346000 262270190 5319091260
AltTransNat1 k=0..n T(n, k) (k + 1)missing1 -2 -1 8 21 -36 -425 -1002 5145 55016 161451 -998790 -14169947 -63133188 233657775 5935967534
AltTransSqrs k=0..n T(n, k) k^2missing0 -1 2 12 0 -200 -780 1344 30016 134208 -282780 -8028680 -49398096 26677248 3298301188 30311851080
AltPosHalf k=0..n 2^n T(n, k) (1/2)^kA3568191 -1 -3 -1 41 239 229 -8401 -87151 -324577 3238541 70271519 601086265 142860431 -81504662539
AltNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kA2166891 -1 5 -25 153 -1121 9373 -87417 898033 -10052353 121492341 -1573957529 21729801481 -318121178337
AltDiagRow1T(n + 1, n)A0023780 -2 6 -12 20 -30 42 -56 72 -90 110 -132 156 -182 210 -240 272 -306 342 -380 420 -462 506 -552 600
AltDiagRow2T(n + 2, n)missing0 -3 24 -90 240 -525 1008 -1764 2880 -4455 6600 -9438 13104 -17745 23520 -30600 39168 -49419 61560
AltDiagRow3T(n + 3, n)missing0 -4 80 -540 2240 -7000 18144 -41160 84480 -160380 286000 -484484 786240 -1230320 1865920 -2754000
AltDiagCol1T(n + 1, 1)A000027-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25 -26 -27
AltDiagCol2T(n + 2, 2)A0017881 6 24 80 240 672 1792 4608 11520 28160 67584 159744 372736 860160 1966080 4456448 10027008
AltDiagCol3T(n + 3, 3)A036216-1 -12 -90 -540 -2835 -13608 -61236 -262440 -1082565 -4330260 -16888014 -64481508 -241805655
AltPolysee docsmissing1 0 1 0 -1 1 0 -1 -2 1 0 2 0 -3 1 0 9 10 3 -4 1 0 4 8 18 8 -5 1 0 -95 -122 -39 20 15 -6 1 0 -414
AltPolyRow1 k=0..1 T(1, k) n^kA0000270 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25 -26
AltPolyRow2 k=0..2 T(2, k) n^kA0055630 -1 0 3 8 15 24 35 48 63 80 99 120 143 168 195 224 255 288 323 360 399 440 483 528 575 624 675 728
AltPolyRow3 k=0..3 T(3, k) n^kmissing0 2 10 18 20 10 -18 -70 -152 -270 -430 -638 -900 -1222 -1610 -2070 -2608 -3230 -3942 -4750 -5660
AltPolyCol2 k=0..n T(n, k) 2^kmissing1 -2 0 10 8 -122 -428 1594 18608 26254 -648916 -5081342 3318856 347739286 2495737220 -6457268918
AltPolyCol3 k=0..n T(n, k) 3^kmissing1 -3 3 18 -39 -348 441 11778 18129 -475416 -3100791 13831518 304225785 884361228 -21201487431
AltPolyDiag k=0..n T(n, k) n^kmissing1 -1 0 18 -144 100 16380 -267246 749504 69401448 -1849688100 11405686270 797088487536
RevTriangleT(n, k), 0 ≤ k ≤ nA0592991 1 0 1 2 0 1 6 3 0 1 12 24 4 0 1 20 90 80 5 0 1 30 240 540 240 6 0 1 42 525 2240 2835 672 7 0 1 56
RevInvRev(T(n, n - k))-1, 0 ≤ k ≤ nA1374521 0 1 0 -2 1 0 9 -6 1 0 -64 48 -12 1 0 625 -500 150 -20 1 0 -7776 6480 -2160 360 -30 1 0 117649
RevAccsee docsmissing1 1 1 1 3 3 1 7 10 10 1 13 37 41 41 1 21 111 191 196 196 1 31 271 811 1051 1057 1057 1 43 568 2808
RevAccRevsee docsmissing1 0 1 0 2 3 0 3 9 10 0 4 28 40 41 0 5 85 175 195 196 0 6 246 786 1026 1056 1057 0 7 679 3514 5754
RevAntiDiagsee docsmissing1 1 1 0 1 2 1 6 0 1 12 3 1 20 24 0 1 30 90 4 1 42 240 80 0 1 56 525 540 5 1 72 1008 2240 240 0 1 90
RevDiffx1T(n, k) (k+1)missing1 1 0 1 4 0 1 12 9 0 1 24 72 16 0 1 40 270 320 25 0 1 60 720 2160 1200 36 0 1 84 1575 8960 14175
RevRowSum k=0..n T(n, k)A0002481 1 3 10 41 196 1057 6322 41393 293608 2237921 18210094 157329097 1436630092 13810863809
