POLYGONAL[0] 0
[1] 0, 1
[2] 0, 1, 2
[3] 0, 1, 3, 3
[4] 0, 1, 4, 6, 4
[5] 0, 1, 5, 9, 10, 5

      OEIS Similars: A139600, A057145, A134394, A139601

↕ Type↕ Trait↕ Anum↕ Sequence
StdTriangleT(n, k), 0 ≤ k ≤ nA1396000 0 1 0 1 2 0 1 3 3 0 1 4 6 4 0 1 5 9 10 5 0 1 6 12 16 15 6 0 1 7 15 22 25 21 7 0 1 8 18 28 35 36
StdRevT(n, n - k), 0 ≤ k ≤ nmissing0 1 0 2 1 0 3 3 1 0 4 6 4 1 0 5 10 9 5 1 0 6 15 16 12 6 1 0 7 21 25 22 15 7 1 0 8 28 36 35 28 18 8
StdAccsee docsmissing0 0 1 0 1 3 0 1 4 7 0 1 5 11 15 0 1 6 15 25 30 0 1 7 19 35 50 56 0 1 8 23 45 70 91 98 0 1 9 27 55
StdAccRevsee docsmissing0 1 1 2 3 3 3 6 7 7 4 10 14 15 15 5 15 24 29 30 30 6 21 37 49 55 56 56 7 28 53 75 90 97 98 98 8 36
StdAntiDiagsee docsmissing0 0 0 1 0 1 0 1 2 0 1 3 0 1 4 3 0 1 5 6 0 1 6 9 4 0 1 7 12 10 0 1 8 15 16 5 0 1 9 18 22 15 0 1 10
StdDiffx1T(n, k) (k+1)missing0 0 2 0 2 6 0 2 9 12 0 2 12 24 20 0 2 15 36 50 30 0 2 18 48 80 90 42 0 2 21 60 110 150 147 56 0 2
StdRowSum k=0..n T(n, k)A0557950 1 3 7 15 30 56 98 162 255 385 561 793 1092 1470 1940 2516 3213 4047 5035 6195 7546 9108 10902
StdEvenSum k=0..n T(n, k) even(k)missing0 0 2 3 8 15 28 50 80 130 190 285 392 553 728 980 1248 1620 2010 2535 3080 3795 4532 5478 6448 7670
StdOddSum k=0..n T(n, k) odd(k)missing0 1 1 4 7 15 28 48 82 125 195 276 401 539 742 960 1268 1593 2037 2500 3115 3751 4576 5424 6502 7605
StdAltSum k=0..n T(n, k) (-1)^kmissing0 -1 1 -1 1 0 0 2 -2 5 -5 9 -9 14 -14 20 -20 27 -27 35 -35 44 -44 54 -54 65 -65 77 -77 90 -90 104
StdAbsSum k=0..n | T(n, k) |A0557950 1 3 7 15 30 56 98 162 255 385 561 793 1092 1470 1940 2516 3213 4047 5035 6195 7546 9108 10902
StdDiagSum k=0..n // 2 T(n - k, k)missing0 0 1 1 3 4 8 12 20 30 45 65 91 126 168 224 288 372 465 585 715 880 1056 1276 1508 1794 2093 2457
StdAccSum k=0..n j=0..k T(n, j)missing0 1 4 12 32 77 168 336 624 1089 1804 2860 4368 6461 9296 13056 17952 24225 32148 42028 54208 69069
StdAccRevSum k=0..n j=0..k T(n, n - j)missing0 2 8 23 58 133 280 546 996 1716 2816 4433 6734 9919 14224 19924 27336 36822 48792 63707 82082
StdRowLcmLcm k=0..n | T(n, k) | > 1missing1 1 2 3 12 90 240 11550 2520 149940 221760 37297260 7207200 686912646420 164324160 9357648300
StdRowGcdGcd k=0..n | T(n, k) | > 1A1148901 1 2 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
StdRowMaxMax k=0..n | T(n, k) |missing0 1 2 3 6 10 16 25 36 51 70 92 120 153 190 235 286 342 408 481 560 651 750 856 976 1105 1242 1395
StdColMiddleT(n, n // 2)missing0 0 1 1 4 5 12 15 28 34 55 65 96 111 154 175 232 260 333 369 460 505 616 671 804 870 1027 1105 1288
StdCentralET(2 n, n)A0060000 1 4 12 28 55 96 154 232 333 460 616 804 1027 1288 1590 1936 2329 2772 3268 3820 4431 5104 5842
