OEIS Similars: A162660, A350972, A155585, A009006, A000182
↕ Type | ↕ Trait | ↕ Anum | ↕ Sequence |
---|---|---|---|
Std | TriangleT(n, k), 0 ≤ k ≤ n | A162660 | 0 1 0 0 2 0 -2 0 3 0 0 -8 0 4 0 16 0 -20 0 5 0 0 96 0 -40 0 6 0 -272 0 336 0 -70 0 7 0 0 -2176 0 |
Std | RevT(n, n - k), 0 ≤ k ≤ n | missing | 0 0 1 0 2 0 0 3 0 -2 0 4 0 -8 0 0 5 0 -20 0 16 0 6 0 -40 0 96 0 0 7 0 -70 0 336 0 -272 0 8 0 -112 0 |
Std | Accsee docs | missing | 0 1 1 0 2 2 -2 -2 1 1 0 -8 -8 -4 -4 16 16 -4 -4 1 1 0 96 96 56 56 62 62 -272 -272 64 64 -6 -6 1 1 0 |
Std | AccRevsee docs | missing | 0 0 1 0 2 2 0 3 3 1 0 4 4 -4 -4 0 5 5 -15 -15 1 0 6 6 -34 -34 62 62 0 7 7 -63 -63 273 273 1 0 8 8 |
Std | AntiDiagsee docs | missing | 0 1 0 0 -2 2 0 0 0 16 -8 3 0 0 0 0 -272 96 -20 4 0 0 0 0 0 7936 -2176 336 -40 5 0 0 0 0 0 0 -353792 |
Std | Diffx1T(n, k) (k+1) | missing | 0 1 0 0 4 0 -2 0 9 0 0 -16 0 16 0 16 0 -60 0 25 0 0 192 0 -160 0 36 0 -272 0 1008 0 -350 0 49 0 0 |
Std | RowSum∑ k=0..n T(n, k) | A009832 | 0 1 2 1 -4 1 62 1 -1384 1 50522 1 -2702764 1 199360982 1 -19391512144 1 2404879675442 1 |
Std | EvenSum∑ k=0..n T(n, k) even(k) | A000035 | 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 |
Std | OddSum∑ k=0..n T(n, k) odd(k) | A009744 | 0 0 2 0 -4 0 62 0 -1384 0 50522 0 -2702764 0 199360982 0 -19391512144 0 2404879675442 0 |
Std | AltSum∑ k=0..n T(n, k) (-1)^k | A009832 | 0 1 -2 1 4 1 -62 1 1384 1 -50522 1 2702764 1 -199360982 1 19391512144 1 -2404879675442 1 |
Std | AbsSum∑ k=0..n | T(n, k) | | A009739 | 0 1 2 5 12 41 142 685 3192 19921 116282 887765 6219972 56126201 458790022 4776869245 44625674352 |
Std | DiagSum∑ k=0..n // 2 T(n - k, k) | missing | 0 1 0 0 0 11 0 -192 0 6061 0 -283392 0 18528503 0 -1616537472 0 181630578553 0 -25558161202944 0 |
Std | AccSum∑ k=0..n ∑ j=0..k T(n, j) | missing | 0 2 4 -2 -24 26 428 -426 -12464 12466 555732 -555730 -35135944 35135946 2990414716 -2990414714 |
Std | AccRevSum∑ k=0..n ∑ j=0..k T(n, n - j) | missing | 0 1 4 7 0 -19 68 435 -1376 -12455 50532 555743 -2702752 -35135931 199360996 2990414731 -19391512128 |
Std | RowLcmLcm k=0..n | T(n, k) | > 1 | missing | 1 1 2 6 8 80 480 28560 15232 8499456 84994560 215347883520 369167800320 52416659296235520 |
Std | RowGcdGcd k=0..n | T(n, k) | > 1 | A006519 | 1 1 2 1 4 1 2 1 8 1 2 1 4 1 2 1 16 1 2 1 4 1 2 1 8 1 2 1 4 1 2 1 32 1 2 1 4 1 2 1 8 1 2 1 4 1 2 1 |
Std | RowMaxMax k=0..n | T(n, k) | | missing | 0 1 2 3 8 20 96 336 2176 9792 79360 436480 4245504 27595776 313155584 2348666880 30460116992 |
