FALLINGFACTORIAL[0] 1
[1] 1, 1
[2] 1, 2, 2
[3] 1, 3, 6, 6
[4] 1, 4, 12, 24, 24
[5] 1, 5, 20, 60, 120, 120

      OEIS Similars: A008279, A068424, A094587, A173333, A181511

↕ Type↕ Trait↕ Anum↕ Sequence
StdTriangleT(n, k), 0 ≤ k ≤ nA0082791 1 1 1 2 2 1 3 6 6 1 4 12 24 24 1 5 20 60 120 120 1 6 30 120 360 720 720 1 7 42 210 840 2520 5040
StdRevT(n, n - k), 0 ≤ k ≤ nA0945871 1 1 2 2 1 6 6 3 1 24 24 12 4 1 120 120 60 20 5 1 720 720 360 120 30 6 1 5040 5040 2520 840 210 42
StdInvRev(T(n, n - k))-1, 0 ≤ k ≤ nA1282291 -1 1 0 -2 1 0 0 -3 1 0 0 0 -4 1 0 0 0 0 -5 1 0 0 0 0 0 -6 1 0 0 0 0 0 0 -7 1 0 0 0 0 0 0 0 -8 1 0
StdAccsee docsA3476671 1 2 1 3 5 1 4 10 16 1 5 17 41 65 1 6 26 86 206 326 1 7 37 157 517 1237 1957 1 8 50 260 1100 3620
StdAccRevsee docsA3679621 1 2 2 4 5 6 12 15 16 24 48 60 64 65 120 240 300 320 325 326 720 1440 1800 1920 1950 1956 1957
StdAntiDiagsee docsA3443911 1 1 1 1 2 1 3 2 1 4 6 1 5 12 6 1 6 20 24 1 7 30 60 24 1 8 42 120 120 1 9 56 210 360 120 1 10 72
StdDiffx1T(n, k) (k+1)A1217571 1 2 1 4 6 1 6 18 24 1 8 36 96 120 1 10 60 240 600 720 1 12 90 480 1800 4320 5040 1 14 126 840
StdRowSum k=0..n T(n, k)A0005221 2 5 16 65 326 1957 13700 109601 986410 9864101 108505112 1302061345 16926797486 236975164805
StdEvenSum k=0..n T(n, k) even(k)A0872081 1 3 7 37 141 1111 5923 62217 426457 5599531 46910271 739138093 7318002277 134523132927
StdOddSum k=0..n T(n, k) odd(k)A0027470 1 2 9 28 185 846 7777 47384 559953 4264570 61594841 562923252 9608795209 102452031878
StdAltSum k=0..n T(n, k) (-1)^kA0001661 0 1 -2 9 -44 265 -1854 14833 -133496 1334961 -14684570 176214841 -2290792932 32071101049
StdAbsSum k=0..n | T(n, k) |A0005221 2 5 16 65 326 1957 13700 109601 986410 9864101 108505112 1302061345 16926797486 236975164805
StdDiagSum k=0..n // 2 T(n - k, k)A0723741 1 2 3 6 11 24 51 122 291 756 1979 5526 15627 46496 140451 442194 1414931 4687212 15785451
StdAccSum k=0..n j=0..k T(n, j)A1110631 3 9 31 129 651 3913 27399 219201 1972819 19728201 217010223 2604122689 33853594971 473950329609
StdAccRevSum k=0..n j=0..k T(n, n - j)A0013391 3 11 49 261 1631 11743 95901 876809 8877691 98641011 1193556233 15624736141 220048367319
StdRowLcmLcm k=0..n | T(n, k) | > 1A0001421 1 2 6 24 120 720 5040 40320 362880 3628800 39916800 479001600 6227020800 87178291200
StdRowGcdGcd k=0..n | T(n, k) | > 1A0000271 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
StdRowMaxMax k=0..n | T(n, k) |A0001421 1 2 6 24 120 720 5040 40320 362880 3628800 39916800 479001600 6227020800 87178291200
StdColMiddleT(n, n // 2)A2058251 1 2 3 12 20 120 210 1680 3024 30240 55440 665280 1235520 17297280 32432400 518918400 980179200
StdCentralET(2 n, n)A0018131 2 12 120 1680 30240 665280 17297280 518918400 17643225600 670442572800 28158588057600