StdCentralOT(2 n + 1, n)A0060030 1 5 15 34 65 111 175 260 369 505 671 870 1105 1379 1695 2056 2465 2925 3439 4010 4641 5335 6095
StdColRightT(n, n)A0000270 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
StdBinConv k=0..n C(n, k) T(n, k)missing0 1 4 15 56 200 672 2128 6400 18432 51200 137984 362496 931840 2351104 5836800 14286848 34537472
StdInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kA0839270 1 0 -3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
StdTransNat0 k=0..n T(n, k) kmissing0 1 5 16 43 103 224 448 834 1461 2431 3872 5941 8827 12754 17984 24820 33609 44745 58672 75887
StdTransNat1 k=0..n T(n, k) (k + 1)missing0 2 8 23 58 133 280 546 996 1716 2816 4433 6734 9919 14224 19924 27336 36822 48792 63707 82082
StdTransSqrs k=0..n T(n, k) k^2missing0 1 9 40 135 387 980 2240 4698 9165 16819 29304 48841 78351 121590 183296 269348 386937 544749
StdPosHalf k=0..n 2^n T(n, k) (1/2)^kA3606060 1 4 13 40 117 324 853 2152 5245 12436 28845 65736 147685 327940 721189 1573192 3408237 7340436
StdNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kA3606050 1 0 1 0 -3 8 -31 72 -195 448 -1071 2416 -5475 12120 -26719 58232 -126243 271824 -582575 1242720
StdDiagRow1T(n + 1, n)A0002170 1 3 6 10 15 21 28 36 45 55 66 78 91 105 120 136 153 171 190 210 231 253 276 300 325 351 378 406
StdDiagRow2T(n + 2, n)A0002900 1 4 9 16 25 36 49 64 81 100 121 144 169 196 225 256 289 324 361 400 441 484 529 576 625 676 729
StdDiagRow3T(n + 3, n)A0003260 1 5 12 22 35 51 70 92 117 145 176 210 247 287 330 376 425 477 532 590 651 715 782 852 925 1001
StdDiagCol1T(n + 1, 1)A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
StdDiagCol2T(n + 2, 2)A0000272 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
StdDiagCol3T(n + 3, 3)A0085853 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78 81 84 87 90 93 96 99 102
StdPolysee docsmissing0 0 0 0 1 0 0 3 2 0 0 7 10 3 0 0 15 38 21 4 0 0 30 130 111 36 5 0 0 56 414 525 244 55 6 0 0 98 1242
StdPolyRow1 k=0..1 T(1, k) n^kA0000270 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
StdPolyRow2 k=0..2 T(2, k) n^kA0141050 3 10 21 36 55 78 105 136 171 210 253 300 351 406 465 528 595 666 741 820 903 990 1081 1176 1275
StdPolyRow3 k=0..3 T(3, k) n^kA2493540 7 38 111 244 455 762 1183 1736 2439 3310 4367 5628 7111 8834 10815 13072 15623 18486 21679 25220
StdPolyCol2 k=0..n T(n, k) 2^kmissing0 2 10 38 130 414 1242 3542 9682 25550 65482 163782 401346 966590 2293690 5373878 12451762 28573614
StdPolyCol3 k=0..n T(n, k) 3^kmissing0 3 21 111 525 2316 9696 38946 151302 572025 2114679 7672665 27402411 96556170 336302490 1159571028
StdPolyDiag k=0..n T(n, k) n^kmissing0 1 10 111 1476 23130 420126 8713922 203646472 5300831655 152171925010 4777629517881
