ABEL[0] 1
[1] 0, 1
[2] 0, 2, 1
[3] 0, 9, 6, 1
[4] 0, 64, 48, 12, 1
[5] 0, 625, 500, 150, 20, 1

      OEIS Similars: A137452, A061356, A139526

↕ Type↕ Trait↕ Anum↕ Sequence
StdTriangleT(n, k), 0 ≤ k ≤ nA1374521 0 1 0 2 1 0 9 6 1 0 64 48 12 1 0 625 500 150 20 1 0 7776 6480 2160 360 30 1 0 117649 100842 36015
StdRevT(n, n - k), 0 ≤ k ≤ nmissing1 1 0 1 2 0 1 6 9 0 1 12 48 64 0 1 20 150 500 625 0 1 30 360 2160 6480 7776 0 1 42 735 6860 36015
StdInvT-1(n, k), 0 ≤ k ≤ nA0592971 0 1 0 -2 1 0 3 -6 1 0 -4 24 -12 1 0 5 -80 90 -20 1 0 -6 240 -540 240 -30 1 0 7 -672 2835 -2240
StdRevInvT-1(n, n - k), 0 ≤ k ≤ nA0592991 1 0 1 -2 0 1 -6 3 0 1 -12 24 -4 0 1 -20 90 -80 5 0 1 -30 240 -540 240 -6 0 1 -42 525 -2240 2835
StdAccsee docsmissing1 0 1 0 2 3 0 9 15 16 0 64 112 124 125 0 625 1125 1275 1295 1296 0 7776 14256 16416 16776 16806
StdAccRevsee docsmissing1 1 1 1 3 3 1 7 16 16 1 13 61 125 125 1 21 171 671 1296 1296 1 31 391 2551 9031 16807 16807 1 43
StdAntiDiagsee docsmissing1 0 0 1 0 2 0 9 1 0 64 6 0 625 48 1 0 7776 500 12 0 117649 6480 150 1 0 2097152 100842 2160 20 0
StdDiffx1T(n, k) (k+1)missing1 0 2 0 4 3 0 18 18 4 0 128 144 48 5 0 1250 1500 600 100 6 0 15552 19440 8640 1800 180 7 0 235298
StdRowSum k=0..n T(n, k)A0002721 1 3 16 125 1296 16807 262144 4782969 100000000 2357947691 61917364224 1792160394037
StdEvenSum k=0..n T(n, k) even(k)A2742781 0 1 6 49 520 6841 107744 1979713 41611392 985263601 25958682112 753424361713 23888905963520
StdOddSum k=0..n T(n, k) odd(k)A1951360 1 2 10 76 776 9966 154400 2803256 58388608 1372684090 35958682112 1038736032324 32805006411776
StdAltSum k=0..n T(n, k) (-1)^kA0003121 -1 -1 -4 -27 -256 -3125 -46656 -823543 -16777216 -387420489 -10000000000 -285311670611
StdAbsSum k=0..n | T(n, k) |A0002721 1 3 16 125 1296 16807 262144 4782969 100000000 2357947691 61917364224 1792160394037
StdDiagSum k=0..n // 2 T(n - k, k)missing1 0 1 2 10 70 674 8288 124280 2200174 44918105 1038958770 26852449045 766951172304 23988906739205
StdAccSum k=0..n j=0..k T(n, j)missing1 1 5 40 425 5616 88837 1638400 34543665 820000000 21650246981 629493202944 19989481318105
StdAccRevSum k=0..n j=0..k T(n, n - j)A3672551 2 7 40 325 3456 45619 720896 13286025 280000000 6645125311 175432531968 5100764198413
StdRowLcmLcm k=0..n | T(n, k) | > 1missing1 1 2 18 192 7500 38880 7058940 220200960 12053081880 63000000000 65362309994520 286058222714880
StdRowGcdGcd k=0..n | T(n, k) | > 1A0000271 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
StdRowMaxMax k=0..n | T(n, k) |A0001691 1 2 9 64 625 7776 117649 2097152 43046721 1000000000 25937424601 743008370688 23298085122481
StdColMiddleT(n, n // 2)missing1 0 2 9 48 500 2160 36015 143360 3306744 12600000 372027810 1379524608 49696825464 180889572864
StdCentralET(2 n, n)A3672541 2 48 2160 143360 12600000 1379524608 180889572864 27638114549760 4822114348846080
StdCentralOT(2 n + 1, n)missing0 9 500 36015 3306744 372027810 49696825464 7696360546875 1356645307125680 268283197308856158
StdColLeftT(n, 0)A0000071 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
StdColRightT(n, n)A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
StdBinConv k=0..n C(n, k) T(n, k)A3672561 1 5 46 593 9726 192637 4457580 117769409 3492894070 114790042901 4137157889316 162154385331985
StdInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kA3672571 1 -3 10 -15 -474 12565 -258572 5136705 -102255290 2019481101 -37521627252 543274535089
