OEIS Similars: A004248, A009998, A051129
↕ Type | ↕ Trait | ↕ Anum | ↕ Sequence |
---|---|---|---|
Std | TriangleT(n, k), 0 ≤ k ≤ n | A004248 | 1 0 1 0 1 1 0 1 2 1 0 1 4 3 1 0 1 8 9 4 1 0 1 16 27 16 5 1 0 1 32 81 64 25 6 1 0 1 64 243 256 125 |
Std | RevT(n, n - k), 0 ≤ k ≤ n | A003992 | 1 1 0 1 1 0 1 2 1 0 1 3 4 1 0 1 4 9 8 1 0 1 5 16 27 16 1 0 1 6 25 64 81 32 1 0 1 7 36 125 256 243 |
Std | InvT-1(n, k), 0 ≤ k ≤ n | missing | 1 0 1 0 -1 1 0 1 -2 1 0 0 2 -3 1 0 -2 2 3 -4 1 0 -2 -4 6 4 -5 1 0 12 -24 0 12 5 -6 1 0 58 -28 -66 |
Std | RevInvT-1(n, n - k), 0 ≤ k ≤ n | missing | 1 1 0 1 -1 0 1 -2 1 0 1 -3 2 0 0 1 -4 3 2 -2 0 1 -5 4 6 -4 -2 0 1 -6 5 12 0 -24 12 0 1 -7 6 20 16 |
Std | Accsee docs | missing | 1 0 1 0 1 2 0 1 3 4 0 1 5 8 9 0 1 9 18 22 23 0 1 17 44 60 65 66 0 1 33 114 178 203 209 210 0 1 65 |
Std | AccRevsee docs | missing | 1 1 1 1 2 2 1 3 4 4 1 4 8 9 9 1 5 14 22 23 23 1 6 22 49 65 66 66 1 7 32 96 177 209 210 210 1 8 44 |
Std | AntiDiagsee docs | missing | 1 0 0 1 0 1 0 1 1 0 1 2 0 1 4 1 0 1 8 3 0 1 16 9 1 0 1 32 27 4 0 1 64 81 16 1 0 1 128 243 64 5 0 1 |
Std | Diffx1T(n, k) (k+1) | A265583 | 1 0 2 0 2 3 0 2 6 4 0 2 12 12 5 0 2 24 36 20 6 0 2 48 108 80 30 7 0 2 96 324 320 150 42 8 0 2 192 |
Std | RowSum∑ k=0..n T(n, k) | A026898 | 1 1 2 4 9 23 66 210 733 2781 11378 49864 232769 1151915 6018786 33087206 190780213 1150653921 |
Std | EvenSum∑ k=0..n T(n, k) even(k) | missing | 1 0 1 2 5 12 33 102 357 1376 5713 25194 117413 577908 3004577 16479086 95057925 574408008 |
Std | OddSum∑ k=0..n T(n, k) odd(k) | missing | 0 1 1 2 4 11 33 108 376 1405 5665 24670 115356 574007 3014209 16608120 95722288 576245913 |
Std | AltSum∑ k=0..n T(n, k) (-1)^k | A038125 | 1 -1 0 0 1 1 0 -6 -19 -29 48 524 2057 3901 -9632 -129034 -664363 -1837905 2388688 67004696 |
Std | AbsSum∑ k=0..n | T(n, k) | | A026898 | 1 1 2 4 9 23 66 210 733 2781 11378 49864 232769 1151915 6018786 33087206 190780213 1150653921 |
Std | DiagSum∑ k=0..n // 2 T(n - k, k) | A104872 | 1 0 1 1 2 3 6 12 27 64 163 441 1268 3855 12344 41464 145653 533736 2036149 8071785 33192790 |
Std | AccSum∑ k=0..n ∑ j=0..k T(n, j) | A101495 | 1 1 3 8 23 73 253 948 3817 16433 75295 365600 1874083 10108025 57194585 338615084 2092609701 |
Std | AccRevSum∑ k=0..n ∑ j=0..k T(n, n - j) | missing | 1 2 5 12 31 88 275 942 3513 14158 61241 282632 1384683 7170700 39105991 223867418 1341434133 |
Std | RowLcmLcm k=0..n | T(n, k) | > 1 | missing | 1 1 1 2 12 72 2160 129600 54432000 22861440000 9601804800000 4032758016000000 18631342033920000000 |
