OEIS Similars: A359363, A056939
↕ Type | ↕ Trait | ↕ Anum | ↕ Sequence |
---|---|---|---|
Std | TriangleT(n, k), 0 ≤ k ≤ n | A359363 | 1 0 1 0 1 1 0 1 4 1 0 1 10 10 1 0 1 20 50 20 1 0 1 35 175 175 35 1 0 1 56 490 980 490 56 1 0 1 84 |
Std | RevT(n, n - k), 0 ≤ k ≤ n | A359363 | 1 1 0 1 1 0 1 4 1 0 1 10 10 1 0 1 20 50 20 1 0 1 35 175 175 35 1 0 1 56 490 980 490 56 1 0 1 84 |
Std | InvT-1(n, k), 0 ≤ k ≤ n | missing | 1 0 1 0 -1 1 0 3 -4 1 0 -21 30 -10 1 0 289 -420 150 -20 1 0 -6931 10115 -3675 525 -35 1 0 265691 |
Std | RevInvT-1(n, n - k), 0 ≤ k ≤ n | missing | 1 1 0 1 -1 0 1 -4 3 0 1 -10 30 -21 0 1 -20 150 -420 289 0 1 -35 525 -3675 10115 -6931 0 1 -56 1470 |
Std | Accsee docs | missing | 1 0 1 0 1 2 0 1 5 6 0 1 11 21 22 0 1 21 71 91 92 0 1 36 211 386 421 422 0 1 57 547 1527 2017 2073 |
Std | AccRevsee docs | missing | 1 1 1 1 2 2 1 5 6 6 1 11 21 22 22 1 21 71 91 92 92 1 36 211 386 421 422 422 1 57 547 1527 2017 2073 |
Std | AntiDiagsee docs | missing | 1 0 0 1 0 1 0 1 1 0 1 4 0 1 10 1 0 1 20 10 0 1 35 50 1 0 1 56 175 20 0 1 84 490 175 1 0 1 120 1176 |
Std | Diffx1T(n, k) (k+1) | missing | 1 0 2 0 2 3 0 2 12 4 0 2 30 40 5 0 2 60 200 100 6 0 2 105 700 875 210 7 0 2 168 1960 4900 2940 392 |
Std | RowSum∑ k=0..n T(n, k) | A001181 | 1 1 2 6 22 92 422 2074 10754 58202 326240 1882960 11140560 67329992 414499438 2593341586 |
Std | EvenSum∑ k=0..n T(n, k) even(k) | missing | 1 0 1 4 11 40 211 1092 5377 28464 163120 950048 5570280 33537088 207249719 1298732996 8229378293 |
Std | OddSum∑ k=0..n T(n, k) odd(k) | missing | 0 1 1 2 11 52 211 982 5377 29738 163120 932912 5570280 33792904 207249719 1294608590 8229378293 |
Std | AltSum∑ k=0..n T(n, k) (-1)^k | missing | 1 -1 0 2 0 -12 0 110 0 -1274 0 17136 0 -255816 0 4124406 0 -70549050 0 1264752060 0 -23555382240 0 |
Std | AbsSum∑ k=0..n | T(n, k) | | A001181 | 1 1 2 6 22 92 422 2074 10754 58202 326240 1882960 11140560 67329992 414499438 2593341586 |
Std | DiagSum∑ k=0..n // 2 T(n - k, k) | missing | 1 0 1 1 2 5 12 31 87 252 751 2312 7293 23455 76815 255615 862352 2945316 10172062 35482831 |
Std | AccSum∑ k=0..n ∑ j=0..k T(n, j) | A350265 | 1 1 3 12 55 276 1477 8296 48393 291010 1794320 11297760 72413640 471309944 3108745785 20746732688 |
Std | AccRevSum∑ k=0..n ∑ j=0..k T(n, n - j) | missing | 1 2 5 18 77 368 1899 10370 59147 349212 2120560 13180720 83554200 538639936 3523245223 23340074274 |
Std | RowLcmLcm k=0..n | T(n, k) | > 1 | missing | 1 1 1 4 10 100 175 1960 8232 493920 2910600 18295200 18687240 340107768 6447876435 1203603601200 |
Std | RowGcdGcd k=0..n | T(n, k) | > 1 | missing | 1 1 1 4 10 10 35 14 84 24 33 11 143 13 13 2 68 136 323 19 19 1 23 23 115 25 75 9 261 29 899 62 124 |