RevEvenSum k=0..n T(n, k) even(k)A1955091 1 1 4 25 96 481 3368 20721 141760 1146721 9098112 77652169 726208640 6891125697 69344336896
RevOddSum k=0..n T(n, k) odd(k)missing0 0 2 6 16 100 576 2954 20672 151848 1091200 9111982 79676928 710421452 6919738112 69961213170
RevAltSum k=0..n T(n, k) (-1)^kA0037251 1 -1 -2 9 -4 -95 414 49 -10088 55521 -13870 -2024759 15787188 -28612415 -616876274 7476967905
RevAbsSum k=0..n | T(n, k) |A0002481 1 3 10 41 196 1057 6322 41393 293608 2237921 18210094 157329097 1436630092 13810863809
RevDiagSum k=0..n // 2 T(n - k, k)A3607821 1 1 3 7 16 45 125 363 1127 3561 11696 39727 138113 494213 1811075 6784115 25985928 101520833
RevAccSum k=0..n j=0..k T(n, j)missing1 2 7 28 133 716 4279 28022 198937 1518184 12371371 107053178 979161253 9429003260 95269732783
RevAccRevSum k=0..n j=0..k T(n, n - j)missing1 1 5 22 113 656 4177 28876 214993 1711504 14483681 129678044 1223446105 12120448120 125704088161
RevRowLcmLcm k=0..n | T(n, k) | > 1missing1 1 2 6 24 720 2160 907200 108864000 137168640000 57610828800000 266162029056000000
RevRowGcdGcd k=0..n | T(n, k) | > 1A0000271 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
RevRowMaxMax k=0..n | T(n, k) |missing1 1 2 6 24 90 540 2835 17920 129024 860160 7218750 61875000 502734375 5043886848 50438868480
RevColMiddleT(n, n // 2)A3672741 1 2 6 24 90 540 2240 17920 78750 787500 3592512 43110144 201885684 2826399576 13495173120
RevCentralET(2 n, n)A3672711 2 24 540 17920 787500 43110144 2826399576 215922769920 18836384175180 1847560000000000
RevCentralOT(2 n + 1, n)missing1 6 90 2240 78750 3592512 201885684 13495173120 1046465787510 92378000000000 9148544655566316
RevColLeftT(n, 0)A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
RevColRightT(n, n)A0000071 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RevBinConv k=0..n C(n, k) T(n, k)A3672721 1 5 28 209 1826 18217 203106 2487361 33077566 473318201 7234847126 117435618577 2014339775800
RevInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kA3672731 -1 -3 8 81 -26 -3815 -17494 178241 2817746 3552201 -315952418 -3635118575 11060115936
RevTransNat0 k=0..n T(n, k) kmissing0 0 2 12 72 460 3120 22554 173600 1417896 12245760 111467950 1066117008 10683818028 111893224352
RevTransNat1 k=0..n T(n, k) (k + 1)missing1 1 5 22 113 656 4177 28876 214993 1711504 14483681 129678044 1223446105 12120448120 125704088161
RevTransSqrs k=0..n T(n, k) k^2missing0 0 2 18 144 1180 9840 84714 758912 7086888 68987520 699638830 7384220448 81003205452 922303229120
RevPosHalf k=0..n 2^n T(n, k) (1/2)^kA2757071 2 8 38 216 1402 10156 80838 698704 6498674 64579284 681642238 7605025720 89318058858
RevNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kmissing1 -2 0 10 8 -122 -428 1594 18608 26254 -648916 -5081342 3318856 347739286 2495737220 -6457268918
RevDiagRow1T(n + 1, n)A0000271 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
RevDiagRow2T(n + 2, n)A0017881 6 24 80 240 672 1792 4608 11520 28160 67584 159744 372736 860160 1966080 4456448 10027008
RevDiagRow3T(n + 3, n)A0362161 12 90 540 2835 13608 61236 262440 1082565 4330260 16888014 64481508 241805655 892820880