StdCentralOT(2 n + 1, n)A0069631 3 20 210 3024 55440 1235520 32432400 980179200 33522128640 1279935820800 53970627110400
StdColLeftT(n, 0)A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
StdColRightT(n, n)A0001421 1 2 6 24 120 720 5040 40320 362880 3628800 39916800 479001600 6227020800 87178291200
StdBinConv k=0..n C(n, k) T(n, k)A0027201 2 7 34 209 1546 13327 130922 1441729 17572114 234662231 3405357682 53334454417 896324308634
StdInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kA0099401 0 -1 -4 -15 -56 -185 -204 6209 112400 1520271 19165420 237686449 2944654296 36392001815
StdTransNat0 k=0..n T(n, k) kA0939640 1 6 33 196 1305 9786 82201 767208 7891281 88776910 1085051121 14322674796 203121569833
StdTransNat1 k=0..n T(n, k) (k + 1)A0013391 3 11 49 261 1631 11743 95901 876809 8877691 98641011 1193556233 15624736141 220048367319
StdTransSqrs k=0..n T(n, k) k^2A3432760 1 10 81 652 5545 50886 506905 5480056 64116657 808856290 10959016321 158851484100 2454385635481
StdPosHalf k=0..n 2^n T(n, k) (1/2)^kA0108421 3 10 38 168 872 5296 37200 297856 2681216 26813184 294947072 3539368960 46011804672 644165281792
StdNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kA0000231 -1 2 -2 8 8 112 656 5504 49024 491264 5401856 64826368 842734592 11798300672 176974477312
StdDiagRow1T(n + 1, n)A0001421 2 6 24 120 720 5040 40320 362880 3628800 39916800 479001600 6227020800 87178291200 1307674368000
StdDiagRow2T(n + 2, n)A0017101 3 12 60 360 2520 20160 181440 1814400 19958400 239500800 3113510400 43589145600 653837184000
StdDiagRow3T(n + 3, n)A0017151 4 20 120 840 6720 60480 604800 6652800 79833600 1037836800 14529715200 217945728000 3487131648000
StdDiagCol1T(n + 1, 1)A0000271 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
StdDiagCol2T(n + 2, 2)A0023782 6 12 20 30 42 56 72 90 110 132 156 182 210 240 272 306 342 380 420 462 506 552 600 650 702 756
StdDiagCol3T(n + 3, 3)A0075316 24 60 120 210 336 504 720 990 1320 1716 2184 2730 3360 4080 4896 5814 6840 7980 9240 10626 12144
StdPolysee docsmissing1 1 1 1 2 1 1 5 3 1 1 16 13 4 1 1 65 79 25 5 1 1 326 633 226 41 6 1 1 1957 6331 2713 493 61 7 1 1
StdPolyRow1 k=0..1 T(1, k) n^kA0000271 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
StdPolyRow2 k=0..2 T(2, k) n^kA0018441 5 13 25 41 61 85 113 145 181 221 265 313 365 421 481 545 613 685 761 841 925 1013 1105 1201 1301
StdPolyRow3 k=0..3 T(3, k) n^kmissing1 16 79 226 493 916 1531 2374 3481 4888 6631 8746 11269 14236 17683 21646 26161 31264 36991 43378
StdPolyCol2 k=0..n T(n, k) 2^kA0108441 3 13 79 633 6331 75973 1063623 17017969 306323443 6126468861 134782314943 3234775558633
StdPolyCol3 k=0..n T(n, k) 3^kA0108451 4 25 226 2713 40696 732529 15383110 369194641 9968255308 299047659241 9868572754954