StdTransNat0 k=0..n T(n, k) kA0899460 1 4 24 200 2160 28812 458752 8503056 180000000 4287177620 113515167744 3308603804376
StdTransNat1 k=0..n T(n, k) (k + 1)A3672551 2 7 40 325 3456 45619 720896 13286025 280000000 6645125311 175432531968 5100764198413
StdTransSqrs k=0..n T(n, k) k^2A2254970 1 6 42 380 4320 59682 974848 18423288 396000000 9548713790 255409127424 7507985556084
StdPosHalf k=0..n 2^n T(n, k) (1/2)^kA0527501 1 5 49 729 14641 371293 11390625 410338673 16983563041 794280046581 41426511213649
StdNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kA0855271 1 -3 25 -343 6561 -161051 4826809 -170859375 6975757441 -322687697779 16679880978201
StdDiagRow1T(n + 1, n)A0023780 2 6 12 20 30 42 56 72 90 110 132 156 182 210 240 272 306 342 380 420 462 506 552 600 650 702 756
StdDiagRow2T(n + 2, n)missing0 9 48 150 360 735 1344 2268 3600 5445 7920 11154 15288 20475 26880 34680 44064 55233 68400 83790
StdDiagRow3T(n + 3, n)missing0 64 500 2160 6860 17920 40824 84000 159720 285120 483340 784784 1228500 1863680 2751280 3965760
StdDiagCol1T(n + 1, 1)A0001691 2 9 64 625 7776 117649 2097152 43046721 1000000000 25937424601 743008370688 23298085122481
StdDiagCol2T(n + 2, 2)A0535061 6 48 500 6480 100842 1835008 38263752 900000000 23579476910 681091006464 21505924728444
StdDiagCol3T(n + 3, 3)A0535071 12 150 2160 36015 688128 14880348 360000000 9646149645 283787919360 9098660462034 315866083233792
StdPolysee docsA2320061 0 1 0 1 1 0 3 2 1 0 16 8 3 1 0 125 50 15 4 1 0 1296 432 108 24 5 1 0 16807 4802 1029 196 35 6 1 0
StdPolyRow1 k=0..1 T(1, k) n^kA0000270 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
StdPolyRow2 k=0..2 T(2, k) n^kA0055630 3 8 15 24 35 48 63 80 99 120 143 168 195 224 255 288 323 360 399 440 483 528 575 624 675 728 783
StdPolyRow3 k=0..3 T(3, k) n^kmissing0 16 50 108 196 320 486 700 968 1296 1690 2156 2700 3328 4046 4860 5776 6800 7938 9196 10580 12096
StdPolyCol2 k=0..n T(n, k) 2^kA0073341 2 8 50 432 4802 65536 1062882 20000000 428717762 10319560704 275716983698 8099130339328
StdPolyCol3 k=0..n T(n, k) 3^kA3623541 3 15 108 1029 12288 177147 3000000 58461513 1289945088 31813498119 867763964928 25949267578125
StdPolyDiag k=0..n T(n, k) n^kA1936781 1 8 108 2048 50000 1492992 52706752 2147483648 99179645184 5120000000000 292159150705664
AltTriangleT(n, k), 0 ≤ k ≤ nA1374521 0 -1 0 -2 1 0 -9 6 -1 0 -64 48 -12 1 0 -625 500 -150 20 -1 0 -7776 6480 -2160 360 -30 1 0 -117649
AltRevT(n, n - k), 0 ≤ k ≤ nmissing1 -1 0 1 -2 0 -1 6 -9 0 1 -12 48 -64 0 -1 20 -150 500 -625 0 1 -30 360 -2160 6480 -7776 0 -1 42
AltInvT-1(n, k), 0 ≤ k ≤ nmissing1 0 1 0 2 1 0 -3 -6 1 0 -68 -120 12 1 0 535 1000 -90 -20 1 0 28866 53760 -4860 -960 30 1 0 -544747
AltRevInvT-1(n, n - k), 0 ≤ k ≤ nmissing1 1 0 1 2 0 1 -6 -3 0 1 12 -120 -68 0 1 -20 -90 1000 535 0 1 30 -960 -4860 53760 28866 0 1 -42 -525
AltAccsee docsmissing1 0 -1 0 -2 -1 0 -9 -3 -4 0 -64 -16 -28 -27 0 -625 -125 -275 -255 -256 0 -7776 -1296 -3456 -3096
AltAccRevsee docsmissing1 -1 -1 1 -1 -1 -1 5 -4 -4 1 -11 37 -27 -27 -1 19 -131 369 -256 -256 1 -29 331 -1829 4651 -3125
AltAntiDiagsee docsmissing1 0 0 -1 0 -2 0 -9 1 0 -64 6 0 -625 48 -1 0 -7776 500 -12 0 -117649 6480 -150 1 0 -2097152 100842
AltDiffx1T(n, k) (k+1)missing1 0 -2 0 -4 3 0 -18 18 -4 0 -128 144 -48 5 0 -1250 1500 -600 100 -6 0 -15552 19440 -8640 1800 -180
AltRowSum k=0..n T(n, k)A0003121 -1 -1 -4 -27 -256 -3125 -46656 -823543 -16777216 -387420489 -10000000000 -285311670611
AltEvenSum k=0..n T(n, k) even(k)A2742781 0 1 6 49 520 6841 107744 1979713 41611392 985263601 25958682112 753424361713 23888905963520