AltTriangleT(n, k), 0 ≤ k ≤ nA1396000 0 -1 0 -1 2 0 -1 3 -3 0 -1 4 -6 4 0 -1 5 -9 10 -5 0 -1 6 -12 16 -15 6 0 -1 7 -15 22 -25 21 -7 0
AltRevT(n, n - k), 0 ≤ k ≤ nmissing0 -1 0 2 -1 0 -3 3 -1 0 4 -6 4 -1 0 -5 10 -9 5 -1 0 6 -15 16 -12 6 -1 0 -7 21 -25 22 -15 7 -1 0 8
AltAccsee docsmissing0 0 -1 0 -1 1 0 -1 2 -1 0 -1 3 -3 1 0 -1 4 -5 5 0 0 -1 5 -7 9 -6 0 0 -1 6 -9 13 -12 9 2 0 -1 7 -11
AltAccRevsee docsmissing0 -1 -1 2 1 1 -3 0 -1 -1 4 -2 2 1 1 -5 5 -4 1 0 0 6 -9 7 -5 1 0 0 -7 14 -11 11 -4 3 2 2 8 -20 16
AltAntiDiagsee docsmissing0 0 0 -1 0 -1 0 -1 2 0 -1 3 0 -1 4 -3 0 -1 5 -6 0 -1 6 -9 4 0 -1 7 -12 10 0 -1 8 -15 16 -5 0 -1 9
AltDiffx1T(n, k) (k+1)missing0 0 -2 0 -2 6 0 -2 9 -12 0 -2 12 -24 20 0 -2 15 -36 50 -30 0 -2 18 -48 80 -90 42 0 -2 21 -60 110
AltRowSum k=0..n T(n, k)missing0 -1 1 -1 1 0 0 2 -2 5 -5 9 -9 14 -14 20 -20 27 -27 35 -35 44 -44 54 -54 65 -65 77 -77 90 -90 104
AltEvenSum k=0..n T(n, k) even(k)missing0 0 2 3 8 15 28 50 80 130 190 285 392 553 728 980 1248 1620 2010 2535 3080 3795 4532 5478 6448 7670
AltOddSum k=0..n T(n, k) odd(k)missing0 -1 -1 -4 -7 -15 -28 -48 -82 -125 -195 -276 -401 -539 -742 -960 -1268 -1593 -2037 -2500 -3115
AltAltSum k=0..n T(n, k) (-1)^kA0557950 1 3 7 15 30 56 98 162 255 385 561 793 1092 1470 1940 2516 3213 4047 5035 6195 7546 9108 10902
AltAbsSum k=0..n | T(n, k) |A0557950 1 3 7 15 30 56 98 162 255 385 561 793 1092 1470 1940 2516 3213 4047 5035 6195 7546 9108 10902
AltDiagSum k=0..n // 2 T(n - k, k)missing0 0 -1 -1 1 2 0 -2 0 4 3 -3 -3 6 8 -4 -8 8 15 -5 -15 10 24 -6 -24 12 35 -7 -35 14 48 -8 -48 16 63
AltAccSum k=0..n j=0..k T(n, j)A0055630 -1 0 0 0 3 0 8 0 15 0 24 0 35 0 48 0 63 0 80 0 99 0 120 0 143 0 168 0 195 0 224 0 255 0 288 0 323
AltAccRevSum k=0..n j=0..k T(n, n - j)missing0 -2 4 -5 6 -3 0 10 -20 40 -60 93 -126 175 -224 292 -360 450 -540 655 -770 913 -1056 1230 -1404
AltRowLcmLcm k=0..n | T(n, k) | > 1missing1 1 2 3 12 90 240 11550 2520 149940 221760 37297260 7207200 686912646420 164324160 9357648300
AltRowGcdGcd k=0..n | T(n, k) | > 1A1148901 1 2 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
AltRowMaxMax k=0..n | T(n, k) |missing0 1 2 3 6 10 16 25 36 51 70 92 120 153 190 235 286 342 408 481 560 651 750 856 976 1105 1242 1395
AltColMiddleT(n, n // 2)missing0 0 -1 -1 4 5 -12 -15 28 34 -55 -65 96 111 -154 -175 232 260 -333 -369 460 505 -616 -671 804 870
AltCentralET(2 n, n)A0060000 -1 4 -12 28 -55 96 -154 232 -333 460 -616 804 -1027 1288 -1590 1936 -2329 2772 -3268 3820 -4431
AltCentralOT(2 n + 1, n)A0060030 -1 5 -15 34 -65 111 -175 260 -369 505 -671 870 -1105 1379 -1695 2056 -2465 2925 -3439 4010 -4641