Std | ColMiddleT(n, n // 2) | missing | 0 1 2 0 0 -20 -40 0 0 2016 4032 0 0 -466752 -933504 0 0 192924160 385848320 0 0 -124788099072 |
Std | CentralET(2 n, n) | A214447 | 0 2 0 -40 0 4032 0 -933504 0 385848320 0 -249576198144 0 232643283353600 0 -295306112919306240 0 |
Std | CentralOT(2 n + 1, n) | missing | 1 0 -20 0 2016 0 -466752 0 192924160 0 -124788099072 0 116321641676800 0 -147653056459653120 0 |
Std | ColLeftT(n, 0) | A009006 | 0 1 0 -2 0 16 0 -272 0 7936 0 -353792 0 22368256 0 -1903757312 0 209865342976 0 -29088885112832 0 |
Std | BinConv∑ k=0..n C(n, k) T(n, k) | missing | 0 1 4 7 -16 -159 -188 4383 26560 -104591 -2135836 -2607417 172480112 1152371377 -13824249372 |
Std | InvBinConv∑ k=0..n C(n, k) T(n, n - k) (-1)^k | missing | 0 -1 -4 -7 16 159 188 -4383 -26560 104591 2135836 2607417 -172480112 -1152371377 13824249372 |
Std | TransNat0∑ k=0..n T(n, k) k | missing | 0 0 2 6 4 -20 6 434 8 -12456 10 555742 12 -35135932 14 2990414730 16 -329655706448 18 |
Std | TransNat1∑ k=0..n T(n, k) (k + 1) | missing | 0 1 4 7 0 -19 68 435 -1376 -12455 50532 555743 -2702752 -35135931 199360996 2990414731 -19391512128 |
Std | TransSqrs∑ k=0..n T(n, k) k^2 | missing | 0 0 2 12 28 0 -114 476 3480 -12384 -124550 555852 6668916 -35135776 -491903034 2990414940 |
Std | PosHalf∑ k=0..n 2^n T(n, k) (1/2)^k | A326325 | 0 2 4 -10 -56 362 2764 -24610 -250736 2873042 36581524 -512343610 -7828053416 129570724922 |
Std | NegHalf∑ k=0..n (-2)^n T(n, k) (-1/2)^k | A326325 | 0 -2 -4 10 56 -362 -2764 24610 250736 -2873042 -36581524 512343610 7828053416 -129570724922 |
Std | DiagRow1T(n + 1, n) | A000027 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
Std | DiagRow3T(n + 3, n) | A007290 | -2 -8 -20 -40 -70 -112 -168 -240 -330 -440 -572 -728 -910 -1120 -1360 -1632 -1938 -2280 -2660 -3080 |
Std | DiagCol1T(n + 1, 1) | A109573 | 0 2 0 -8 0 96 0 -2176 0 79360 0 -4245504 0 313155584 0 -30460116992 0 3777576173568 0 |
Std | DiagCol2T(n + 2, 2) | missing | 0 3 0 -20 0 336 0 -9792 0 436480 0 -27595776 0 2348666880 0 -258910994432 0 35886973648896 0 |
Std | DiagCol3T(n + 3, 3) | missing | 0 4 0 -40 0 896 0 -32640 0 1745920 0 -128780288 0 12526223360 0 -1553465966592 0 239246490992640 0 |
Std | Polysee docs | missing | 0 1 0 0 1 0 -2 2 1 0 0 1 4 1 0 16 -4 10 6 1 0 0 1 16 25 8 1 0 -272 62 16 84 46 10 1 0 0 1 64 241 |
Std | PolyRow1∑ k=0..1 T(1, k) n^k | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Std | PolyRow2∑ k=0..2 T(2, k) n^k | A005843 | 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 |