AltOddSum k=0..n T(n, k) odd(k)A1951360 -1 -2 -10 -76 -776 -9966 -154400 -2803256 -58388608 -1372684090 -35958682112 -1038736032324
AltAltSum k=0..n T(n, k) (-1)^kA0002721 1 3 16 125 1296 16807 262144 4782969 100000000 2357947691 61917364224 1792160394037
AltAbsSum k=0..n | T(n, k) |A0002721 1 3 16 125 1296 16807 262144 4782969 100000000 2357947691 61917364224 1792160394037
AltDiagSum k=0..n // 2 T(n - k, k)missing1 0 -1 -2 -8 -58 -578 -7288 -111318 -1998450 -41247369 -962417546 -25052162323 -719785604912
AltAccSum k=0..n j=0..k T(n, j)missing1 -1 -3 -16 -135 -1536 -21875 -373248 -7411887 -167772160 -4261625379 -120000000000 -3709051717943
AltAccRevSum k=0..n j=0..k T(n, n - j)A0003121 -2 -1 -4 -27 -256 -3125 -46656 -823543 -16777216 -387420489 -10000000000 -285311670611
AltRowLcmLcm k=0..n | T(n, k) | > 1missing1 1 2 18 192 7500 38880 7058940 220200960 12053081880 63000000000 65362309994520 286058222714880
AltRowGcdGcd k=0..n | T(n, k) | > 1A0000271 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
AltRowMaxMax k=0..n | T(n, k) |A0001691 1 2 9 64 625 7776 117649 2097152 43046721 1000000000 25937424601 743008370688 23298085122481
AltColMiddleT(n, n // 2)missing1 0 -2 -9 48 500 -2160 -36015 143360 3306744 -12600000 -372027810 1379524608 49696825464
AltCentralET(2 n, n)A3672541 -2 48 -2160 143360 -12600000 1379524608 -180889572864 27638114549760 -4822114348846080
AltCentralOT(2 n + 1, n)missing0 -9 500 -36015 3306744 -372027810 49696825464 -7696360546875 1356645307125680 -268283197308856158
AltColLeftT(n, 0)A0000071 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
AltBinConv k=0..n C(n, k) T(n, k)A3672571 -1 -3 -10 -15 474 12565 258572 5136705 102255290 2019481101 37521627252 543274535089
AltInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kA3672561 -1 5 -46 593 -9726 192637 -4457580 117769409 -3492894070 114790042901 -4137157889316
AltTransNat0 k=0..n T(n, k) kA0635240 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
AltTransNat1 k=0..n T(n, k) (k + 1)A0003121 -2 -1 -4 -27 -256 -3125 -46656 -823543 -16777216 -387420489 -10000000000 -285311670611
AltTransSqrs k=0..n T(n, k) k^2A0555410 -1 2 6 36 320 3750 54432 941192 18874368 430467210 11000000000 311249095212 9659108818944
AltPosHalf k=0..n 2^n T(n, k) (1/2)^kA0855271 -1 -3 -25 -343 -6561 -161051 -4826809 -170859375 -6975757441 -322687697779 -16679880978201
AltNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kA0527501 -1 5 -49 729 -14641 371293 -11390625 410338673 -16983563041 794280046581 -41426511213649
AltDiagRow1T(n + 1, n)A0023780 -2 6 -12 20 -30 42 -56 72 -90 110 -132 156 -182 210 -240 272 -306 342 -380 420 -462 506 -552 600
AltDiagRow2T(n + 2, n)missing0 -9 48 -150 360 -735 1344 -2268 3600 -5445 7920 -11154 15288 -20475 26880 -34680 44064 -55233
AltDiagRow3T(n + 3, n)missing0 -64 500 -2160 6860 -17920 40824 -84000 159720 -285120 483340 -784784 1228500 -1863680 2751280
AltDiagCol1T(n + 1, 1)A000169-1 -2 -9 -64 -625 -7776 -117649 -2097152 -43046721 -1000000000 -25937424601 -743008370688
AltDiagCol2T(n + 2, 2)A0535061 6 48 500 6480 100842 1835008 38263752 900000000 23579476910 681091006464 21505924728444
AltDiagCol3T(n + 3, 3)A053507-1 -12 -150 -2160 -36015 -688128 -14880348 -360000000 -9646149645 -283787919360 -9098660462034
AltPolysee docsmissing1 0 1 0 -1 1 0 -1 -2 1 0 -4 0 -3 1 0 -27 -2 3 -4 1 0 -256 -16 0 8 -5 1 0 -3125 -162 -3 -4 15 -6 1 0