AltColRightT(n, n)A0000270 -1 2 -3 4 -5 6 -7 8 -9 10 -11 12 -13 14 -15 16 -17 18 -19 20 -21 22 -23 24 -25 26 -27 28 -29 30
AltBinConv k=0..n C(n, k) T(n, k)A0839270 -1 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
AltInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kmissing0 -1 4 -15 56 -200 672 -2128 6400 -18432 51200 -137984 362496 -931840 2351104 -5836800 14286848
AltTransNat0 k=0..n T(n, k) kmissing0 -1 3 -4 5 -3 0 8 -18 35 -55 84 -117 161 -210 272 -340 423 -513 620 -735 869 -1012 1176 -1350 1547
AltTransNat1 k=0..n T(n, k) (k + 1)missing0 -2 4 -5 6 -3 0 10 -20 40 -60 93 -126 175 -224 292 -360 450 -540 655 -770 913 -1056 1230 -1404
AltTransSqrs k=0..n T(n, k) k^2missing0 -1 7 -16 25 -27 12 32 -122 275 -515 864 -1353 2009 -2870 3968 -5348 7047 -9117 11600 -14555 18029
AltPosHalf k=0..n 2^n T(n, k) (1/2)^kA3606050 -1 0 -1 0 3 8 31 72 195 448 1071 2416 5475 12120 26719 58232 126243 271824 582575 1242720 2640899
AltNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kA3606060 -1 4 -13 40 -117 324 -853 2152 -5245 12436 -28845 65736 -147685 327940 -721189 1573192 -3408237
AltDiagRow1T(n + 1, n)A0002170 -1 3 -6 10 -15 21 -28 36 -45 55 -66 78 -91 105 -120 136 -153 171 -190 210 -231 253 -276 300 -325
AltDiagRow2T(n + 2, n)A0002900 -1 4 -9 16 -25 36 -49 64 -81 100 -121 144 -169 196 -225 256 -289 324 -361 400 -441 484 -529 576
AltDiagRow3T(n + 3, n)A0003260 -1 5 -12 22 -35 51 -70 92 -117 145 -176 210 -247 287 -330 376 -425 477 -532 590 -651 715 -782 852
AltDiagCol1T(n + 1, 1)A000012-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
AltDiagCol2T(n + 2, 2)A0000272 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
AltDiagCol3T(n + 3, 3)A008585-3 -6 -9 -12 -15 -18 -21 -24 -27 -30 -33 -36 -39 -42 -45 -48 -51 -54 -57 -60 -63 -66 -69 -72 -75
AltPolysee docsmissing0 0 0 0 -1 0 0 1 -2 0 0 -1 6 -3 0 0 1 -14 15 -4 0 0 0 30 -57 28 -5 0 0 0 -54 195 -148 45 -6 0 0 2
AltPolyRow1 k=0..1 T(1, k) n^kA0000270 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25 -26
AltPolyRow2 k=0..2 T(2, k) n^kA0003840 1 6 15 28 45 66 91 120 153 190 231 276 325 378 435 496 561 630 703 780 861 946 1035 1128 1225
AltPolyRow3 k=0..3 T(3, k) n^kA0059150 -1 -14 -57 -148 -305 -546 -889 -1352 -1953 -2710 -3641 -4764 -6097 -7658 -9465 -11536 -13889
AltPolyCol2 k=0..n T(n, k) 2^kmissing0 -2 6 -14 30 -54 86 -94 -18 570 -2426 7890 -22754 61290 -157770 393218 -956338 2281626 -5359386
AltPolyCol3 k=0..n T(n, k) 3^kmissing0 -3 15 -57 195 -606 1752 -4638 10842 -19605 8997 155697 -1114779 5586360 -24381930 98704788
AltPolyDiag k=0..n T(n, k) n^kmissing0 -1 6 -57 700 -10380 181650 -3666334 83893752 -2146813155 60760876990 -1884782435151