StdPolyDiag k=0..n T(n, k) n^kA2774521 2 13 226 7889 458026 39684637 4788052298 766526598721 157108817646514 40104442275129101
AltTriangleT(n, k), 0 ≤ k ≤ nA0082791 1 -1 1 -2 2 1 -3 6 -6 1 -4 12 -24 24 1 -5 20 -60 120 -120 1 -6 30 -120 360 -720 720 1 -7 42 -210
AltRevT(n, n - k), 0 ≤ k ≤ nA0945871 -1 1 2 -2 1 -6 6 -3 1 24 -24 12 -4 1 -120 120 -60 20 -5 1 720 -720 360 -120 30 -6 1 -5040 5040
AltInvRev(T(n, n - k))-1, 0 ≤ k ≤ nA1282291 1 1 0 2 1 0 0 3 1 0 0 0 4 1 0 0 0 0 5 1 0 0 0 0 0 6 1 0 0 0 0 0 0 7 1 0 0 0 0 0 0 0 8 1 0 0 0 0 0
AltAccsee docsmissing1 1 0 1 -1 1 1 -2 4 -2 1 -3 9 -15 9 1 -4 16 -44 76 -44 1 -5 25 -95 265 -455 265 1 -6 36 -174 666
AltAccRevsee docsmissing1 -1 0 2 0 1 -6 0 -3 -2 24 0 12 8 9 -120 0 -60 -40 -45 -44 720 0 360 240 270 264 265 -5040 0 -2520
AltAntiDiagsee docsA3443911 1 1 -1 1 -2 1 -3 2 1 -4 6 1 -5 12 -6 1 -6 20 -24 1 -7 30 -60 24 1 -8 42 -120 120 1 -9 56 -210 360
AltDiffx1T(n, k) (k+1)A1217571 1 -2 1 -4 6 1 -6 18 -24 1 -8 36 -96 120 1 -10 60 -240 600 -720 1 -12 90 -480 1800 -4320 5040 1
AltRowSum k=0..n T(n, k)A0001661 0 1 -2 9 -44 265 -1854 14833 -133496 1334961 -14684570 176214841 -2290792932 32071101049
AltEvenSum k=0..n T(n, k) even(k)A0872081 1 3 7 37 141 1111 5923 62217 426457 5599531 46910271 739138093 7318002277 134523132927
AltOddSum k=0..n T(n, k) odd(k)A0027470 -1 -2 -9 -28 -185 -846 -7777 -47384 -559953 -4264570 -61594841 -562923252 -9608795209
AltAltSum k=0..n T(n, k) (-1)^kA0005221 2 5 16 65 326 1957 13700 109601 986410 9864101 108505112 1302061345 16926797486 236975164805
AltAbsSum k=0..n | T(n, k) |A0005221 2 5 16 65 326 1957 13700 109601 986410 9864101 108505112 1302061345 16926797486 236975164805
AltDiagSum k=0..n // 2 T(n - k, k)A3586031 1 0 -1 0 3 2 -9 -12 35 78 -153 -544 723 4170 -3337 -35028 10851 320678 57255 -3178152 -2190253
AltAccSum k=0..n j=0..k T(n, j)A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
AltAccRevSum k=0..n j=0..k T(n, n - j)A0002551 -1 3 -11 53 -309 2119 -16687 148329 -1468457 16019531 -190899411 2467007773 -34361893981
AltRowLcmLcm k=0..n | T(n, k) | > 1A0001421 1 2 6 24 120 720 5040 40320 362880 3628800 39916800 479001600 6227020800 87178291200
AltRowGcdGcd k=0..n | T(n, k) | > 1A0000271 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
AltRowMaxMax k=0..n | T(n, k) |A0001421 1 2 6 24 120 720 5040 40320 362880 3628800 39916800 479001600 6227020800 87178291200
AltColMiddleT(n, n // 2)A2058251 1 -2 -3 12 20 -120 -210 1680 3024 -30240 -55440 665280 1235520 -17297280 -32432400 518918400
AltCentralET(2 n, n)A0018131 -2 12 -120 1680 -30240 665280 -17297280 518918400 -17643225600 670442572800 -28158588057600