AltPolyRow1 k=0..1 T(1, k) n^kA0000270 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25 -26
AltPolyRow2 k=0..2 T(2, k) n^kA0055630 -1 0 3 8 15 24 35 48 63 80 99 120 143 168 195 224 255 288 323 360 399 440 483 528 575 624 675 728
AltPolyRow3 k=0..3 T(3, k) n^kA3661510 -4 -2 0 -4 -20 -54 -112 -200 -324 -490 -704 -972 -1300 -1694 -2160 -2704 -3332 -4050 -4864 -5780
AltPolyCol2 k=0..n T(n, k) 2^kmissing1 -2 0 -2 -16 -162 -2048 -31250 -559872 -11529602 -268435456 -6973568802 -200000000000
AltPolyCol3 k=0..n T(n, k) 3^kmissing1 -3 3 0 -3 -48 -729 -12288 -234375 -5038848 -121060821 -3221225472 -94143178827 -3000000000000
RevTriangleT(n, k), 0 ≤ k ≤ nmissing1 1 0 1 2 0 1 6 9 0 1 12 48 64 0 1 20 150 500 625 0 1 30 360 2160 6480 7776 0 1 42 735 6860 36015
RevInvRev(T(n, n - k))-1, 0 ≤ k ≤ nA0592971 0 1 0 -2 1 0 3 -6 1 0 -4 24 -12 1 0 5 -80 90 -20 1 0 -6 240 -540 240 -30 1 0 7 -672 2835 -2240
RevAccsee docsmissing1 1 1 1 3 3 1 7 16 16 1 13 61 125 125 1 21 171 671 1296 1296 1 31 391 2551 9031 16807 16807 1 43
RevAccRevsee docsmissing1 0 1 0 2 3 0 9 15 16 0 64 112 124 125 0 625 1125 1275 1295 1296 0 7776 14256 16416 16776 16806
RevAntiDiagsee docsmissing1 1 1 0 1 2 1 6 0 1 12 9 1 20 48 0 1 30 150 64 1 42 360 500 0 1 56 735 2160 625 1 72 1344 6860 6480
RevDiffx1T(n, k) (k+1)missing1 1 0 1 4 0 1 12 27 0 1 24 144 256 0 1 40 450 2000 3125 0 1 60 1080 8640 32400 46656 0 1 84 2205
RevRowSum k=0..n T(n, k)A0002721 1 3 16 125 1296 16807 262144 4782969 100000000 2357947691 61917364224 1792160394037
RevEvenSum k=0..n T(n, k) even(k)missing1 1 1 10 49 776 6841 154400 1979713 58388608 985263601 35958682112 753424361713 32805006411776
RevOddSum k=0..n T(n, k) odd(k)missing0 0 2 6 76 520 9966 107744 2803256 41611392 1372684090 25958682112 1038736032324 23888905963520
RevAltSum k=0..n T(n, k) (-1)^kA0003121 1 -1 4 -27 256 -3125 46656 -823543 16777216 -387420489 10000000000 -285311670611 8916100448256
RevAbsSum k=0..n | T(n, k) |A0002721 1 3 16 125 1296 16807 262144 4782969 100000000 2357947691 61917364224 1792160394037
RevDiagSum k=0..n // 2 T(n - k, k)missing1 1 1 3 7 22 69 245 903 3577 14757 64070 288737 1354625 6569549 32948567 170190323 904978110
RevAccSum k=0..n j=0..k T(n, j)A3672551 2 7 40 325 3456 45619 720896 13286025 280000000 6645125311 175432531968 5100764198413
RevAccRevSum k=0..n j=0..k T(n, n - j)missing1 1 5 40 425 5616 88837 1638400 34543665 820000000 21650246981 629493202944 19989481318105
RevRowLcmLcm k=0..n | T(n, k) | > 1missing1 1 2 18 192 7500 38880 7058940 220200960 12053081880 63000000000 65362309994520 286058222714880
RevRowGcdGcd k=0..n | T(n, k) | > 1A0000271 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
RevRowMaxMax k=0..n | T(n, k) |A0001691 1 2 9 64 625 7776 117649 2097152 43046721 1000000000 25937424601 743008370688 23298085122481
RevColMiddleT(n, n // 2)missing1 1 2 6 48 150 2160 6860 143360 459270 12600000 40584852 1379524608 4459971516 180889572864
RevCentralET(2 n, n)A3672541 2 48 2160 143360 12600000 1379524608 180889572864 27638114549760 4822114348846080
RevCentralOT(2 n + 1, n)missing1 6 150 6860 459270 40584852 4459971516 586389375000 89777998265670 15689075866014980
RevColLeftT(n, 0)A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
RevColRightT(n, n)A0000071 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RevBinConv k=0..n C(n, k) T(n, k)A3672561 1 5 46 593 9726 192637 4457580 117769409 3492894070 114790042901 4137157889316 162154385331985
RevInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kA3672571 -1 -3 -10 -15 474 12565 258572 5136705 102255290 2019481101 37521627252 543274535089
RevTransNat0 k=0..n T(n, k) kA0655130 0 2 24 300 4320 72030 1376256 29760696 720000000 19292299290 567575838720 18197320924068
RevTransNat1 k=0..n T(n, k) (k + 1)missing1 1 5 40 425 5616 88837 1638400 34543665 820000000 21650246981 629493202944 19989481318105
RevTransSqrs k=0..n T(n, k) k^2missing0 0 2 42 780 15120 318990 7397376 188484408 5256000000 159599930490 5250076508160 186172590992388
RevPosHalf k=0..n 2^n T(n, k) (1/2)^kA0073341 2 8 50 432 4802 65536 1062882 20000000 428717762 10319560704 275716983698 8099130339328
RevNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kmissing1 -2 0 -2 -16 -162 -2048 -31250 -559872 -11529602 -268435456 -6973568802 -200000000000
RevDiagRow1T(n + 1, n)A0001691 2 9 64 625 7776 117649 2097152 43046721 1000000000 25937424601 743008370688 23298085122481
RevDiagRow2T(n + 2, n)A0535061 6 48 500 6480 100842 1835008 38263752 900000000 23579476910 681091006464 21505924728444
RevDiagRow3T(n + 3, n)A0535071 12 150 2160 36015 688128 14880348 360000000 9646149645 283787919360 9098660462034 315866083233792
RevDiagCol1T(n + 1, 1)A0023780 2 6 12 20 30 42 56 72 90 110 132 156 182 210 240 272 306 342 380 420 462 506 552 600 650 702 756
RevDiagCol2T(n + 2, 2)missing0 9 48 150 360 735 1344 2268 3600 5445 7920 11154 15288 20475 26880 34680 44064 55233 68400 83790
RevDiagCol3T(n + 3, 3)missing0 64 500 2160 6860 17920 40824 84000 159720 285120 483340 784784 1228500 1863680 2751280 3965760
RevPolysee docsmissing1 1 1 1 1 1 1 3 1 1 1 16 5 1 1 1 125 49 7 1 1 1 1296 729 100 9 1 1 1 16807 14641 2197 169 11 1 1 1
RevPolyRow1 k=0..1 T(1, k) n^kA0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
RevPolyRow2 k=0..2 T(2, k) n^kA0054081 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69
RevPolyRow3 k=0..3 T(3, k) n^kA0167781 16 49 100 169 256 361 484 625 784 961 1156 1369 1600 1849 2116 2401 2704 3025 3364 3721 4096 4489
RevPolyCol2 k=0..n T(n, k) 2^kA0527501 1 5 49 729 14641 371293 11390625 410338673 16983563041 794280046581 41426511213649
RevPolyCol3 k=0..n T(n, k) 3^kA0527521 1 7 100 2197 65536 2476099 113379904 6103515625 377801998336 26439622160671 2064377754059776
RevPolyDiag k=0..n T(n, k) n^kmissing1 1 5 100 4913 456976 69343957 15625000000 4902227890625 2044140858654976 1093685272684360901
InvTriangleT(n, k), 0 ≤ k ≤ nA0592971 0 1 0 -2 1 0 3 -6 1 0 -4 24 -12 1 0 5 -80 90 -20 1 0 -6 240 -540 240 -30 1 0 7 -672 2835 -2240
InvRevT(n, n - k), 0 ≤ k ≤ nA0592991 1 0 1 -2 0 1 -6 3 0 1 -12 24 -4 0 1 -20 90 -80 5 0 1 -30 240 -540 240 -6 0 1 -42 525 -2240 2835
InvRevInvT-1(n, n - k), 0 ≤ k ≤ nmissing1 1 0 1 2 0 1 6 9 0 1 12 48 64 0 1 20 150 500 625 0 1 30 360 2160 6480 7776 0 1 42 735 6860 36015
InvAccsee docsmissing1 0 1 0 -2 -1 0 3 -3 -2 0 -4 20 8 9 0 5 -75 15 -5 -4 0 -6 234 -306 -66 -96 -95 0 7 -665 2170 -70
InvAccRevsee docsmissing1 1 1 1 -1 -1 1 -5 -2 -2 1 -11 13 9 9 1 -19 71 -9 -4 -4 1 -29 211 -329 -89 -95 -95 1 -41 484 -1756
InvAntiDiagsee docsmissing1 0 0 1 0 -2 0 3 1 0 -4 -6 0 5 24 1 0 -6 -80 -12 0 7 240 90 1 0 -8 -672 -540 -20 0 9 1792 2835 240
InvDiffx1T(n, k) (k+1)missing1 0 2 0 -4 3 0 6 -18 4 0 -8 72 -48 5 0 10 -240 360 -100 6 0 -12 720 -2160 1200 -180 7 0 14 -2016
InvRowSum k=0..n T(n, k)A0037251 1 -1 -2 9 -4 -95 414 49 -10088 55521 -13870 -2024759 15787188 -28612415 -616876274 7476967905