Std | PolyRow3∑ k=0..3 T(3, k) n^k | A100536 | -2 1 10 25 46 73 106 145 190 241 298 361 430 505 586 673 766 865 970 1081 1198 1321 1450 1585 1726 |
Std | PolyCol2∑ k=0..n T(n, k) 2^k | missing | 0 1 4 10 16 16 64 400 256 -7424 1024 355840 4096 -22360064 16384 1903790080 65536 -209865211904 |
Std | PolyCol3∑ k=0..n T(n, k) 3^k | missing | 0 1 6 25 84 241 666 2185 7944 19681 8526 177145 3234204 1594321 -194578014 14348905 19434558864 |
Std | PolyDiag∑ k=0..n T(n, k) n^k | A302587 | 0 1 4 25 224 2641 38592 671665 13548544 310580161 7971353600 226406902921 7049219383296 |
Alt | TriangleT(n, k), 0 ≤ k ≤ n | A162660 | 0 1 0 0 -2 0 -2 0 3 0 0 8 0 -4 0 16 0 -20 0 5 0 0 -96 0 40 0 -6 0 -272 0 336 0 -70 0 7 0 0 2176 0 |
Alt | RevT(n, n - k), 0 ≤ k ≤ n | missing | 0 0 1 0 -2 0 0 3 0 -2 0 -4 0 8 0 0 5 0 -20 0 16 0 -6 0 40 0 -96 0 0 7 0 -70 0 336 0 -272 0 -8 0 112 |
Alt | Accsee docs | missing | 0 1 1 0 -2 -2 -2 -2 1 1 0 8 8 4 4 16 16 -4 -4 1 1 0 -96 -96 -56 -56 -62 -62 -272 -272 64 64 -6 -6 1 |
Alt | AccRevsee docs | missing | 0 0 1 0 -2 -2 0 3 3 1 0 -4 -4 4 4 0 5 5 -15 -15 1 0 -6 -6 34 34 -62 -62 0 7 7 -63 -63 273 273 1 0 |
Alt | AntiDiagsee docs | missing | 0 1 0 0 -2 -2 0 0 0 16 8 3 0 0 0 0 -272 -96 -20 -4 0 0 0 0 0 7936 2176 336 40 5 0 0 0 0 0 0 -353792 |
Alt | Diffx1T(n, k) (k+1) | missing | 0 1 0 0 -4 0 -2 0 9 0 0 16 0 -16 0 16 0 -60 0 25 0 0 -192 0 160 0 -36 0 -272 0 1008 0 -350 0 49 0 0 |
Alt | RowSum∑ k=0..n T(n, k) | A009832 | 0 1 -2 1 4 1 -62 1 1384 1 -50522 1 2702764 1 -199360982 1 19391512144 1 -2404879675442 1 |
Alt | EvenSum∑ k=0..n T(n, k) even(k) | A000035 | 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 |
Alt | OddSum∑ k=0..n T(n, k) odd(k) | A009744 | 0 0 -2 0 4 0 -62 0 1384 0 -50522 0 2702764 0 -199360982 0 19391512144 0 -2404879675442 0 |
Alt | AltSum∑ k=0..n T(n, k) (-1)^k | A009832 | 0 1 2 1 -4 1 62 1 -1384 1 50522 1 -2702764 1 199360982 1 -19391512144 1 2404879675442 1 |
Alt | AbsSum∑ k=0..n | T(n, k) | | A009739 | 0 1 2 5 12 41 142 685 3192 19921 116282 887765 6219972 56126201 458790022 4776869245 44625674352 |
Alt | DiagSum∑ k=0..n // 2 T(n - k, k) | missing | 0 1 0 -4 0 27 0 -392 0 10493 0 -443916 0 27085015 0 -2246348560 0 242808804441 0 -33138397797908 0 |
Alt | AccSum∑ k=0..n ∑ j=0..k T(n, j) | missing | 0 2 -4 -2 24 26 -428 -426 12464 12466 -555732 -555730 35135944 35135946 -2990414716 -2990414714 |