AltCentralOT(2 n + 1, n)A0069631 -3 20 -210 3024 -55440 1235520 -32432400 980179200 -33522128640 1279935820800 -53970627110400
AltColLeftT(n, 0)A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
AltColRightT(n, n)A0001421 -1 2 -6 24 -120 720 -5040 40320 -362880 3628800 -39916800 479001600 -6227020800 87178291200
AltBinConv k=0..n C(n, k) T(n, k)A0099401 0 -1 4 -15 56 -185 204 6209 -112400 1520271 -19165420 237686449 -2944654296 36392001815
AltInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kA0027201 -2 7 -34 209 -1546 13327 -130922 1441729 -17572114 234662231 -3405357682 53334454417
AltTransNat0 k=0..n T(n, k) kA0001660 -1 2 -9 44 -265 1854 -14833 133496 -1334961 14684570 -176214841 2290792932 -32071101049
AltTransNat1 k=0..n T(n, k) (k + 1)A0002551 -1 3 -11 53 -309 2119 -16687 148329 -1468457 16019531 -190899411 2467007773 -34361893981
AltTransSqrs k=0..n T(n, k) k^2missing0 -1 6 -33 212 -1545 12714 -116809 1186632 -13216113 160195310 -2099893521 29604093276
AltPosHalf k=0..n 2^n T(n, k) (1/2)^kA0000231 1 2 2 8 -8 112 -656 5504 -49024 491264 -5401856 64826368 -842734592 11798300672 -176974477312
AltNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kA0108421 -3 10 -38 168 -872 5296 -37200 297856 -2681216 26813184 -294947072 3539368960 -46011804672
AltDiagRow1T(n + 1, n)A0001421 -2 6 -24 120 -720 5040 -40320 362880 -3628800 39916800 -479001600 6227020800 -87178291200
AltDiagRow2T(n + 2, n)A0017101 -3 12 -60 360 -2520 20160 -181440 1814400 -19958400 239500800 -3113510400 43589145600
AltDiagRow3T(n + 3, n)A0017151 -4 20 -120 840 -6720 60480 -604800 6652800 -79833600 1037836800 -14529715200 217945728000
AltDiagCol1T(n + 1, 1)A000027-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25 -26 -27
AltDiagCol2T(n + 2, 2)A0023782 6 12 20 30 42 56 72 90 110 132 156 182 210 240 272 306 342 380 420 462 506 552 600 650 702 756
AltDiagCol3T(n + 3, 3)A007531-6 -24 -60 -120 -210 -336 -504 -720 -990 -1320 -1716 -2184 -2730 -3360 -4080 -4896 -5814 -6840
AltPolysee docsmissing1 1 1 1 0 1 1 1 -1 1 1 -2 5 -2 1 1 9 -29 13 -3 1 1 -44 233 -116 25 -4 1 1 265 -2329 1393 -299 41 -5
AltPolyRow1 k=0..1 T(1, k) n^kA0000271 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25 -26
AltPolyRow2 k=0..2 T(2, k) n^kA0018441 1 5 13 25 41 61 85 113 145 181 221 265 313 365 421 481 545 613 685 761 841 925 1013 1105 1201
AltPolyRow3 k=0..3 T(3, k) n^kmissing1 -2 -29 -116 -299 -614 -1097 -1784 -2711 -3914 -5429 -7292 -9539 -12206 -15329 -18944 -23087
AltPolyCol2 k=0..n T(n, k) 2^kA0003541 -1 5 -29 233 -2329 27949 -391285 6260561 -112690097 2253801941 -49583642701 1190007424825
AltPolyCol3 k=0..n T(n, k) 3^kA0001801 -2 13 -116 1393 -20894 376093 -7897952 189550849 -5117872922 153536187661 -5066694192812