InvEvenSum k=0..n T(n, k) even(k)A0091211 0 1 -6 25 -100 481 -2954 20721 -151848 1146721 -9111982 77652169 -710421452 6891125697
InvOddSum k=0..n T(n, k) odd(k)A0095650 1 -2 4 -16 96 -576 3368 -20672 141760 -1091200 9098112 -79676928 726208640 -6919738112
InvAltSum k=0..n T(n, k) (-1)^kA0002481 -1 3 -10 41 -196 1057 -6322 41393 -293608 2237921 -18210094 157329097 -1436630092 13810863809
InvAbsSum k=0..n | T(n, k) |A0002481 1 3 10 41 196 1057 6322 41393 293608 2237921 18210094 157329097 1436630092 13810863809
InvDiagSum k=0..n // 2 T(n - k, k)A3608141 0 1 -2 4 -10 30 -98 338 -1240 4877 -20496 91213 -426678 2090081 -10702438 57193760 -318283388
InvAccSum k=0..n j=0..k T(n, j)missing1 1 -3 -2 33 -64 -335 2724 -4655 -55952 504801 -1179100 -14176679 173674632 -691456415 -4550929124
InvAccRevSum k=0..n j=0..k T(n, n - j)missing1 2 -1 -8 21 36 -425 1002 5145 -55016 161451 998790 -14169947 63133188 233657775 -5935967534
InvRowLcmLcm k=0..n | T(n, k) | > 1missing1 1 2 6 24 720 2160 907200 108864000 137168640000 57610828800000 266162029056000000
InvRowGcdGcd k=0..n | T(n, k) | > 1A0000271 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
InvRowMaxMax k=0..n | T(n, k) |missing1 1 2 6 24 90 540 2835 17920 129024 860160 7218750 61875000 502734375 5043886848 50438868480
InvColMiddleT(n, n // 2)missing1 0 -2 3 24 -80 -540 2835 17920 -129024 -787500 7218750 43110144 -480370176 -2826399576 37096494435
InvCentralET(2 n, n)A3672711 -2 24 -540 17920 -787500 43110144 -2826399576 215922769920 -18836384175180 1847560000000000
InvCentralOT(2 n + 1, n)missing0 3 -80 2835 -129024 7218750 -480370176 37096494435 -3262832967680 322102169395578
InvColLeftT(n, 0)A0000071 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
InvColRightT(n, n)A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
InvBinConv k=0..n C(n, k) T(n, k)A3672731 1 -3 -8 81 26 -3815 17494 178241 -2817746 3552201 315952418 -3635118575 -11060115936 782886068497
InvInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kA3672721 1 5 28 209 1826 18217 203106 2487361 33077566 473318201 7234847126 117435618577 2014339775800
InvTransNat0 k=0..n T(n, k) kmissing0 1 0 -6 12 40 -330 588 5096 -44928 105930 1012660 -12145188 47346000 262270190 -5319091260
InvTransNat1 k=0..n T(n, k) (k + 1)missing1 2 -1 -8 21 36 -425 1002 5145 -55016 161451 998790 -14169947 63133188 233657775 -5935967534
InvTransSqrs k=0..n T(n, k) k^2missing0 1 2 -12 0 200 -780 -1344 30016 -134208 -282780 8028680 -49398096 -26677248 3298301188
InvPosHalf k=0..n 2^n T(n, k) (1/2)^kA3568191 1 -3 1 41 -239 229 8401 -87151 324577 3238541 -70271519 601086265 -142860431 -81504662539
InvNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kA2166891 1 5 25 153 1121 9373 87417 898033 10052353 121492341 1573957529 21729801481 318121178337
InvDiagRow1T(n + 1, n)A0023780 -2 -6 -12 -20 -30 -42 -56 -72 -90 -110 -132 -156 -182 -210 -240 -272 -306 -342 -380 -420 -462
InvDiagRow2T(n + 2, n)missing0 3 24 90 240 525 1008 1764 2880 4455 6600 9438 13104 17745 23520 30600 39168 49419 61560 75810
InvDiagRow3T(n + 3, n)missing0 -4 -80 -540 -2240 -7000 -18144 -41160 -84480 -160380 -286000 -484484 -786240 -1230320 -1865920
InvDiagCol1T(n + 1, 1)A0000271 -2 3 -4 5 -6 7 -8 9 -10 11 -12 13 -14 15 -16 17 -18 19 -20 21 -22 23 -24 25 -26 27 -28 29 -30 31
InvDiagCol2T(n + 2, 2)A0017881 -6 24 -80 240 -672 1792 -4608 11520 -28160 67584 -159744 372736 -860160 1966080 -4456448 10027008
InvDiagCol3T(n + 3, 3)A0362161 -12 90 -540 2835 -13608 61236 -262440 1082565 -4330260 16888014 -64481508 241805655 -892820880