Alt | AccRevSum∑ k=0..n ∑ j=0..k T(n, n - j) | missing | 0 1 -4 7 0 -19 -68 435 1376 -12455 -50532 555743 2702752 -35135931 -199360996 2990414731 |
Alt | RowLcmLcm k=0..n | T(n, k) | > 1 | missing | 1 1 2 6 8 80 480 28560 15232 8499456 84994560 215347883520 369167800320 52416659296235520 |
Alt | RowGcdGcd k=0..n | T(n, k) | > 1 | A006519 | 1 1 2 1 4 1 2 1 8 1 2 1 4 1 2 1 16 1 2 1 4 1 2 1 8 1 2 1 4 1 2 1 32 1 2 1 4 1 2 1 8 1 2 1 4 1 2 1 |
Alt | RowMaxMax k=0..n | T(n, k) | | missing | 0 1 2 3 8 20 96 336 2176 9792 79360 436480 4245504 27595776 313155584 2348666880 30460116992 |
Alt | ColMiddleT(n, n // 2) | missing | 0 1 -2 0 0 -20 40 0 0 2016 -4032 0 0 -466752 933504 0 0 192924160 -385848320 0 0 -124788099072 |
Alt | CentralET(2 n, n) | A214447 | 0 -2 0 40 0 -4032 0 933504 0 -385848320 0 249576198144 0 -232643283353600 0 295306112919306240 0 |
Alt | CentralOT(2 n + 1, n) | missing | 1 0 -20 0 2016 0 -466752 0 192924160 0 -124788099072 0 116321641676800 0 -147653056459653120 0 |
Alt | ColLeftT(n, 0) | A009006 | 0 1 0 -2 0 16 0 -272 0 7936 0 -353792 0 22368256 0 -1903757312 0 209865342976 0 -29088885112832 0 |
Alt | BinConv∑ k=0..n C(n, k) T(n, k) | missing | 0 1 -4 7 16 -159 188 4383 -26560 -104591 2135836 -2607417 -172480112 1152371377 13824249372 |
Alt | InvBinConv∑ k=0..n C(n, k) T(n, n - k) (-1)^k | missing | 0 -1 4 -7 -16 159 -188 -4383 26560 104591 -2135836 2607417 172480112 -1152371377 -13824249372 |
Alt | TransNat0∑ k=0..n T(n, k) k | missing | 0 0 -2 6 -4 -20 -6 434 -8 -12456 -10 555742 -12 -35135932 -14 2990414730 -16 -329655706448 -18 |
Alt | TransNat1∑ k=0..n T(n, k) (k + 1) | missing | 0 1 -4 7 0 -19 -68 435 1376 -12455 -50532 555743 2702752 -35135931 -199360996 2990414731 |
Alt | TransSqrs∑ k=0..n T(n, k) k^2 | missing | 0 0 -2 12 -28 0 114 476 -3480 -12384 124550 555852 -6668916 -35135776 491903034 2990414940 |
Alt | PosHalf∑ k=0..n 2^n T(n, k) (1/2)^k | A326325 | 0 2 -4 -10 56 362 -2764 -24610 250736 2873042 -36581524 -512343610 7828053416 129570724922 |
Alt | NegHalf∑ k=0..n (-2)^n T(n, k) (-1/2)^k | A326325 | 0 -2 4 10 -56 -362 2764 24610 -250736 -2873042 36581524 512343610 -7828053416 -129570724922 |
Alt | DiagRow1T(n + 1, n) | A000027 | 1 -2 3 -4 5 -6 7 -8 9 -10 11 -12 13 -14 15 -16 17 -18 19 -20 21 -22 23 -24 25 -26 27 -28 29 -30 31 |
Alt | DiagRow3T(n + 3, n) | A007290 | -2 8 -20 40 -70 112 -168 240 -330 440 -572 728 -910 1120 -1360 1632 -1938 2280 -2660 3080 -3542 |