RevDiagCol1T(n + 1, 1)A0023780 2 6 12 20 30 42 56 72 90 110 132 156 182 210 240 272 306 342 380 420 462 506 552 600 650 702 756
RevDiagCol2T(n + 2, 2)missing0 3 24 90 240 525 1008 1764 2880 4455 6600 9438 13104 17745 23520 30600 39168 49419 61560 75810
RevDiagCol3T(n + 3, 3)missing0 4 80 540 2240 7000 18144 41160 84480 160380 286000 484484 786240 1230320 1865920 2754000 3969024
RevPolysee docsmissing1 1 1 1 1 1 1 3 1 1 1 10 5 1 1 1 41 25 7 1 1 1 196 153 46 9 1 1 1 1057 1121 361 73 11 1 1 1 6322
RevPolyRow1 k=0..1 T(1, k) n^kA0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
RevPolyRow2 k=0..2 T(2, k) n^kA0054081 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69
RevPolyRow3 k=0..3 T(3, k) n^kA1005361 10 25 46 73 106 145 190 241 298 361 430 505 586 673 766 865 970 1081 1198 1321 1450 1585 1726
RevPolyCol2 k=0..n T(n, k) 2^kA2166891 1 5 25 153 1121 9373 87417 898033 10052353 121492341 1573957529 21729801481 318121178337
RevPolyCol3 k=0..n T(n, k) 3^kA3568271 1 7 46 361 3436 37729 463366 6280369 93015352 1491337441 25684077706 472217487625 9221588527204
RevPolyDiag k=0..n T(n, k) n^kA2955521 1 5 46 689 15476 483157 19719022 1009495489 63119450152 4728073048901 417482964953594
InvTriangleT(n, k), 0 ≤ k ≤ nA1374521 0 1 0 -2 1 0 9 -6 1 0 -64 48 -12 1 0 625 -500 150 -20 1 0 -7776 6480 -2160 360 -30 1 0 117649
InvRevT(n, n - k), 0 ≤ k ≤ nmissing1 1 0 1 -2 0 1 -6 9 0 1 -12 48 -64 0 1 -20 150 -500 625 0 1 -30 360 -2160 6480 -7776 0 1 -42 735
InvRevInvT-1(n, n - k), 0 ≤ k ≤ nA0592991 1 0 1 2 0 1 6 3 0 1 12 24 4 0 1 20 90 80 5 0 1 30 240 540 240 6 0 1 42 525 2240 2835 672 7 0 1 56
InvAccsee docsmissing1 0 1 0 -2 -1 0 9 3 4 0 -64 -16 -28 -27 0 625 125 275 255 256 0 -7776 -1296 -3456 -3096 -3126 -3125
InvAccRevsee docsmissing1 1 1 1 -1 -1 1 -5 4 4 1 -11 37 -27 -27 1 -19 131 -369 256 256 1 -29 331 -1829 4651 -3125 -3125 1
InvAntiDiagsee docsmissing1 0 0 1 0 -2 0 9 1 0 -64 -6 0 625 48 1 0 -7776 -500 -12 0 117649 6480 150 1 0 -2097152 -100842
InvDiffx1T(n, k) (k+1)missing1 0 2 0 -4 3 0 18 -18 4 0 -128 144 -48 5 0 1250 -1500 600 -100 6 0 -15552 19440 -8640 1800 -180 7 0
InvRowSum k=0..n T(n, k)A0003121 1 -1 4 -27 256 -3125 46656 -823543 16777216 -387420489 10000000000 -285311670611 8916100448256
InvEvenSum k=0..n T(n, k) even(k)A2742781 0 1 -6 49 -520 6841 -107744 1979713 -41611392 985263601 -25958682112 753424361713 -23888905963520
InvOddSum k=0..n T(n, k) odd(k)A1951360 1 -2 10 -76 776 -9966 154400 -2803256 58388608 -1372684090 35958682112 -1038736032324
InvAltSum k=0..n T(n, k) (-1)^kA0002721 -1 3 -16 125 -1296 16807 -262144 4782969 -100000000 2357947691 -61917364224 1792160394037
InvAbsSum k=0..n | T(n, k) |A0002721 1 3 16 125 1296 16807 262144 4782969 100000000 2357947691 61917364224 1792160394037
InvDiagSum k=0..n // 2 T(n - k, k)missing1 0 1 -2 10 -70 674 -8288 124280 -2200174 44918105 -1038958770 26852449045 -766951172304
InvAccSum k=0..n j=0..k T(n, j)missing1 1 -3 16 -135 1536 -21875 373248 -7411887 167772160 -4261625379 120000000000 -3709051717943
InvAccRevSum k=0..n j=0..k T(n, n - j)A0003121 2 -1 4 -27 256 -3125 46656 -823543 16777216 -387420489 10000000000 -285311670611 8916100448256