Std | RowGcdGcd k=0..n | T(n, k) | > 1 | A174965 | 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Std | RowMaxMax k=0..n | T(n, k) | | A003320 | 1 1 1 2 4 9 27 81 256 1024 4096 16384 78125 390625 1953125 10077696 60466176 362797056 2176782336 |
Std | ColMiddleT(n, n // 2) | A110132 | 1 0 1 1 4 8 27 81 256 1024 3125 15625 46656 279936 823543 5764801 16777216 134217728 387420489 |
Std | CentralET(2 n, n) | A000312 | 1 1 4 27 256 3125 46656 823543 16777216 387420489 10000000000 285311670611 8916100448256 |
Std | CentralOT(2 n + 1, n) | A007778 | 0 1 8 81 1024 15625 279936 5764801 134217728 3486784401 100000000000 3138428376721 106993205379072 |
Std | ColLeftT(n, 0) | A000007 | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Std | ColRightT(n, n) | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Std | BinConv∑ k=0..n C(n, k) T(n, k) | A000248 | 1 1 3 10 41 196 1057 6322 41393 293608 2237921 18210094 157329097 1436630092 13810863809 |
Std | InvBinConv∑ k=0..n C(n, k) T(n, n - k) (-1)^k | A003725 | 1 1 -1 -2 9 -4 -95 414 49 -10088 55521 -13870 -2024759 15787188 -28612415 -616876274 7476967905 |
Std | TransNat0∑ k=0..n T(n, k) k | A003101 | 0 1 3 8 22 65 209 732 2780 11377 49863 232768 1151914 6018785 33087205 190780212 1150653920 |
Std | TransNat1∑ k=0..n T(n, k) (k + 1) | missing | 1 2 5 12 31 88 275 942 3513 14158 61241 282632 1384683 7170700 39105991 223867418 1341434133 |
Std | TransSqrs∑ k=0..n T(n, k) k^2 | A062809 | 0 1 5 18 60 203 725 2772 11368 49853 232757 1151902 6018772 33087191 190780197 1150653904 |
Std | PosHalf∑ k=0..n 2^n T(n, k) (1/2)^k | A349970 | 1 1 3 9 31 125 579 3009 17255 108005 731883 5331625 41501135 343405709 3007557523 27775308049 |
Std | NegHalf∑ k=0..n (-2)^n T(n, k) (-1/2)^k | missing | 1 1 -1 1 3 -19 63 -87 -581 6213 -34537 107137 254291 -7195171 67319535 -401638183 925411435 |
Std | DiagRow1T(n + 1, n) | A000027 | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 |
Std | DiagRow2T(n + 2, n) | A000290 | 0 1 4 9 16 25 36 49 64 81 100 121 144 169 196 225 256 289 324 361 400 441 484 529 576 625 676 729 |
Std | DiagRow3T(n + 3, n) | A000578 | 0 1 8 27 64 125 216 343 512 729 1000 1331 1728 2197 2744 3375 4096 4913 5832 6859 8000 9261 10648 |
Std | DiagCol1T(n + 1, 1) | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Std | DiagCol2T(n + 2, 2) | A000079 | 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 1048576 |
Std | DiagCol3T(n + 3, 3) | A000244 | 1 3 9 27 81 243 729 2187 6561 19683 59049 177147 531441 1594323 4782969 14348907 43046721 129140163 |