Alt | DiagCol1T(n + 1, 1) | A109573 | 0 -2 0 8 0 -96 0 2176 0 -79360 0 4245504 0 -313155584 0 30460116992 0 -3777576173568 0 |
Alt | DiagCol2T(n + 2, 2) | missing | 0 3 0 -20 0 336 0 -9792 0 436480 0 -27595776 0 2348666880 0 -258910994432 0 35886973648896 0 |
Alt | DiagCol3T(n + 3, 3) | missing | 0 -4 0 40 0 -896 0 32640 0 -1745920 0 128780288 0 -12526223360 0 1553465966592 0 -239246490992640 0 |
Alt | Polysee docs | missing | 0 1 0 0 1 0 -2 -2 1 0 0 1 -4 1 0 16 4 10 -6 1 0 0 1 -16 25 -8 1 0 -272 -62 16 -84 46 -10 1 0 0 1 |
Alt | PolyRow1∑ k=0..1 T(1, k) n^k | A000012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Alt | PolyRow2∑ k=0..2 T(2, k) n^k | A005843 | 0 -2 -4 -6 -8 -10 -12 -14 -16 -18 -20 -22 -24 -26 -28 -30 -32 -34 -36 -38 -40 -42 -44 -46 -48 -50 |
Alt | PolyRow3∑ k=0..3 T(3, k) n^k | A100536 | -2 1 10 25 46 73 106 145 190 241 298 361 430 505 586 673 766 865 970 1081 1198 1321 1450 1585 1726 |
Alt | PolyCol2∑ k=0..n T(n, k) 2^k | missing | 0 1 -4 10 -16 16 -64 400 -256 -7424 -1024 355840 -4096 -22360064 -16384 1903790080 -65536 |
Alt | PolyCol3∑ k=0..n T(n, k) 3^k | missing | 0 1 -6 25 -84 241 -666 2185 -7944 19681 -8526 177145 -3234204 1594321 194578014 14348905 |
Alt | PolyDiag∑ k=0..n T(n, k) n^k | A302587 | 0 1 -4 25 -224 2641 -38592 671665 -13548544 310580161 -7971353600 226406902921 -7049219383296 |
Rev | TriangleT(n, k), 0 ≤ k ≤ n | missing | 0 0 1 0 2 0 0 3 0 -2 0 4 0 -8 0 0 5 0 -20 0 16 0 6 0 -40 0 96 0 0 7 0 -70 0 336 0 -272 0 8 0 -112 0 |
Rev | Accsee docs | missing | 0 0 1 0 2 2 0 3 3 1 0 4 4 -4 -4 0 5 5 -15 -15 1 0 6 6 -34 -34 62 62 0 7 7 -63 -63 273 273 1 0 8 8 |
Rev | AccRevsee docs | missing | 0 1 1 0 2 2 -2 -2 1 1 0 -8 -8 -4 -4 16 16 -4 -4 1 1 0 96 96 56 56 62 62 -272 -272 64 64 -6 -6 1 1 0 |
Rev | AntiDiagsee docs | missing | 0 0 0 1 0 2 0 3 0 0 4 0 0 5 0 -2 0 6 0 -8 0 7 0 -20 0 0 8 0 -40 0 0 9 0 -70 0 16 0 10 0 -112 0 96 0 |
Rev | Diffx1T(n, k) (k+1) | missing | 0 0 2 0 4 0 0 6 0 -8 0 8 0 -32 0 0 10 0 -80 0 96 0 12 0 -160 0 576 0 0 14 0 -280 0 2016 0 -2176 0 |
Rev | RowSum∑ k=0..n T(n, k) | A009832 | 0 1 2 1 -4 1 62 1 -1384 1 50522 1 -2702764 1 199360982 1 -19391512144 1 2404879675442 1 |
Rev | OddSum∑ k=0..n T(n, k) odd(k) | A009832 | 0 1 2 1 -4 1 62 1 -1384 1 50522 1 -2702764 1 199360982 1 -19391512144 1 2404879675442 1 |
Rev | AltSum∑ k=0..n T(n, k) (-1)^k | A009832 | 0 -1 -2 -1 4 -1 -62 -1 1384 -1 -50522 -1 2702764 -1 -199360982 -1 19391512144 -1 -2404879675442 -1 |