InvRowLcmLcm k=0..n | T(n, k) | > 1missing1 1 2 18 192 7500 38880 7058940 220200960 12053081880 63000000000 65362309994520 286058222714880
InvRowGcdGcd k=0..n | T(n, k) | > 1A0000271 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
InvRowMaxMax k=0..n | T(n, k) |A0001691 1 2 9 64 625 7776 117649 2097152 43046721 1000000000 25937424601 743008370688 23298085122481
InvColMiddleT(n, n // 2)missing1 0 -2 9 48 -500 -2160 36015 143360 -3306744 -12600000 372027810 1379524608 -49696825464
InvCentralET(2 n, n)A3672541 -2 48 -2160 143360 -12600000 1379524608 -180889572864 27638114549760 -4822114348846080
InvCentralOT(2 n + 1, n)missing0 9 -500 36015 -3306744 372027810 -49696825464 7696360546875 -1356645307125680 268283197308856158
InvColLeftT(n, 0)A0000071 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
InvColRightT(n, n)A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
InvBinConv k=0..n C(n, k) T(n, k)A3672571 1 -3 10 -15 -474 12565 -258572 5136705 -102255290 2019481101 -37521627252 543274535089
InvInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kA3672561 1 5 46 593 9726 192637 4457580 117769409 3492894070 114790042901 4137157889316 162154385331985
InvTransNat0 k=0..n T(n, k) kA0635240 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
InvTransNat1 k=0..n T(n, k) (k + 1)A0003121 2 -1 4 -27 256 -3125 46656 -823543 16777216 -387420489 10000000000 -285311670611 8916100448256
InvTransSqrs k=0..n T(n, k) k^2A0555410 1 2 -6 36 -320 3750 -54432 941192 -18874368 430467210 -11000000000 311249095212 -9659108818944
InvPosHalf k=0..n 2^n T(n, k) (1/2)^kA0855271 1 -3 25 -343 6561 -161051 4826809 -170859375 6975757441 -322687697779 16679880978201
InvNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kA0527501 1 5 49 729 14641 371293 11390625 410338673 16983563041 794280046581 41426511213649
InvDiagRow1T(n + 1, n)A0023780 -2 -6 -12 -20 -30 -42 -56 -72 -90 -110 -132 -156 -182 -210 -240 -272 -306 -342 -380 -420 -462
InvDiagRow2T(n + 2, n)missing0 9 48 150 360 735 1344 2268 3600 5445 7920 11154 15288 20475 26880 34680 44064 55233 68400 83790
InvDiagRow3T(n + 3, n)missing0 -64 -500 -2160 -6860 -17920 -40824 -84000 -159720 -285120 -483340 -784784 -1228500 -1863680
InvDiagCol1T(n + 1, 1)A0001691 -2 9 -64 625 -7776 117649 -2097152 43046721 -1000000000 25937424601 -743008370688 23298085122481
InvDiagCol2T(n + 2, 2)A0535061 -6 48 -500 6480 -100842 1835008 -38263752 900000000 -23579476910 681091006464 -21505924728444
InvDiagCol3T(n + 3, 3)A0535071 -12 150 -2160 36015 -688128 14880348 -360000000 9646149645 -283787919360 9098660462034
InvPolysee docsmissing1 0 1 0 1 1 0 -1 2 1 0 4 0 3 1 0 -27 2 3 4 1 0 256 -16 0 8 5 1 0 -3125 162 -3 4 15 6 1 0 46656
InvPolyRow1 k=0..1 T(1, k) n^kA0000270 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
InvPolyRow2 k=0..2 T(2, k) n^kA0055630 -1 0 3 8 15 24 35 48 63 80 99 120 143 168 195 224 255 288 323 360 399 440 483 528 575 624 675 728
InvPolyRow3 k=0..3 T(3, k) n^kA3661510 4 2 0 4 20 54 112 200 324 490 704 972 1300 1694 2160 2704 3332 4050 4864 5780 6804 7942 9200
InvPolyCol2 k=0..n T(n, k) 2^kmissing1 2 0 2 -16 162 -2048 31250 -559872 11529602 -268435456 6973568802 -200000000000 6276856753442