Std | RowMaxMax k=0..n | T(n, k) | | missing | 1 1 1 4 10 50 175 980 4116 24696 116424 731808 3737448 24293412 131589315 877262100 4971151900 |
Std | ColMiddleT(n, n // 2) | missing | 1 0 1 1 10 20 175 490 4116 14112 116424 457380 3737448 16195608 131589315 614083470 4971151900 |
Std | CentralET(2 n, n) | missing | 1 1 10 175 4116 116424 3737448 131589315 4971151900 198520691512 8291930371088 359423289546776 |
Std | CentralOT(2 n + 1, n) | missing | 0 1 20 490 14112 457380 16195608 614083470 24584605760 1028698128744 44648855844320 |
Std | ColLeftT(n, 0) | A000007 | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Std | ColRightT(n, n) | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Std | BinConv∑ k=0..n C(n, k) T(n, k) | missing | 1 1 3 16 105 806 6867 63316 620433 6383026 68335124 756256788 8607763034 100362442428 1194878432659 |
Std | InvBinConv∑ k=0..n C(n, k) T(n, n - k) (-1)^k | missing | 1 1 -1 -8 17 206 -565 -8420 26369 445186 -1513092 -27773844 99801834 1945265388 -7278043773 |
Std | TransNat0∑ k=0..n T(n, k) k | A350265 | 0 1 3 12 55 276 1477 8296 48393 291010 1794320 11297760 72413640 471309944 3108745785 20746732688 |
Std | TransNat1∑ k=0..n T(n, k) (k + 1) | missing | 1 2 5 18 77 368 1899 10370 59147 349212 2120560 13180720 83554200 538639936 3523245223 23340074274 |
Std | TransSqrs∑ k=0..n T(n, k) k^2 | missing | 0 1 5 26 147 876 5427 34630 226193 1505626 10180040 69742960 483206440 3380507976 23851267767 |
Std | PosHalf∑ k=0..n 2^n T(n, k) (1/2)^k | A368708 | 1 1 3 13 69 417 2763 19609 146793 1146833 9278595 77292261 659973933 5756169681 51137399979 |
Std | NegHalf∑ k=0..n (-2)^n T(n, k) (-1/2)^k | A368709 | 1 1 -1 -3 13 17 -241 121 5081 -13327 -106705 609589 1850661 -23392159 -6796193 811545073 |
Std | DiagRow1T(n + 1, n) | A000292 | 0 1 4 10 20 35 56 84 120 165 220 286 364 455 560 680 816 969 1140 1330 1540 1771 2024 2300 2600 |
Std | DiagRow2T(n + 2, n) | A006542 | 0 1 10 50 175 490 1176 2520 4950 9075 15730 26026 41405 63700 95200 138720 197676 276165 379050 |
Std | DiagRow3T(n + 3, n) | A047819 | 0 1 20 175 980 4116 14112 41580 108900 259545 572572 1184183 2318680 4331600 7768320 13441968 |
Std | DiagCol1T(n + 1, 1) | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Std | DiagCol2T(n + 2, 2) | A000292 | 1 4 10 20 35 56 84 120 165 220 286 364 455 560 680 816 969 1140 1330 1540 1771 2024 2300 2600 2925 |
Std | DiagCol3T(n + 3, 3) | A006542 | 1 10 50 175 490 1176 2520 4950 9075 15730 26026 41405 63700 95200 138720 197676 276165 379050 |