InvPolysee docsmissing1 0 1 0 1 1 0 -1 2 1 0 -2 0 3 1 0 9 -10 3 4 1 0 -4 8 -18 8 5 1 0 -95 122 -39 -20 15 6 1 0 414 -428
InvPolyRow1 k=0..1 T(1, k) n^kA0000270 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
InvPolyRow2 k=0..2 T(2, k) n^kA0055630 -1 0 3 8 15 24 35 48 63 80 99 120 143 168 195 224 255 288 323 360 399 440 483 528 575 624 675 728
InvPolyRow3 k=0..3 T(3, k) n^kmissing0 -2 -10 -18 -20 -10 18 70 152 270 430 638 900 1222 1610 2070 2608 3230 3942 4750 5660 6678 7810
InvPolyCol2 k=0..n T(n, k) 2^kmissing1 2 0 -10 8 122 -428 -1594 18608 -26254 -648916 5081342 3318856 -347739286 2495737220 6457268918
InvPolyCol3 k=0..n T(n, k) 3^kmissing1 3 3 -18 -39 348 441 -11778 18129 475416 -3100791 -13831518 304225785 -884361228 -21201487431
InvPolyDiag k=0..n T(n, k) n^kmissing1 1 0 -18 -144 -100 16380 267246 749504 -69401448 -1849688100 -11405686270 797088487536
Inv:RevTriangleT(n, k), 0 ≤ k ≤ nA0592991 1 0 1 -2 0 1 -6 3 0 1 -12 24 -4 0 1 -20 90 -80 5 0 1 -30 240 -540 240 -6 0 1 -42 525 -2240 2835
Inv:RevRevT(n, n - k), 0 ≤ k ≤ nA0592971 0 1 0 -2 1 0 3 -6 1 0 -4 24 -12 1 0 5 -80 90 -20 1 0 -6 240 -540 240 -30 1 0 7 -672 2835 -2240
Inv:RevInvRev(T(n, n - k))-1, 0 ≤ k ≤ nA1374521 0 1 0 2 1 0 9 6 1 0 64 48 12 1 0 625 500 150 20 1 0 7776 6480 2160 360 30 1 0 117649 100842 36015
Inv:RevAccsee docsmissing1 1 1 1 -1 -1 1 -5 -2 -2 1 -11 13 9 9 1 -19 71 -9 -4 -4 1 -29 211 -329 -89 -95 -95 1 -41 484 -1756
Inv:RevAccRevsee docsmissing1 0 1 0 -2 -1 0 3 -3 -2 0 -4 20 8 9 0 5 -75 15 -5 -4 0 -6 234 -306 -66 -96 -95 0 7 -665 2170 -70
Inv:RevAntiDiagsee docsmissing1 1 1 0 1 -2 1 -6 0 1 -12 3 1 -20 24 0 1 -30 90 -4 1 -42 240 -80 0 1 -56 525 -540 5 1 -72 1008
Inv:RevDiffx1T(n, k) (k+1)missing1 1 0 1 -4 0 1 -12 9 0 1 -24 72 -16 0 1 -40 270 -320 25 0 1 -60 720 -2160 1200 -36 0 1 -84 1575
Inv:RevRowSum k=0..n T(n, k)A0037251 1 -1 -2 9 -4 -95 414 49 -10088 55521 -13870 -2024759 15787188 -28612415 -616876274 7476967905
Inv:RevEvenSum k=0..n T(n, k) even(k)A1955091 1 1 4 25 96 481 3368 20721 141760 1146721 9098112 77652169 726208640 6891125697 69344336896
Inv:RevOddSum k=0..n T(n, k) odd(k)missing0 0 -2 -6 -16 -100 -576 -2954 -20672 -151848 -1091200 -9111982 -79676928 -710421452 -6919738112
Inv:RevAltSum k=0..n T(n, k) (-1)^kA0002481 1 3 10 41 196 1057 6322 41393 293608 2237921 18210094 157329097 1436630092 13810863809
Inv:RevAbsSum k=0..n | T(n, k) |A0002481 1 3 10 41 196 1057 6322 41393 293608 2237921 18210094 157329097 1436630092 13810863809
Inv:RevDiagSum k=0..n // 2 T(n - k, k)missing1 1 1 -1 -5 -8 5 57 119 -65 -1063 -2496 1875 28313 66893 -85065 -982545 -2130688 4789537 41662081
Inv:RevAccSum k=0..n j=0..k T(n, j)missing1 2 -1 -8 21 36 -425 1002 5145 -55016 161451 998790 -14169947 63133188 233657775 -5935967534
Inv:RevAccRevSum k=0..n j=0..k T(n, n - j)missing1 1 -3 -2 33 -64 -335 2724 -4655 -55952 504801 -1179100 -14176679 173674632 -691456415 -4550929124
Inv:RevRowLcmLcm k=0..n | T(n, k) | > 1missing1 1 2 6 24 720 2160 907200 108864000 137168640000 57610828800000 266162029056000000
Inv:RevRowGcdGcd k=0..n | T(n, k) | > 1A0000271 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
Inv:RevRowMaxMax k=0..n | T(n, k) |missing1 1 2 6 24 90 540 2835 17920 129024 860160 7218750 61875000 502734375 5043886848 50438868480
Inv:RevColMiddleT(n, n // 2)A3672741 1 -2 -6 24 90 -540 -2240 17920 78750 -787500 -3592512 43110144 201885684 -2826399576 -13495173120