InvPolyCol3 k=0..n T(n, k) 3^kmissing1 3 3 0 -3 48 -729 12288 -234375 5038848 -121060821 3221225472 -94143178827 3000000000000
InvPolyDiag k=0..n T(n, k) n^kA0195901 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Inv:RevTriangleT(n, k), 0 ≤ k ≤ nmissing1 1 0 1 -2 0 1 -6 9 0 1 -12 48 -64 0 1 -20 150 -500 625 0 1 -30 360 -2160 6480 -7776 0 1 -42 735
Inv:RevRevT(n, n - k), 0 ≤ k ≤ nA1374521 0 1 0 -2 1 0 9 -6 1 0 -64 48 -12 1 0 625 -500 150 -20 1 0 -7776 6480 -2160 360 -30 1 0 117649
Inv:RevInvRev(T(n, n - k))-1, 0 ≤ k ≤ nA0592971 0 1 0 2 1 0 3 6 1 0 4 24 12 1 0 5 80 90 20 1 0 6 240 540 240 30 1 0 7 672 2835 2240 525 42 1 0 8
Inv:RevAccsee docsmissing1 1 1 1 -1 -1 1 -5 4 4 1 -11 37 -27 -27 1 -19 131 -369 256 256 1 -29 331 -1829 4651 -3125 -3125 1
Inv:RevAccRevsee docsmissing1 0 1 0 -2 -1 0 9 3 4 0 -64 -16 -28 -27 0 625 125 275 255 256 0 -7776 -1296 -3456 -3096 -3126 -3125
Inv:RevAntiDiagsee docsmissing1 1 1 0 1 -2 1 -6 0 1 -12 9 1 -20 48 0 1 -30 150 -64 1 -42 360 -500 0 1 -56 735 -2160 625 1 -72
Inv:RevDiffx1T(n, k) (k+1)missing1 1 0 1 -4 0 1 -12 27 0 1 -24 144 -256 0 1 -40 450 -2000 3125 0 1 -60 1080 -8640 32400 -46656 0 1
Inv:RevRowSum k=0..n T(n, k)A0003121 1 -1 4 -27 256 -3125 46656 -823543 16777216 -387420489 10000000000 -285311670611 8916100448256
Inv:RevEvenSum k=0..n T(n, k) even(k)missing1 1 1 10 49 776 6841 154400 1979713 58388608 985263601 35958682112 753424361713 32805006411776
Inv:RevOddSum k=0..n T(n, k) odd(k)missing0 0 -2 -6 -76 -520 -9966 -107744 -2803256 -41611392 -1372684090 -25958682112 -1038736032324
Inv:RevAltSum k=0..n T(n, k) (-1)^kA0002721 1 3 16 125 1296 16807 262144 4782969 100000000 2357947691 61917364224 1792160394037
Inv:RevAbsSum k=0..n | T(n, k) |A0002721 1 3 16 125 1296 16807 262144 4782969 100000000 2357947691 61917364224 1792160394037
Inv:RevDiagSum k=0..n // 2 T(n - k, k)missing1 1 1 -1 -5 -2 29 57 -181 -855 893 12498 5185 -189895 -363691 2983659 11526015 -46512706 -326734419
Inv:RevAccSum k=0..n j=0..k T(n, j)A0003121 2 -1 4 -27 256 -3125 46656 -823543 16777216 -387420489 10000000000 -285311670611 8916100448256
Inv:RevAccRevSum k=0..n j=0..k T(n, n - j)missing1 1 -3 16 -135 1536 -21875 373248 -7411887 167772160 -4261625379 120000000000 -3709051717943
Inv:RevRowLcmLcm k=0..n | T(n, k) | > 1missing1 1 2 18 192 7500 38880 7058940 220200960 12053081880 63000000000 65362309994520 286058222714880
Inv:RevRowGcdGcd k=0..n | T(n, k) | > 1A0000271 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
Inv:RevRowMaxMax k=0..n | T(n, k) |A0001691 1 2 9 64 625 7776 117649 2097152 43046721 1000000000 25937424601 743008370688 23298085122481
Inv:RevColMiddleT(n, n // 2)missing1 1 -2 -6 48 150 -2160 -6860 143360 459270 -12600000 -40584852 1379524608 4459971516 -180889572864
Inv:RevCentralET(2 n, n)A3672541 -2 48 -2160 143360 -12600000 1379524608 -180889572864 27638114549760 -4822114348846080
Inv:RevCentralOT(2 n + 1, n)missing1 -6 150 -6860 459270 -40584852 4459971516 -586389375000 89777998265670 -15689075866014980