Std | Polysee docs | missing | 1 0 1 0 1 1 0 2 2 1 0 6 6 3 1 0 22 26 12 4 1 0 92 138 66 20 5 1 0 422 834 444 132 30 6 1 0 2074 |
Std | PolyRow1∑ k=0..1 T(1, k) n^k | A000027 | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 |
Std | PolyRow2∑ k=0..2 T(2, k) n^k | A002378 | 0 2 6 12 20 30 42 56 72 90 110 132 156 182 210 240 272 306 342 380 420 462 506 552 600 650 702 756 |
Std | PolyRow3∑ k=0..3 T(3, k) n^k | missing | 0 6 26 66 132 230 366 546 776 1062 1410 1826 2316 2886 3542 4290 5136 6086 7146 8322 9620 11046 |
Std | PolyCol2∑ k=0..n T(n, k) 2^k | missing | 1 2 6 26 138 834 5526 39218 293586 2293666 18557190 154584522 1319947866 11512339362 102274799958 |
Std | PolyCol3∑ k=0..n T(n, k) 3^k | missing | 1 3 12 66 444 3396 28452 255198 2413668 23819214 243386400 2560273392 27604174368 303982854168 |
Std | PolyDiag∑ k=0..n T(n, k) n^k | missing | 1 1 6 66 1060 22380 584682 18171118 653559048 26658514026 1214287166510 61018355320560 |
Alt | TriangleT(n, k), 0 ≤ k ≤ n | A359363 | 1 0 -1 0 -1 1 0 -1 4 -1 0 -1 10 -10 1 0 -1 20 -50 20 -1 0 -1 35 -175 175 -35 1 0 -1 56 -490 980 |
Alt | RevT(n, n - k), 0 ≤ k ≤ n | A359363 | 1 -1 0 1 -1 0 -1 4 -1 0 1 -10 10 -1 0 -1 20 -50 20 -1 0 1 -35 175 -175 35 -1 0 -1 56 -490 980 -490 |
Alt | InvT-1(n, k), 0 ≤ k ≤ n | missing | 1 0 1 0 1 1 0 -3 -4 1 0 -39 -50 10 1 0 611 780 -150 -20 1 0 27651 35315 -6825 -875 35 1 0 -1212371 |
Alt | RevInvT-1(n, n - k), 0 ≤ k ≤ n | missing | 1 1 0 1 1 0 1 -4 -3 0 1 10 -50 -39 0 1 -20 -150 780 611 0 1 35 -875 -6825 35315 27651 0 1 -56 -1470 |
Alt | Accsee docs | missing | 1 0 -1 0 -1 0 0 -1 3 2 0 -1 9 -1 0 0 -1 19 -31 -11 -12 0 -1 34 -141 34 -1 0 0 -1 55 -435 545 55 111 |
Alt | AccRevsee docs | missing | 1 -1 -1 1 0 0 -1 3 2 2 1 -9 1 0 0 -1 19 -31 -11 -12 -12 1 -34 141 -34 1 0 0 -1 55 -435 545 55 111 |
Alt | AntiDiagsee docs | missing | 1 0 0 -1 0 -1 0 -1 1 0 -1 4 0 -1 10 -1 0 -1 20 -10 0 -1 35 -50 1 0 -1 56 -175 20 0 -1 84 -490 175 |
Alt | Diffx1T(n, k) (k+1) | missing | 1 0 -2 0 -2 3 0 -2 12 -4 0 -2 30 -40 5 0 -2 60 -200 100 -6 0 -2 105 -700 875 -210 7 0 -2 168 -1960 |
Alt | RowSum∑ k=0..n T(n, k) | missing | 1 -1 0 2 0 -12 0 110 0 -1274 0 17136 0 -255816 0 4124406 0 -70549050 0 1264752060 0 -23555382240 0 |
Alt | EvenSum∑ k=0..n T(n, k) even(k) | missing | 1 0 1 4 11 40 211 1092 5377 28464 163120 950048 5570280 33537088 207249719 1298732996 8229378293 |
Alt | OddSum∑ k=0..n T(n, k) odd(k) | missing | 0 -1 -1 -2 -11 -52 -211 -982 -5377 -29738 -163120 -932912 -5570280 -33792904 -207249719 -1294608590 |
Alt | AltSum∑ k=0..n T(n, k) (-1)^k | A001181 | 1 1 2 6 22 92 422 2074 10754 58202 326240 1882960 11140560 67329992 414499438 2593341586 |