Inv:RevCentralET(2 n, n)A3672711 -2 24 -540 17920 -787500 43110144 -2826399576 215922769920 -18836384175180 1847560000000000
Inv:RevCentralOT(2 n + 1, n)missing1 -6 90 -2240 78750 -3592512 201885684 -13495173120 1046465787510 -92378000000000 9148544655566316
Inv:RevColLeftT(n, 0)A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Inv:RevColRightT(n, n)A0000071 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Inv:RevBinConv k=0..n C(n, k) T(n, k)A3672731 1 -3 -8 81 26 -3815 17494 178241 -2817746 3552201 315952418 -3635118575 -11060115936 782886068497
Inv:RevInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kA3672721 -1 5 -28 209 -1826 18217 -203106 2487361 -33077566 473318201 -7234847126 117435618577
Inv:RevTransNat0 k=0..n T(n, k) kmissing0 0 -2 0 24 -60 -240 2310 -4704 -45864 449280 -1165230 -12151920 157887444 -662844000 -3934052850
Inv:RevTransNat1 k=0..n T(n, k) (k + 1)missing1 1 -3 -2 33 -64 -335 2724 -4655 -55952 504801 -1179100 -14176679 173674632 -691456415 -4550929124
Inv:RevTransSqrs k=0..n T(n, k) k^2missing0 0 -2 6 48 -300 -240 10710 -48384 -142632 3150720 -15928110 -49478880 1410361524 -9653297472
Inv:RevPosHalf k=0..n 2^n T(n, k) (1/2)^kmissing1 2 0 -10 8 122 -428 -1594 18608 -26254 -648916 5081342 3318856 -347739286 2495737220 6457268918
Inv:RevNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kA2757071 -2 8 -38 216 -1402 10156 -80838 698704 -6498674 64579284 -681642238 7605025720 -89318058858
Inv:RevDiagRow1T(n + 1, n)A0000271 -2 3 -4 5 -6 7 -8 9 -10 11 -12 13 -14 15 -16 17 -18 19 -20 21 -22 23 -24 25 -26 27 -28 29 -30 31
Inv:RevDiagRow2T(n + 2, n)A0017881 -6 24 -80 240 -672 1792 -4608 11520 -28160 67584 -159744 372736 -860160 1966080 -4456448 10027008
Inv:RevDiagRow3T(n + 3, n)A0362161 -12 90 -540 2835 -13608 61236 -262440 1082565 -4330260 16888014 -64481508 241805655 -892820880
Inv:RevDiagCol1T(n + 1, 1)A0023780 -2 -6 -12 -20 -30 -42 -56 -72 -90 -110 -132 -156 -182 -210 -240 -272 -306 -342 -380 -420 -462
Inv:RevDiagCol2T(n + 2, 2)missing0 3 24 90 240 525 1008 1764 2880 4455 6600 9438 13104 17745 23520 30600 39168 49419 61560 75810
Inv:RevDiagCol3T(n + 3, 3)missing0 -4 -80 -540 -2240 -7000 -18144 -41160 -84480 -160380 -286000 -484484 -786240 -1230320 -1865920
Inv:RevPolysee docsmissing1 1 1 1 1 1 1 -1 1 1 1 -2 -3 1 1 1 9 1 -5 1 1 1 -4 41 10 -7 1 1 1 -95 -239 73 25 -9 1 1 1 414 229
Inv:RevPolyRow1 k=0..1 T(1, k) n^kA0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Inv:RevPolyRow2 k=0..2 T(2, k) n^kA0054081 -1 -3 -5 -7 -9 -11 -13 -15 -17 -19 -21 -23 -25 -27 -29 -31 -33 -35 -37 -39 -41 -43 -45 -47 -49
Inv:RevPolyRow3 k=0..3 T(3, k) n^kA1005361 -2 1 10 25 46 73 106 145 190 241 298 361 430 505 586 673 766 865 970 1081 1198 1321 1450 1585
Inv:RevPolyCol2 k=0..n T(n, k) 2^kA3568191 1 -3 1 41 -239 229 8401 -87151 324577 3238541 -70271519 601086265 -142860431 -81504662539
Inv:RevPolyCol3 k=0..n T(n, k) 3^kA3568201 1 -5 10 73 -1004 5473 15562 -746447 9174088 -41916959 -823985546 24629093641 -335144105828
Inv:RevPolyDiag k=0..n T(n, k) n^kA3202581 1 -3 10 81 -4724 156205 -4406814 76958273 3775676248 -698309272899 72802616429830
 << TableSourceSimilarsIndex >> 

Note: The A-numbers are based on a finite number of numerical comparisons. They ignore the sign and the OEIS-offset. Sometimes they differ in the first few values. In such cases, we consider our version to be the better one because it has a common formula as a root. Since the offset of all triangles is 0 also the offset of all sequences is 0.