AltPolyDiag k=0..n T(n, k) n^kA3193921 0 5 -116 4785 -307024 28435285 -3598112580 596971515329 -125802906617600 32834740225688901
RevTriangleT(n, k), 0 ≤ k ≤ nA0945871 1 1 2 2 1 6 6 3 1 24 24 12 4 1 120 120 60 20 5 1 720 720 360 120 30 6 1 5040 5040 2520 840 210 42
RevInvT-1(n, k), 0 ≤ k ≤ nA1282291 -1 1 0 -2 1 0 0 -3 1 0 0 0 -4 1 0 0 0 0 -5 1 0 0 0 0 0 -6 1 0 0 0 0 0 0 -7 1 0 0 0 0 0 0 0 -8 1 0
RevRevInvT-1(n, n - k), 0 ≤ k ≤ nA1277011 1 -1 1 -2 0 1 -3 0 0 1 -4 0 0 0 1 -5 0 0 0 0 1 -6 0 0 0 0 0 1 -7 0 0 0 0 0 0 1 -8 0 0 0 0 0 0 0 1
RevAccsee docsA3679621 1 2 2 4 5 6 12 15 16 24 48 60 64 65 120 240 300 320 325 326 720 1440 1800 1920 1950 1956 1957
RevAccRevsee docsA3476671 1 2 1 3 5 1 4 10 16 1 5 17 41 65 1 6 26 86 206 326 1 7 37 157 517 1237 1957 1 8 50 260 1100 3620
RevAntiDiagsee docsmissing1 1 2 1 6 2 24 6 1 120 24 3 720 120 12 1 5040 720 60 4 40320 5040 360 20 1 362880 40320 2520 120 5
RevDiffx1T(n, k) (k+1)missing1 1 2 2 4 3 6 12 9 4 24 48 36 16 5 120 240 180 80 25 6 720 1440 1080 480 150 36 7 5040 10080 7560
RevRowSum k=0..n T(n, k)A0005221 2 5 16 65 326 1957 13700 109601 986410 9864101 108505112 1302061345 16926797486 236975164805
RevEvenSum k=0..n T(n, k) even(k)A0091791 1 3 9 37 185 1111 7777 62217 559953 5599531 61594841 739138093 9608795209 134523132927
RevOddSum k=0..n T(n, k) odd(k)A1867630 1 2 7 28 141 846 5923 47384 426457 4264570 46910271 562923252 7318002277 102452031878
RevAltSum k=0..n T(n, k) (-1)^kA0001661 0 1 2 9 44 265 1854 14833 133496 1334961 14684570 176214841 2290792932 32071101049 481066515734
RevAbsSum k=0..n | T(n, k) |A0005221 2 5 16 65 326 1957 13700 109601 986410 9864101 108505112 1302061345 16926797486 236975164805
RevDiagSum k=0..n // 2 T(n - k, k)A0034701 1 3 8 31 147 853 5824 45741 405845 4012711 43733976 520795003 6726601063 93651619881
RevAccSum k=0..n j=0..k T(n, j)A0013391 3 11 49 261 1631 11743 95901 876809 8877691 98641011 1193556233 15624736141 220048367319
RevAccRevSum k=0..n j=0..k T(n, n - j)A1110631 3 9 31 129 651 3913 27399 219201 1972819 19728201 217010223 2604122689 33853594971 473950329609
RevRowLcmLcm k=0..n | T(n, k) | > 1A0001421 1 2 6 24 120 720 5040 40320 362880 3628800 39916800 479001600 6227020800 87178291200
RevRowGcdGcd k=0..n | T(n, k) | > 1A0000271 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
RevRowMaxMax k=0..n | T(n, k) |A0001421 1 2 6 24 120 720 5040 40320 362880 3628800 39916800 479001600 6227020800 87178291200
RevColMiddleT(n, n // 2)A0811251 1 2 6 12 60 120 840 1680 15120 30240 332640 665280 8648640 17297280 259459200 518918400
RevCentralET(2 n, n)A0018131 2 12 120 1680 30240 665280 17297280 518918400 17643225600 670442572800 28158588057600
RevCentralOT(2 n + 1, n)A0004071 6 60 840 15120 332640 8648640 259459200 8821612800 335221286400 14079294028800 647647525324800