RevTriangleT(n, k), 0 ≤ k ≤ nmissing0 1 0 2 1 0 3 3 1 0 4 6 4 1 0 5 10 9 5 1 0 6 15 16 12 6 1 0 7 21 25 22 15 7 1 0 8 28 36 35 28 18 8
RevAccsee docsmissing0 1 1 2 3 3 3 6 7 7 4 10 14 15 15 5 15 24 29 30 30 6 21 37 49 55 56 56 7 28 53 75 90 97 98 98 8 36
RevAccRevsee docsmissing0 0 1 0 1 3 0 1 4 7 0 1 5 11 15 0 1 6 15 25 30 0 1 7 19 35 50 56 0 1 8 23 45 70 91 98 0 1 9 27 55
RevAntiDiagsee docsmissing0 1 2 0 3 1 4 3 0 5 6 1 6 10 4 0 7 15 9 1 8 21 16 5 0 9 28 25 12 1 10 36 36 22 6 0 11 45 49 35 15 1
RevDiffx1T(n, k) (k+1)missing0 1 0 2 2 0 3 6 3 0 4 12 12 4 0 5 20 27 20 5 0 6 30 48 48 30 6 0 7 42 75 88 75 42 7 0 8 56 108 140
RevRowSum k=0..n T(n, k)A0557950 1 3 7 15 30 56 98 162 255 385 561 793 1092 1470 1940 2516 3213 4047 5035 6195 7546 9108 10902
RevEvenSum k=0..n T(n, k) even(k)missing0 1 2 4 8 15 28 48 80 125 190 276 392 539 728 960 1248 1593 2010 2500 3080 3751 4532 5424 6448 7605
RevOddSum k=0..n T(n, k) odd(k)missing0 0 1 3 7 15 28 50 82 130 195 285 401 553 742 980 1268 1620 2037 2535 3115 3795 4576 5478 6502 7670
RevAltSum k=0..n T(n, k) (-1)^kmissing0 1 1 1 1 0 0 -2 -2 -5 -5 -9 -9 -14 -14 -20 -20 -27 -27 -35 -35 -44 -44 -54 -54 -65 -65 -77 -77 -90
RevAbsSum k=0..n | T(n, k) |A0557950 1 3 7 15 30 56 98 162 255 385 561 793 1092 1470 1940 2516 3213 4047 5035 6195 7546 9108 10902
RevDiagSum k=0..n // 2 T(n - k, k)missing0 1 2 4 7 12 20 32 50 75 110 156 217 294 392 512 660 837 1050 1300 1595 1936 2332 2784 3302 3887
RevAccSum k=0..n j=0..k T(n, j)missing0 2 8 23 58 133 280 546 996 1716 2816 4433 6734 9919 14224 19924 27336 36822 48792 63707 82082
RevAccRevSum k=0..n j=0..k T(n, n - j)missing0 1 4 12 32 77 168 336 624 1089 1804 2860 4368 6461 9296 13056 17952 24225 32148 42028 54208 69069
RevRowLcmLcm k=0..n | T(n, k) | > 1missing1 1 2 3 12 90 240 11550 2520 149940 221760 37297260 7207200 686912646420 164324160 9357648300
RevRowGcdGcd k=0..n | T(n, k) | > 1A1148901 1 2 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
RevRowMaxMax k=0..n | T(n, k) |missing0 1 2 3 6 10 16 25 36 51 70 92 120 153 190 235 286 342 408 481 560 651 750 856 976 1105 1242 1395
RevColMiddleT(n, n // 2)missing0 1 1 3 4 9 12 22 28 45 55 81 96 133 154 204 232 297 333 415 460 561 616 738 804 949 1027 1197 1288
RevCentralET(2 n, n)A0060000 1 4 12 28 55 96 154 232 333 460 616 804 1027 1288 1590 1936 2329 2772 3268 3820 4431 5104 5842
RevCentralOT(2 n + 1, n)A0648081 3 9 22 45 81 133 204 297 415 561 738 949 1197 1485 1816 2193 2619 3097 3630 4221 4873 5589 6372
RevColLeftT(n, 0)A0000270 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
RevBinConv k=0..n C(n, k) T(n, k)missing0 1 4 15 56 200 672 2128 6400 18432 51200 137984 362496 931840 2351104 5836800 14286848 34537472
RevInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kA0839270 -1 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RevTransNat0 k=0..n T(n, k) kmissing0 0 1 5 17 47 112 238 462 834 1419 2299 3575 5369 7826 11116 15436 21012 28101 36993 48013 61523
RevTransNat1 k=0..n T(n, k) (k + 1)missing0 1 4 12 32 77 168 336 624 1089 1804 2860 4368 6461 9296 13056 17952 24225 32148 42028 54208 69069
RevTransSqrs k=0..n T(n, k) k^2missing0 0 1 7 31 107 308 770 1722 3522 6699 12001 20449 33397 52598 80276 119204 172788 245157 341259
RevPosHalf k=0..n 2^n T(n, k) (1/2)^kmissing0 2 10 38 130 414 1242 3542 9682 25550 65482 163782 401346 966590 2293690 5373878 12451762 28573614
RevNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kmissing0 -2 6 -14 30 -54 86 -94 -18 570 -2426 7890 -22754 61290 -157770 393218 -956338 2281626 -5359386
RevDiagRow1T(n + 1, n)A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
RevDiagRow2T(n + 2, n)A0000272 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
RevDiagRow3T(n + 3, n)A0085853 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78 81 84 87 90 93 96 99 102
RevDiagCol1T(n + 1, 1)A0002170 1 3 6 10 15 21 28 36 45 55 66 78 91 105 120 136 153 171 190 210 231 253 276 300 325 351 378 406
RevDiagCol2T(n + 2, 2)A0002900 1 4 9 16 25 36 49 64 81 100 121 144 169 196 225 256 289 324 361 400 441 484 529 576 625 676 729
RevDiagCol3T(n + 3, 3)A0003260 1 5 12 22 35 51 70 92 117 145 176 210 247 287 330 376 425 477 532 590 651 715 782 852 925 1001
RevPolysee docsmissing0 1 0 2 1 0 3 3 1 0 4 7 4 1 0 5 15 13 5 1 0 6 30 40 21 6 1 0 7 56 117 85 31 7 1 0 8 98 324 332 156
RevPolyRow1 k=0..1 T(1, k) n^kA0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
RevPolyRow2 k=0..2 T(2, k) n^kA0000272 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
RevPolyRow3 k=0..3 T(3, k) n^kA0020613 7 13 21 31 43 57 73 91 111 133 157 183 211 241 273 307 343 381 421 463 507 553 601 651 703 757
RevPolyCol2 k=0..n T(n, k) 2^kA3606060 1 4 13 40 117 324 853 2152 5245 12436 28845 65736 147685 327940 721189 1573192 3408237 7340436
RevPolyCol3 k=0..n T(n, k) 3^kmissing0 1 5 21 85 332 1248 4534 16022 55395 188263 631139 2092611 6875590 22420250 72641436 234066652
RevPolyDiag k=0..n T(n, k) n^kmissing0 1 4 21 156 1530 18816 280238 4919272 99598095 2286236860 58688610651 1666173815076 51837565263120
 << TableSourceSimilarsIndex >> 

Note: The A-numbers are based on a finite number of numerical comparisons. They ignore the sign and the OEIS-offset. Sometimes they differ in the first few values. In such cases, we consider our version to be the better one because it has a common formula as a root. Since the offset of all triangles is 0 also the offset of all sequences is 0.