Std | Polysee docs | missing | 1 0 1 0 1 1 0 2 2 1 0 4 6 3 1 0 9 18 12 4 1 0 23 58 48 20 5 1 0 66 202 201 100 30 6 1 0 210 762 885 |
Std | PolyRow1∑ k=0..1 T(1, k) n^k | A000027 | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 |
Std | PolyRow2∑ k=0..2 T(2, k) n^k | A002378 | 0 2 6 12 20 30 42 56 72 90 110 132 156 182 210 240 272 306 342 380 420 462 506 552 600 650 702 756 |
Std | PolyRow3∑ k=0..3 T(3, k) n^k | A045991 | 0 4 18 48 100 180 294 448 648 900 1210 1584 2028 2548 3150 3840 4624 5508 6498 7600 8820 10164 |
Std | PolyCol2∑ k=0..n T(n, k) 2^k | A351279 | 1 2 6 18 58 202 762 3114 13754 65386 332922 1806506 10398266 63226858 404640250 2716838186 |
Std | PolyCol3∑ k=0..n T(n, k) 3^k | A351282 | 1 3 12 48 201 885 4116 20298 106365 592455 3503532 21946620 145210305 1011726417 7400390052 |
Std | PolyDiag∑ k=0..n T(n, k) n^k | A351340 | 1 1 6 48 516 6955 112686 2132634 46167560 1125116901 30481672610 908760877244 29565986232396 |
Alt | TriangleT(n, k), 0 ≤ k ≤ n | A004248 | 1 0 -1 0 -1 1 0 -1 2 -1 0 -1 4 -3 1 0 -1 8 -9 4 -1 0 -1 16 -27 16 -5 1 0 -1 32 -81 64 -25 6 -1 0 -1 |
Alt | RevT(n, n - k), 0 ≤ k ≤ n | A003992 | 1 -1 0 1 -1 0 -1 2 -1 0 1 -3 4 -1 0 -1 4 -9 8 -1 0 1 -5 16 -27 16 -1 0 -1 6 -25 64 -81 32 -1 0 1 -7 |
Alt | InvT-1(n, k), 0 ≤ k ≤ n | missing | 1 0 1 0 1 1 0 -1 -2 1 0 -6 -10 3 1 0 8 14 -3 -4 1 0 94 160 -36 -36 5 1 0 -92 -164 30 52 -5 -6 1 0 |
Alt | RevInvT-1(n, n - k), 0 ≤ k ≤ n | missing | 1 1 0 1 1 0 1 -2 -1 0 1 3 -10 -6 0 1 -4 -3 14 8 0 1 5 -36 -36 160 94 0 1 -6 -5 52 30 -164 -92 0 1 7 |
Alt | Accsee docs | missing | 1 0 -1 0 -1 0 0 -1 1 0 0 -1 3 0 1 0 -1 7 -2 2 1 0 -1 15 -12 4 -1 0 0 -1 31 -50 14 -11 -5 -6 0 -1 63 |
Alt | AccRevsee docs | missing | 1 -1 -1 1 0 0 -1 1 0 0 1 -2 2 1 1 -1 3 -6 2 1 1 1 -4 12 -15 1 0 0 -1 5 -20 44 -37 -5 -6 -6 1 -6 30 |
Alt | AntiDiagsee docs | missing | 1 0 0 -1 0 -1 0 -1 1 0 -1 2 0 -1 4 -1 0 -1 8 -3 0 -1 16 -9 1 0 -1 32 -27 4 0 -1 64 -81 16 -1 0 -1 |
Alt | Diffx1T(n, k) (k+1) | A265583 | 1 0 -2 0 -2 3 0 -2 6 -4 0 -2 12 -12 5 0 -2 24 -36 20 -6 0 -2 48 -108 80 -30 7 0 -2 96 -324 320 -150 |
Alt | RowSum∑ k=0..n T(n, k) | A038125 | 1 -1 0 0 1 1 0 -6 -19 -29 48 524 2057 3901 -9632 -129034 -664363 -1837905 2388688 67004696 |
Alt | EvenSum∑ k=0..n T(n, k) even(k) | missing | 1 0 1 2 5 12 33 102 357 1376 5713 25194 117413 577908 3004577 16479086 95057925 574408008 |
Alt | OddSum∑ k=0..n T(n, k) odd(k) | missing | 0 -1 -1 -2 -4 -11 -33 -108 -376 -1405 -5665 -24670 -115356 -574007 -3014209 -16608120 -95722288 |
Alt | AltSum∑ k=0..n T(n, k) (-1)^k | A026898 | 1 1 2 4 9 23 66 210 733 2781 11378 49864 232769 1151915 6018786 33087206 190780213 1150653921 |