RevColLeftT(n, 0)A0001421 1 2 6 24 120 720 5040 40320 362880 3628800 39916800 479001600 6227020800 87178291200
RevColRightT(n, n)A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
RevBinConv k=0..n C(n, k) T(n, k)A0027201 2 7 34 209 1546 13327 130922 1441729 17572114 234662231 3405357682 53334454417 896324308634
RevInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kA0099401 0 -1 4 -15 56 -185 204 6209 -112400 1520271 -19165420 237686449 -2944654296 36392001815
RevTransNat0 k=0..n T(n, k) kA0075260 1 4 15 64 325 1956 13699 109600 986409 9864100 108505111 1302061344 16926797485 236975164804
RevTransNat1 k=0..n T(n, k) (k + 1)A1110631 3 9 31 129 651 3913 27399 219201 1972819 19728201 217010223 2604122689 33853594971 473950329609
RevTransSqrs k=0..n T(n, k) k^2A0302970 1 6 27 124 645 3906 27391 219192 1972809 19728190 217010211 2604122676 33853594957 473950329594
RevPosHalf k=0..n 2^n T(n, k) (1/2)^kA0108441 3 13 79 633 6331 75973 1063623 17017969 306323443 6126468861 134782314943 3234775558633
RevNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kA0003541 -1 5 -29 233 -2329 27949 -391285 6260561 -112690097 2253801941 -49583642701 1190007424825
RevDiagRow1T(n + 1, n)A0000271 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
RevDiagRow2T(n + 2, n)A0023782 6 12 20 30 42 56 72 90 110 132 156 182 210 240 272 306 342 380 420 462 506 552 600 650 702 756
RevDiagRow3T(n + 3, n)A0075316 24 60 120 210 336 504 720 990 1320 1716 2184 2730 3360 4080 4896 5814 6840 7980 9240 10626 12144
RevDiagCol1T(n + 1, 1)A0001421 2 6 24 120 720 5040 40320 362880 3628800 39916800 479001600 6227020800 87178291200 1307674368000
RevDiagCol2T(n + 2, 2)A0017101 3 12 60 360 2520 20160 181440 1814400 19958400 239500800 3113510400 43589145600 653837184000
RevDiagCol3T(n + 3, 3)A0017151 4 20 120 840 6720 60480 604800 6652800 79833600 1037836800 14529715200 217945728000 3487131648000
RevPolysee docsA1345581 1 1 2 2 1 6 5 3 1 24 16 10 4 1 120 65 38 17 5 1 720 326 168 78 26 6 1 5040 1957 872 393 142 37 7
RevPolyRow1 k=0..1 T(1, k) n^kA0000271 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
RevPolyRow2 k=0..2 T(2, k) n^kA0025222 5 10 17 26 37 50 65 82 101 122 145 170 197 226 257 290 325 362 401 442 485 530 577 626 677 730
RevPolyRow3 k=0..3 T(3, k) n^kmissing6 16 38 78 142 236 366 538 758 1032 1366 1766 2238 2788 3422 4146 4966 5888 6918 8062 9326 10716
RevPolyCol2 k=0..n T(n, k) 2^kA0108421 3 10 38 168 872 5296 37200 297856 2681216 26813184 294947072 3539368960 46011804672 644165281792
RevPolyCol3 k=0..n T(n, k) 3^kA0534861 4 17 78 393 2208 13977 100026 806769 7280604 72865089 801693126 9620848953 125072630712
RevPolyDiag k=0..n T(n, k) n^kA0631701 2 10 78 824 10970 176112 3309110 71219584 1727242866 46602156800 1384438376222 44902138752000