Inv:RevColLeftT(n, 0)A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Inv:RevColRightT(n, n)A0000071 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Inv:RevBinConv k=0..n C(n, k) T(n, k)A3672571 1 -3 10 -15 -474 12565 -258572 5136705 -102255290 2019481101 -37521627252 543274535089
Inv:RevInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kA3672561 -1 5 -46 593 -9726 192637 -4457580 117769409 -3492894070 114790042901 -4137157889316
Inv:RevTransNat0 k=0..n T(n, k) kA0558970 0 -2 12 -108 1280 -18750 326592 -6588344 150994944 -3874204890 110000000000 -3423740047332
Inv:RevTransNat1 k=0..n T(n, k) (k + 1)missing1 1 -3 16 -135 1536 -21875 373248 -7411887 167772160 -4261625379 120000000000 -3709051717943
Inv:RevTransSqrs k=0..n T(n, k) k^2missing0 0 -2 30 -396 6080 -108750 2231712 -51765560 1340080128 -38311581690 1199000000000 -40773631472772
Inv:RevPosHalf k=0..n 2^n T(n, k) (1/2)^kmissing1 2 0 2 -16 162 -2048 31250 -559872 11529602 -268435456 6973568802 -200000000000 6276856753442
Inv:RevNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kA0073341 -2 8 -50 432 -4802 65536 -1062882 20000000 -428717762 10319560704 -275716983698 8099130339328
Inv:RevDiagRow1T(n + 1, n)A0001691 -2 9 -64 625 -7776 117649 -2097152 43046721 -1000000000 25937424601 -743008370688 23298085122481
Inv:RevDiagRow2T(n + 2, n)A0535061 -6 48 -500 6480 -100842 1835008 -38263752 900000000 -23579476910 681091006464 -21505924728444
Inv:RevDiagRow3T(n + 3, n)A0535071 -12 150 -2160 36015 -688128 14880348 -360000000 9646149645 -283787919360 9098660462034
Inv:RevDiagCol1T(n + 1, 1)A0023780 -2 -6 -12 -20 -30 -42 -56 -72 -90 -110 -132 -156 -182 -210 -240 -272 -306 -342 -380 -420 -462
Inv:RevDiagCol2T(n + 2, 2)missing0 9 48 150 360 735 1344 2268 3600 5445 7920 11154 15288 20475 26880 34680 44064 55233 68400 83790
Inv:RevDiagCol3T(n + 3, 3)missing0 -64 -500 -2160 -6860 -17920 -40824 -84000 -159720 -285120 -483340 -784784 -1228500 -1863680
Inv:RevPolysee docsmissing1 1 1 1 1 1 1 -1 1 1 1 4 -3 1 1 1 -27 25 -5 1 1 1 256 -343 64 -7 1 1 1 -3125 6561 -1331 121 -9 1 1
Inv:RevPolyRow1 k=0..1 T(1, k) n^kA0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Inv:RevPolyRow2 k=0..2 T(2, k) n^kA0054081 -1 -3 -5 -7 -9 -11 -13 -15 -17 -19 -21 -23 -25 -27 -29 -31 -33 -35 -37 -39 -41 -43 -45 -47 -49
Inv:RevPolyRow3 k=0..3 T(3, k) n^kA0167901 4 25 64 121 196 289 400 529 676 841 1024 1225 1444 1681 1936 2209 2500 2809 3136 3481 3844 4225
Inv:RevPolyCol2 k=0..n T(n, k) 2^kA0855271 1 -3 25 -343 6561 -161051 4826809 -170859375 6975757441 -322687697779 16679880978201
Inv:RevPolyCol3 k=0..n T(n, k) 3^kA2742651 1 -5 64 -1331 38416 -1419857 64000000 -3404825447 208827064576 -14507145975869 1125899906842624
Inv:RevPolyDiag k=0..n T(n, k) n^kA1748411 1 -3 64 -3375 331776 -52521875 12230590464 -3938980639167 1677721600000000 -913517247483640899
 << TableSourceSimilarsIndex >> 

Note: The A-numbers are based on a finite number of numerical comparisons. They ignore the sign and the OEIS-offset. Sometimes they differ in the first few values. In such cases, we consider our version to be the better one because it has a common formula as a root. Since the offset of all triangles is 0 also the offset of all sequences is 0.