Alt | AbsSum∑ k=0..n | T(n, k) | | A026898 | 1 1 2 4 9 23 66 210 733 2781 11378 49864 232769 1151915 6018786 33087206 190780213 1150653921 |
Alt | DiagSum∑ k=0..n // 2 T(n - k, k) | missing | 1 0 -1 -1 0 1 2 4 7 8 -3 -57 -242 -771 -2032 -4168 -3795 22504 187211 943255 3860140 13349105 |
Alt | AccSum∑ k=0..n ∑ j=0..k T(n, j) | missing | 1 -1 -1 0 3 7 5 -28 -143 -337 3 4232 22839 64247 -15447 -1400180 -9456267 -35470977 -21619625 |
Alt | AccRevSum∑ k=0..n ∑ j=0..k T(n, n - j) | missing | 1 -2 1 0 3 0 -5 -26 -47 18 573 2580 5959 -5732 -138665 -793398 -2502267 550782 69393385 545203240 |
Alt | RowLcmLcm k=0..n | T(n, k) | > 1 | missing | 1 1 1 2 12 72 2160 129600 54432000 22861440000 9601804800000 4032758016000000 18631342033920000000 |
Alt | RowGcdGcd k=0..n | T(n, k) | > 1 | A174965 | 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Alt | RowMaxMax k=0..n | T(n, k) | | A003320 | 1 1 1 2 4 9 27 81 256 1024 4096 16384 78125 390625 1953125 10077696 60466176 362797056 2176782336 |
Alt | ColMiddleT(n, n // 2) | A110132 | 1 0 -1 -1 4 8 -27 -81 256 1024 -3125 -15625 46656 279936 -823543 -5764801 16777216 134217728 |
Alt | CentralET(2 n, n) | A000312 | 1 -1 4 -27 256 -3125 46656 -823543 16777216 -387420489 10000000000 -285311670611 8916100448256 |
Alt | CentralOT(2 n + 1, n) | A007778 | 0 -1 8 -81 1024 -15625 279936 -5764801 134217728 -3486784401 100000000000 -3138428376721 |
Alt | ColLeftT(n, 0) | A000007 | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Alt | BinConv∑ k=0..n C(n, k) T(n, k) | A003725 | 1 -1 -1 2 9 4 -95 -414 49 10088 55521 13870 -2024759 -15787188 -28612415 616876274 7476967905 |
Alt | InvBinConv∑ k=0..n C(n, k) T(n, n - k) (-1)^k | A000248 | 1 -1 3 -10 41 -196 1057 -6322 41393 -293608 2237921 -18210094 157329097 -1436630092 13810863809 |
Alt | TransNat0∑ k=0..n T(n, k) k | A349852 | 0 -1 1 0 2 -1 -5 -20 -28 47 525 2056 3902 -9633 -129033 -664364 -1837904 2388687 67004697 478198544 |
Alt | TransNat1∑ k=0..n T(n, k) (k + 1) | missing | 1 -2 1 0 3 0 -5 -26 -47 18 573 2580 5959 -5732 -138665 -793398 -2502267 550782 69393385 545203240 |
Alt | TransSqrs∑ k=0..n T(n, k) k^2 | A349853 | 0 -1 3 -2 4 -11 -13 -36 56 515 2067 3890 -9620 -129047 -664349 -1837920 2388704 67004679 478198563 |
Alt | PosHalf∑ k=0..n 2^n T(n, k) (1/2)^k | missing | 1 -1 -1 -1 3 19 63 87 -581 -6213 -34537 -107137 254291 7195171 67319535 401638183 925411435 |
Alt | NegHalf∑ k=0..n (-2)^n T(n, k) (-1/2)^k | A349970 | 1 -1 3 -9 31 -125 579 -3009 17255 -108005 731883 -5331625 41501135 -343405709 3007557523 |