Rev:InvTriangleT(n, k), 0 ≤ k ≤ nA1282291 -1 1 0 -2 1 0 0 -3 1 0 0 0 -4 1 0 0 0 0 -5 1 0 0 0 0 0 -6 1 0 0 0 0 0 0 -7 1 0 0 0 0 0 0 0 -8 1 0
Rev:InvRevT(n, n - k), 0 ≤ k ≤ nA1277011 1 -1 1 -2 0 1 -3 0 0 1 -4 0 0 0 1 -5 0 0 0 0 1 -6 0 0 0 0 0 1 -7 0 0 0 0 0 0 1 -8 0 0 0 0 0 0 0 1
Rev:InvInvT-1(n, k), 0 ≤ k ≤ nA0945871 1 1 2 2 1 6 6 3 1 24 24 12 4 1 120 120 60 20 5 1 720 720 360 120 30 6 1 5040 5040 2520 840 210 42
Rev:InvRevInvT-1(n, n - k), 0 ≤ k ≤ nA0082791 1 1 1 2 2 1 3 6 6 1 4 12 24 24 1 5 20 60 120 120 1 6 30 120 360 720 720 1 7 42 210 840 2520 5040
Rev:InvAccsee docsmissing1 -1 0 0 -2 -1 0 0 -3 -2 0 0 0 -4 -3 0 0 0 0 -5 -4 0 0 0 0 0 -6 -5 0 0 0 0 0 0 -7 -6 0 0 0 0 0 0 0
Rev:InvAccRevsee docsmissing1 1 0 1 -1 -1 1 -2 -2 -2 1 -3 -3 -3 -3 1 -4 -4 -4 -4 -4 1 -5 -5 -5 -5 -5 -5 1 -6 -6 -6 -6 -6 -6 -6
Rev:InvAntiDiagsee docsmissing1 -1 0 1 0 -2 0 0 1 0 0 -3 0 0 0 1 0 0 0 -4 0 0 0 0 1 0 0 0 0 -5 0 0 0 0 0 1 0 0 0 0 0 -6 0 0 0 0 0
Rev:InvDiffx1T(n, k) (k+1)missing1 -1 2 0 -4 3 0 0 -9 4 0 0 0 -16 5 0 0 0 0 -25 6 0 0 0 0 0 -36 7 0 0 0 0 0 0 -49 8 0 0 0 0 0 0 0
Rev:InvRowSum k=0..n T(n, k)A0000271 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25 -26
Rev:InvEvenSum k=0..n T(n, k) even(k)A0931781 -1 1 -3 1 -5 1 -7 1 -9 1 -11 1 -13 1 -15 1 -17 1 -19 1 -21 1 -23 1 -25 1 -27 1 -29 1 -31 1 -33 1
Rev:InvOddSum k=0..n T(n, k) odd(k)A1246250 1 -2 1 -4 1 -6 1 -8 1 -10 1 -12 1 -14 1 -16 1 -18 1 -20 1 -22 1 -24 1 -26 1 -28 1 -30 1 -32 1 -34
Rev:InvAltSum k=0..n T(n, k) (-1)^kA0000271 -2 3 -4 5 -6 7 -8 9 -10 11 -12 13 -14 15 -16 17 -18 19 -20 21 -22 23 -24 25 -26 27 -28 29 -30 31
Rev:InvAbsSum k=0..n | T(n, k) |A0000271 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
Rev:InvDiagSum k=0..n // 2 T(n - k, k)A0579791 -1 1 -2 1 -3 1 -4 1 -5 1 -6 1 -7 1 -8 1 -9 1 -10 1 -11 1 -12 1 -13 1 -14 1 -15 1 -16 1 -17 1 -18
Rev:InvAccSum k=0..n j=0..k T(n, j)A0054081 -1 -3 -5 -7 -9 -11 -13 -15 -17 -19 -21 -23 -25 -27 -29 -31 -33 -35 -37 -39 -41 -43 -45 -47 -49
Rev:InvAccRevSum k=0..n j=0..k T(n, n - j)A0283871 1 -1 -5 -11 -19 -29 -41 -55 -71 -89 -109 -131 -155 -181 -209 -239 -271 -305 -341 -379 -419 -461
Rev:InvRowLcmLcm k=0..n | T(n, k) | > 1A0000271 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
Rev:InvRowGcdGcd k=0..n | T(n, k) | > 1A0000271 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
Rev:InvRowMaxMax k=0..n | T(n, k) |A0000271 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