Alt | AbsSum∑ k=0..n | T(n, k) | | A001181 | 1 1 2 6 22 92 422 2074 10754 58202 326240 1882960 11140560 67329992 414499438 2593341586 |
Alt | DiagSum∑ k=0..n // 2 T(n - k, k) | missing | 1 0 -1 -1 0 3 8 9 -15 -100 -233 -112 1271 5321 9269 -8863 -109502 -335196 -317540 1765177 9699855 |
Alt | AccSum∑ k=0..n ∑ j=0..k T(n, j) | missing | 1 -1 -1 4 7 -36 -75 440 1001 -6370 -15288 102816 255816 -1790712 -4572711 32995248 85925125 |
Alt | AccRevSum∑ k=0..n ∑ j=0..k T(n, n - j) | missing | 1 -2 1 6 -7 -48 75 550 -1001 -7644 15288 119952 -255816 -2046528 4572711 37119654 -85925125 |
Alt | RowLcmLcm k=0..n | T(n, k) | > 1 | missing | 1 1 1 4 10 100 175 1960 8232 493920 2910600 18295200 18687240 340107768 6447876435 1203603601200 |
Alt | RowGcdGcd k=0..n | T(n, k) | > 1 | missing | 1 1 1 4 10 10 35 14 84 24 33 11 143 13 13 2 68 136 323 19 19 1 23 23 115 25 75 9 261 29 899 62 124 |
Alt | RowMaxMax k=0..n | T(n, k) | | missing | 1 1 1 4 10 50 175 980 4116 24696 116424 731808 3737448 24293412 131589315 877262100 4971151900 |
Alt | ColMiddleT(n, n // 2) | missing | 1 0 -1 -1 10 20 -175 -490 4116 14112 -116424 -457380 3737448 16195608 -131589315 -614083470 |
Alt | CentralET(2 n, n) | missing | 1 -1 10 -175 4116 -116424 3737448 -131589315 4971151900 -198520691512 8291930371088 |
Alt | CentralOT(2 n + 1, n) | missing | 0 -1 20 -490 14112 -457380 16195608 -614083470 24584605760 -1028698128744 44648855844320 |
Alt | ColLeftT(n, 0) | A000007 | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Alt | BinConv∑ k=0..n C(n, k) T(n, k) | missing | 1 -1 -1 8 17 -206 -565 8420 26369 -445186 -1513092 27773844 99801834 -1945265388 -7278043773 |
Alt | InvBinConv∑ k=0..n C(n, k) T(n, n - k) (-1)^k | missing | 1 -1 3 -16 105 -806 6867 -63316 620433 -6383026 68335124 -756256788 8607763034 -100362442428 |
Alt | TransNat0∑ k=0..n T(n, k) k | missing | 0 -1 1 4 -7 -36 75 440 -1001 -6370 15288 102816 -255816 -1790712 4572711 32995248 -85925125 |
Alt | TransNat1∑ k=0..n T(n, k) (k + 1) | missing | 1 -2 1 6 -7 -48 75 550 -1001 -7644 15288 119952 -255816 -2046528 4572711 37119654 -85925125 |
Alt | TransSqrs∑ k=0..n T(n, k) k^2 | missing | 0 -1 3 6 -35 -76 525 1210 -9009 -21658 168168 416976 -3325608 -8441928 68590665 177349458 |
Alt | PosHalf∑ k=0..n 2^n T(n, k) (1/2)^k | A368709 | 1 -1 -1 3 13 -17 -241 -121 5081 13327 -106705 -609589 1850661 23392159 -6796193 -811545073 |
Alt | NegHalf∑ k=0..n (-2)^n T(n, k) (-1/2)^k | A368708 | 1 -1 3 -13 69 -417 2763 -19609 146793 -1146833 9278595 -77292261 659973933 -5756169681 51137399979 |