Alt | DiagRow1T(n + 1, n) | A000027 | 0 -1 2 -3 4 -5 6 -7 8 -9 10 -11 12 -13 14 -15 16 -17 18 -19 20 -21 22 -23 24 -25 26 -27 28 -29 30 |
Alt | DiagRow2T(n + 2, n) | A000290 | 0 -1 4 -9 16 -25 36 -49 64 -81 100 -121 144 -169 196 -225 256 -289 324 -361 400 -441 484 -529 576 |
Alt | DiagRow3T(n + 3, n) | A000578 | 0 -1 8 -27 64 -125 216 -343 512 -729 1000 -1331 1728 -2197 2744 -3375 4096 -4913 5832 -6859 8000 |
Alt | DiagCol1T(n + 1, 1) | A000012 | -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 |
Alt | DiagCol2T(n + 2, 2) | A000079 | 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 1048576 |
Alt | DiagCol3T(n + 3, 3) | A000244 | -1 -3 -9 -27 -81 -243 -729 -2187 -6561 -19683 -59049 -177147 -531441 -1594323 -4782969 -14348907 |
Alt | Polysee docs | missing | 1 0 1 0 -1 1 0 0 -2 1 0 0 2 -3 1 0 1 -2 6 -4 1 0 1 6 -12 12 -5 1 0 0 -10 33 -36 20 -6 1 0 -6 6 -93 |
Alt | PolyRow1∑ k=0..1 T(1, k) n^k | A000027 | 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25 -26 |
Alt | PolyRow2∑ k=0..2 T(2, k) n^k | A002378 | 0 0 2 6 12 20 30 42 56 72 90 110 132 156 182 210 240 272 306 342 380 420 462 506 552 600 650 702 |
Alt | PolyRow3∑ k=0..3 T(3, k) n^k | A011379 | 0 0 -2 -12 -36 -80 -150 -252 -392 -576 -810 -1100 -1452 -1872 -2366 -2940 -3600 -4352 -5202 -6156 |
Alt | PolyCol2∑ k=0..n T(n, k) 2^k | missing | 1 -2 2 -2 6 -10 6 -42 70 150 902 -170 -10810 -66538 -152058 546518 7796806 40695702 65660038 |
Alt | PolyCol3∑ k=0..n T(n, k) 3^k | missing | 1 -3 6 -12 33 -93 222 -606 1869 -4359 12102 -46344 69801 -241257 1887630 3291126 11266485 |
Alt | PolyDiag∑ k=0..n T(n, k) n^k | missing | 1 -1 2 -12 124 -1555 23250 -410382 8366584 -193329189 4992298590 -142477694216 4453443905460 |
Rev | TriangleT(n, k), 0 ≤ k ≤ n | A003992 | 1 1 0 1 1 0 1 2 1 0 1 3 4 1 0 1 4 9 8 1 0 1 5 16 27 16 1 0 1 6 25 64 81 32 1 0 1 7 36 125 256 243 |
Rev | InvRev(T(n, n - k))-1, 0 ≤ k ≤ n | missing | 1 0 1 0 -1 1 0 1 -2 1 0 0 2 -3 1 0 -2 2 3 -4 1 0 -2 -4 6 4 -5 1 0 12 -24 0 12 5 -6 1 0 58 -28 -66 |
Rev | Accsee docs | missing | 1 1 1 1 2 2 1 3 4 4 1 4 8 9 9 1 5 14 22 23 23 1 6 22 49 65 66 66 1 7 32 96 177 209 210 210 1 8 44 |
Rev | AccRevsee docs | missing | 1 0 1 0 1 2 0 1 3 4 0 1 5 8 9 0 1 9 18 22 23 0 1 17 44 60 65 66 0 1 33 114 178 203 209 210 0 1 65 |
Rev | AntiDiagsee docs | missing | 1 1 1 0 1 1 1 2 0 1 3 1 1 4 4 0 1 5 9 1 1 6 16 8 0 1 7 25 27 1 1 8 36 64 16 0 1 9 49 125 81 1 1 10 |
Rev | Diffx1T(n, k) (k+1) | missing | 1 1 0 1 2 0 1 4 3 0 1 6 12 4 0 1 8 27 32 5 0 1 10 48 108 80 6 0 1 12 75 256 405 192 7 0 1 14 108 |