Rev:InvColMiddleT(n, n // 2)A1307791 -1 -2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Rev:InvCentralET(2 n, n)A1307061 -2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Rev:InvCentralOT(2 n + 1, n)A000007-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Rev:InvColRightT(n, n)A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Rev:InvBinConv k=0..n C(n, k) T(n, k)A0055631 0 -3 -8 -15 -24 -35 -48 -63 -80 -99 -120 -143 -168 -195 -224 -255 -288 -323 -360 -399 -440 -483
Rev:InvInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kA0025221 2 5 10 17 26 37 50 65 82 101 122 145 170 197 226 257 290 325 362 401 442 485 530 577 626 677 730
Rev:InvTransNat0 k=0..n T(n, k) kA0055630 1 0 -3 -8 -15 -24 -35 -48 -63 -80 -99 -120 -143 -168 -195 -224 -255 -288 -323 -360 -399 -440 -483
Rev:InvTransNat1 k=0..n T(n, k) (k + 1)A0283871 1 -1 -5 -11 -19 -29 -41 -55 -71 -89 -109 -131 -155 -181 -209 -239 -271 -305 -341 -379 -419 -461
Rev:InvTransSqrs k=0..n T(n, k) k^2A3187650 1 2 -3 -20 -55 -114 -203 -328 -495 -710 -979 -1308 -1703 -2170 -2715 -3344 -4063 -4878 -5795
Rev:InvPosHalf k=0..n 2^n T(n, k) (1/2)^kA0054081 -1 -3 -5 -7 -9 -11 -13 -15 -17 -19 -21 -23 -25 -27 -29 -31 -33 -35 -37 -39 -41 -43 -45 -47 -49
Rev:InvNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kA0054081 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69
Rev:InvDiagRow1T(n + 1, n)A000027-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25 -26 -27
Rev:InvDiagCol1T(n + 1, 1)A1307061 -2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Rev:InvDiagCol2T(n + 2, 2)A1695851 -3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Rev:InvDiagCol3T(n + 3, 3)A2615951 -4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Rev:InvPolysee docsmissing1 -1 1 0 0 1 0 -1 1 1 0 -2 0 2 1 0 -3 -4 3 3 1 0 -4 -16 0 8 4 1 0 -5 -48 -27 16 15 5 1 0 -6 -128
Rev:InvPolyRow1 k=0..1 T(1, k) n^kA000027-1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
Rev:InvPolyRow2 k=0..2 T(2, k) n^kA0055630 -1 0 3 8 15 24 35 48 63 80 99 120 143 168 195 224 255 288 323 360 399 440 483 528 575 624 675 728
Rev:InvPolyRow3 k=0..3 T(3, k) n^kmissing0 -2 -4 0 16 50 108 196 320 486 700 968 1296 1690 2156 2700 3328 4046 4860 5776 6800 7938 9196
Rev:InvPolyCol2 k=0..n T(n, k) 2^kA0589221 1 0 -4 -16 -48 -128 -320 -768 -1792 -4096 -9216 -20480 -45056 -98304 -212992 -458752 -983040
Rev:InvPolyCol3 k=0..n T(n, k) 3^kmissing1 2 3 0 -27 -162 -729 -2916 -10935 -39366 -137781 -472392 -1594323 -5314410 -17537553 -57395628
Rev:InvPolyDiag k=0..n T(n, k) n^kA0000071 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 << TableSourceSimilarsIndex >> 

Note: The A-numbers are based on a finite number of numerical comparisons. They ignore the sign and the OEIS-offset. Sometimes they differ in the first few values. In such cases, we consider our version to be the better one because it has a common formula as a root. Since the offset of all triangles is 0 also the offset of all sequences is 0.