Alt | DiagRow1T(n + 1, n) | A000292 | 0 -1 4 -10 20 -35 56 -84 120 -165 220 -286 364 -455 560 -680 816 -969 1140 -1330 1540 -1771 2024 |
Alt | DiagRow2T(n + 2, n) | A006542 | 0 -1 10 -50 175 -490 1176 -2520 4950 -9075 15730 -26026 41405 -63700 95200 -138720 197676 -276165 |
Alt | DiagRow3T(n + 3, n) | A047819 | 0 -1 20 -175 980 -4116 14112 -41580 108900 -259545 572572 -1184183 2318680 -4331600 7768320 |
Alt | DiagCol1T(n + 1, 1) | A000012 | -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 |
Alt | DiagCol2T(n + 2, 2) | A000292 | 1 4 10 20 35 56 84 120 165 220 286 364 455 560 680 816 969 1140 1330 1540 1771 2024 2300 2600 2925 |
Alt | DiagCol3T(n + 3, 3) | A006542 | -1 -10 -50 -175 -490 -1176 -2520 -4950 -9075 -15730 -26026 -41405 -63700 -95200 -138720 -197676 |
Alt | Polysee docs | missing | 1 0 1 0 -1 1 0 0 -2 1 0 2 2 -3 1 0 0 6 6 -4 1 0 -12 -26 6 12 -5 1 0 0 -34 -102 -4 20 -6 1 0 110 482 |
Alt | PolyRow1∑ k=0..1 T(1, k) n^k | A000027 | 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25 -26 |
Alt | PolyRow2∑ k=0..2 T(2, k) n^k | A002378 | 0 0 2 6 12 20 30 42 56 72 90 110 132 156 182 210 240 272 306 342 380 420 462 506 552 600 650 702 |
Alt | PolyRow3∑ k=0..3 T(3, k) n^k | missing | 0 2 6 6 -4 -30 -78 -154 -264 -414 -610 -858 -1164 -1534 -1974 -2490 -3088 -3774 -4554 -5434 -6420 |
Alt | PolyCol2∑ k=0..n T(n, k) 2^k | missing | 1 -2 2 6 -26 -34 482 -242 -10162 26654 213410 -1219178 -3701322 46784318 13592386 -1623090146 |
Alt | PolyCol3∑ k=0..n T(n, k) 3^k | missing | 1 -3 6 6 -102 204 1986 -13782 -17634 619026 -1829280 -20684208 180317616 248370792 -10750405062 |
Alt | PolyDiag∑ k=0..n T(n, k) n^k | missing | 1 -1 2 6 -228 3620 -35250 -282982 30287096 -1142713098 29392466490 -322450326704 -22363453095852 |
Rev | TriangleT(n, k), 0 ≤ k ≤ n | A359363 | 1 1 0 1 1 0 1 4 1 0 1 10 10 1 0 1 20 50 20 1 0 1 35 175 175 35 1 0 1 56 490 980 490 56 1 0 1 84 |
Rev | InvRev(T(n, n - k))-1, 0 ≤ k ≤ n | missing | 1 0 1 0 -1 1 0 3 -4 1 0 -21 30 -10 1 0 289 -420 150 -20 1 0 -6931 10115 -3675 525 -35 1 0 265691 |
Rev | Accsee docs | missing | 1 1 1 1 2 2 1 5 6 6 1 11 21 22 22 1 21 71 91 92 92 1 36 211 386 421 422 422 1 57 547 1527 2017 2073 |
Rev | AccRevsee docs | missing | 1 0 1 0 1 2 0 1 5 6 0 1 11 21 22 0 1 21 71 91 92 0 1 36 211 386 421 422 0 1 57 547 1527 2017 2073 |
Rev | AntiDiagsee docs | missing | 1 1 1 0 1 1 1 4 0 1 10 1 1 20 10 0 1 35 50 1 1 56 175 20 0 1 84 490 175 1 1 120 1176 980 35 0 1 165 |
Rev | Diffx1T(n, k) (k+1) | missing | 1 1 0 1 2 0 1 8 3 0 1 20 30 4 0 1 40 150 80 5 0 1 70 525 700 175 6 0 1 112 1470 3920 2450 336 7 0 1 |