Rev | RowSum∑ k=0..n T(n, k) | A026898 | 1 1 2 4 9 23 66 210 733 2781 11378 49864 232769 1151915 6018786 33087206 190780213 1150653921 |
Rev | EvenSum∑ k=0..n T(n, k) even(k) | A353016 | 1 1 1 2 5 11 33 108 357 1405 5713 24670 117413 574007 3004577 16608120 95057925 576245913 |
Rev | OddSum∑ k=0..n T(n, k) odd(k) | missing | 0 0 1 2 4 12 33 102 376 1376 5665 25194 115356 577908 3014209 16479086 95722288 574408008 |
Rev | AltSum∑ k=0..n T(n, k) (-1)^k | A038125 | 1 1 0 0 1 -1 0 6 -19 29 48 -524 2057 -3901 -9632 129034 -664363 1837905 2388688 -67004696 478198545 |
Rev | AbsSum∑ k=0..n | T(n, k) | | A026898 | 1 1 2 4 9 23 66 210 733 2781 11378 49864 232769 1151915 6018786 33087206 190780213 1150653921 |
Rev | DiagSum∑ k=0..n // 2 T(n - k, k) | A352944 | 1 1 1 2 3 5 9 16 31 61 125 266 579 1305 3009 7120 17255 42697 108005 278466 731883 1958589 5331625 |
Rev | AccSum∑ k=0..n ∑ j=0..k T(n, j) | missing | 1 2 5 12 31 88 275 942 3513 14158 61241 282632 1384683 7170700 39105991 223867418 1341434133 |
Rev | AccRevSum∑ k=0..n ∑ j=0..k T(n, n - j) | A101495 | 1 1 3 8 23 73 253 948 3817 16433 75295 365600 1874083 10108025 57194585 338615084 2092609701 |
Rev | RowLcmLcm k=0..n | T(n, k) | > 1 | missing | 1 1 1 2 12 72 2160 129600 54432000 22861440000 9601804800000 4032758016000000 18631342033920000000 |
Rev | RowGcdGcd k=0..n | T(n, k) | > 1 | A174965 | 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Rev | RowMaxMax k=0..n | T(n, k) | | A003320 | 1 1 1 2 4 9 27 81 256 1024 4096 16384 78125 390625 1953125 10077696 60466176 362797056 2176782336 |
Rev | ColMiddleT(n, n // 2) | A110138 | 1 1 1 2 4 9 27 64 256 625 3125 7776 46656 117649 823543 2097152 16777216 43046721 387420489 |
Rev | CentralET(2 n, n) | A000312 | 1 1 4 27 256 3125 46656 823543 16777216 387420489 10000000000 285311670611 8916100448256 |
Rev | CentralOT(2 n + 1, n) | A000169 | 1 2 9 64 625 7776 117649 2097152 43046721 1000000000 25937424601 743008370688 23298085122481 |
Rev | ColLeftT(n, 0) | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Rev | ColRightT(n, n) | A000007 | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
Rev | BinConv∑ k=0..n C(n, k) T(n, k) | A000248 | 1 1 3 10 41 196 1057 6322 41393 293608 2237921 18210094 157329097 1436630092 13810863809 |
Rev | InvBinConv∑ k=0..n C(n, k) T(n, n - k) (-1)^k | A003725 | 1 -1 -1 2 9 4 -95 -414 49 10088 55521 13870 -2024759 -15787188 -28612415 616876274 7476967905 |
Rev | TransNat0∑ k=0..n T(n, k) k | A062807 | 0 0 1 4 14 50 187 738 3084 13652 63917 315736 1641314 8956110 51175799 305527878 1901829488 |