Rev | RowSum∑ k=0..n T(n, k) | A001181 | 1 1 2 6 22 92 422 2074 10754 58202 326240 1882960 11140560 67329992 414499438 2593341586 |
Rev | EvenSum∑ k=0..n T(n, k) even(k) | missing | 1 1 1 2 11 52 211 982 5377 29738 163120 932912 5570280 33792904 207249719 1294608590 8229378293 |
Rev | OddSum∑ k=0..n T(n, k) odd(k) | missing | 0 0 1 4 11 40 211 1092 5377 28464 163120 950048 5570280 33537088 207249719 1298732996 8229378293 |
Rev | AltSum∑ k=0..n T(n, k) (-1)^k | missing | 1 1 0 -2 0 12 0 -110 0 1274 0 -17136 0 255816 0 -4124406 0 70549050 0 -1264752060 0 23555382240 0 |
Rev | AbsSum∑ k=0..n | T(n, k) | | A001181 | 1 1 2 6 22 92 422 2074 10754 58202 326240 1882960 11140560 67329992 414499438 2593341586 |
Rev | DiagSum∑ k=0..n // 2 T(n - k, k) | missing | 1 1 1 2 5 12 31 87 252 751 2312 7293 23455 76815 255615 862352 2945316 10172062 35482831 124896519 |
Rev | AccSum∑ k=0..n ∑ j=0..k T(n, j) | missing | 1 2 5 18 77 368 1899 10370 59147 349212 2120560 13180720 83554200 538639936 3523245223 23340074274 |
Rev | AccRevSum∑ k=0..n ∑ j=0..k T(n, n - j) | A350265 | 1 1 3 12 55 276 1477 8296 48393 291010 1794320 11297760 72413640 471309944 3108745785 20746732688 |
Rev | RowLcmLcm k=0..n | T(n, k) | > 1 | missing | 1 1 1 4 10 100 175 1960 8232 493920 2910600 18295200 18687240 340107768 6447876435 1203603601200 |
Rev | RowGcdGcd k=0..n | T(n, k) | > 1 | missing | 1 1 1 4 10 10 35 14 84 24 33 11 143 13 13 2 68 136 323 19 19 1 23 23 115 25 75 9 261 29 899 62 124 |
Rev | RowMaxMax k=0..n | T(n, k) | | missing | 1 1 1 4 10 50 175 980 4116 24696 116424 731808 3737448 24293412 131589315 877262100 4971151900 |
Rev | ColMiddleT(n, n // 2) | missing | 1 1 1 4 10 50 175 980 4116 24696 116424 731808 3737448 24293412 131589315 877262100 4971151900 |
Rev | CentralET(2 n, n) | missing | 1 1 10 175 4116 116424 3737448 131589315 4971151900 198520691512 8291930371088 359423289546776 |
Rev | CentralOT(2 n + 1, n) | missing | 1 4 50 980 24696 731808 24293412 877262100 33803832920 1371597504992 58043512597616 |
Rev | ColLeftT(n, 0) | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Rev | ColRightT(n, n) | A000007 | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Rev | BinConv∑ k=0..n C(n, k) T(n, k) | missing | 1 1 3 16 105 806 6867 63316 620433 6383026 68335124 756256788 8607763034 100362442428 1194878432659 |
Rev | InvBinConv∑ k=0..n C(n, k) T(n, n - k) (-1)^k | missing | 1 -1 -1 8 17 -206 -565 8420 26369 -445186 -1513092 27773844 99801834 -1945265388 -7278043773 |
Rev | TransNat0∑ k=0..n T(n, k) k | missing | 0 0 1 6 33 184 1055 6222 37639 232808 1468080 9414800 61273080 403979952 2694246347 18153391102 |
Rev | TransNat1∑ k=0..n T(n, k) (k + 1) | A350265 | 1 1 3 12 55 276 1477 8296 48393 291010 1794320 11297760 72413640 471309944 3108745785 20746732688 |
Rev | TransSqrs∑ k=0..n T(n, k) k^2 | missing | 0 0 1 8 59 416 2895 20112 140161 981808 6917640 49030400 349519720 2505218080 18048275635 |
Rev | PosHalf∑ k=0..n 2^n T(n, k) (1/2)^k | missing | 1 2 6 26 138 834 5526 39218 293586 2293666 18557190 154584522 1319947866 11512339362 102274799958 |
Rev | NegHalf∑ k=0..n (-2)^n T(n, k) (-1/2)^k | missing | 1 -2 2 6 -26 -34 482 -242 -10162 26654 213410 -1219178 -3701322 46784318 13592386 -1623090146 |
Rev | DiagRow1T(n + 1, n) | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Rev | DiagRow2T(n + 2, n) | A000292 | 1 4 10 20 35 56 84 120 165 220 286 364 455 560 680 816 969 1140 1330 1540 1771 2024 2300 2600 2925 |
Rev | DiagRow3T(n + 3, n) | A006542 | 1 10 50 175 490 1176 2520 4950 9075 15730 26026 41405 63700 95200 138720 197676 276165 379050 |
Rev | DiagCol1T(n + 1, 1) | A000292 | 0 1 4 10 20 35 56 84 120 165 220 286 364 455 560 680 816 969 1140 1330 1540 1771 2024 2300 2600 |
Rev | DiagCol2T(n + 2, 2) | A006542 | 0 1 10 50 175 490 1176 2520 4950 9075 15730 26026 41405 63700 95200 138720 197676 276165 379050 |
Rev | DiagCol3T(n + 3, 3) | A047819 | 0 1 20 175 980 4116 14112 41580 108900 259545 572572 1184183 2318680 4331600 7768320 13441968 |
Rev | Polysee docs | missing | 1 1 1 1 1 1 1 2 1 1 1 6 3 1 1 1 22 13 4 1 1 1 92 69 22 5 1 1 1 422 417 148 33 6 1 1 1 2074 2763 |
Rev | PolyRow1∑ k=0..1 T(1, k) n^k | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Rev | PolyRow2∑ k=0..2 T(2, k) n^k | A000027 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
Rev | PolyRow3∑ k=0..3 T(3, k) n^k | A028872 | 1 6 13 22 33 46 61 78 97 118 141 166 193 222 253 286 321 358 397 438 481 526 573 622 673 726 781 |
Rev | PolyCol2∑ k=0..n T(n, k) 2^k | A368708 | 1 1 3 13 69 417 2763 19609 146793 1146833 9278595 77292261 659973933 5756169681 51137399979 |
Rev | PolyCol3∑ k=0..n T(n, k) 3^k | A368733 | 1 1 4 22 148 1132 9484 85066 804556 7939738 81128800 853424464 9201391456 101327618056 |
Rev | PolyDiag∑ k=0..n T(n, k) n^k | missing | 1 1 3 22 265 4476 97447 2595874 81694881 2962057114 121428716651 5547123210960 279136817310793 |
<< | Table | Source | Similars | Index | >> |
Note: The A-numbers are based on a finite number of numerical comparisons. They ignore the sign and the OEIS-offset. Sometimes they differ in the first few values. In such cases, we consider our version to be the better one because it has a common formula as a root. Since the offset of all triangles is 0 also the offset of all sequences is 0.