Rev | TransNat1∑ k=0..n T(n, k) (k + 1) | A101495 | 1 1 3 8 23 73 253 948 3817 16433 75295 365600 1874083 10108025 57194585 338615084 2092609701 |
Rev | TransSqrs∑ k=0..n T(n, k) k^2 | missing | 0 0 1 6 28 128 593 2814 13800 70328 373297 2064550 11891572 71272416 444020513 2871868894 |
Rev | PosHalf∑ k=0..n 2^n T(n, k) (1/2)^k | A351279 | 1 2 6 18 58 202 762 3114 13754 65386 332922 1806506 10398266 63226858 404640250 2716838186 |
Rev | NegHalf∑ k=0..n (-2)^n T(n, k) (-1/2)^k | missing | 1 -2 2 -2 6 -10 6 -42 70 150 902 -170 -10810 -66538 -152058 546518 7796806 40695702 65660038 |
Rev | DiagRow1T(n + 1, n) | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Rev | DiagRow2T(n + 2, n) | A000079 | 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 1048576 |
Rev | DiagRow3T(n + 3, n) | A000244 | 1 3 9 27 81 243 729 2187 6561 19683 59049 177147 531441 1594323 4782969 14348907 43046721 129140163 |
Rev | DiagCol1T(n + 1, 1) | A000027 | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 |
Rev | DiagCol2T(n + 2, 2) | A000290 | 0 1 4 9 16 25 36 49 64 81 100 121 144 169 196 225 256 289 324 361 400 441 484 529 576 625 676 729 |
Rev | DiagCol3T(n + 3, 3) | A000578 | 0 1 8 27 64 125 216 343 512 729 1000 1331 1728 2197 2744 3375 4096 4913 5832 6859 8000 9261 10648 |
Rev | Polysee docs | missing | 1 1 1 1 1 1 1 2 1 1 1 4 3 1 1 1 9 9 4 1 1 1 23 31 16 5 1 1 1 66 125 73 25 6 1 1 1 210 579 391 141 |
Rev | PolyRow1∑ k=0..1 T(1, k) n^k | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Rev | PolyRow2∑ k=0..2 T(2, k) n^k | A000027 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
Rev | PolyRow3∑ k=0..3 T(3, k) n^k | A000290 | 1 4 9 16 25 36 49 64 81 100 121 144 169 196 225 256 289 324 361 400 441 484 529 576 625 676 729 784 |
Rev | PolyCol2∑ k=0..n T(n, k) 2^k | A349970 | 1 1 3 9 31 125 579 3009 17255 108005 731883 5331625 41501135 343405709 3007557523 27775308049 |
Rev | PolyCol3∑ k=0..n T(n, k) 3^k | missing | 1 1 4 16 73 391 2428 17038 132349 1123693 10342468 102504532 1087353601 12279292219 146947508140 |
Rev | PolyDiag∑ k=0..n T(n, k) n^k | A349969 | 1 1 3 16 141 1871 34951 873174 27951929 1107415549 52891809491 2987861887924 196828568831365 |
<< | Table | Source | Similars | Index | >> |
Note: The A-numbers are based on a finite number of numerical comparisons. They ignore the sign and the OEIS-offset. Sometimes they differ in the first few values. In such cases, we consider our version to be the better one because it has a common formula as a root. Since the offset of all triangles is 0 also the offset of all sequences is 0.