Rev | AbsSum∑ k=0..n | T(n, k) | | A009739 | 0 1 2 5 12 41 142 685 3192 19921 116282 887765 6219972 56126201 458790022 4776869245 44625674352 |
Rev | DiagSum∑ k=0..n // 2 T(n - k, k) | missing | 0 0 1 2 3 4 3 -2 -13 -32 -45 -6 179 668 1427 1430 -2957 -20680 -62125 -105134 16435 880692 3667219 |
Rev | AccSum∑ k=0..n ∑ j=0..k T(n, j) | missing | 0 1 4 7 0 -19 68 435 -1376 -12455 50532 555743 -2702752 -35135931 199360996 2990414731 -19391512128 |
Rev | AccRevSum∑ k=0..n ∑ j=0..k T(n, n - j) | missing | 0 2 4 -2 -24 26 428 -426 -12464 12466 555732 -555730 -35135944 35135946 2990414716 -2990414714 |
Rev | RowLcmLcm k=0..n | T(n, k) | > 1 | missing | 1 1 2 6 8 80 480 28560 15232 8499456 84994560 215347883520 369167800320 52416659296235520 |
Rev | RowGcdGcd k=0..n | T(n, k) | > 1 | A006519 | 1 1 2 1 4 1 2 1 8 1 2 1 4 1 2 1 16 1 2 1 4 1 2 1 8 1 2 1 4 1 2 1 32 1 2 1 4 1 2 1 8 1 2 1 4 1 2 1 |
Rev | RowMaxMax k=0..n | T(n, k) | | missing | 0 1 2 3 8 20 96 336 2176 9792 79360 436480 4245504 27595776 313155584 2348666880 30460116992 |
Rev | ColMiddleT(n, n // 2) | missing | 0 0 2 3 0 0 -40 -70 0 0 4032 7392 0 0 -933504 -1750320 0 0 385848320 733111808 0 0 -249576198144 |
Rev | CentralET(2 n, n) | A214447 | 0 2 0 -40 0 4032 0 -933504 0 385848320 0 -249576198144 0 232643283353600 0 -295306112919306240 0 |
Rev | CentralOT(2 n + 1, n) | missing | 0 3 0 -70 0 7392 0 -1750320 0 733111808 0 -478354379776 0 448669189324800 0 -572155593781155840 0 |
Rev | ColRightT(n, n) | A009006 | 0 1 0 -2 0 16 0 -272 0 7936 0 -353792 0 22368256 0 -1903757312 0 209865342976 0 -29088885112832 0 |
Rev | BinConv∑ k=0..n C(n, k) T(n, k) | missing | 0 1 4 7 -16 -159 -188 4383 26560 -104591 -2135836 -2607417 172480112 1152371377 -13824249372 |
Rev | InvBinConv∑ k=0..n C(n, k) T(n, n - k) (-1)^k | missing | 0 1 -4 7 16 -159 188 4383 -26560 -104591 2135836 -2607417 -172480112 1152371377 13824249372 |
Rev | TransNat0∑ k=0..n T(n, k) k | missing | 0 1 2 -3 -20 25 366 -427 -11080 12465 505210 -555731 -32433180 35135945 2791053734 -2990414715 |
Rev | TransNat1∑ k=0..n T(n, k) (k + 1) | missing | 0 2 4 -2 -24 26 428 -426 -12464 12466 555732 -555730 -35135944 35135946 2990414716 -2990414714 |
Rev | TransSqrs∑ k=0..n T(n, k) k^2 | missing | 0 1 2 -15 -68 225 2046 -5551 -85224 211905 4927450 -11670351 -382529388 878398625 38582849046 |
Rev | PosHalf∑ k=0..n 2^n T(n, k) (1/2)^k | missing | 0 1 4 10 16 16 64 400 256 -7424 1024 355840 4096 -22360064 16384 1903790080 65536 -209865211904 |
Rev | NegHalf∑ k=0..n (-2)^n T(n, k) (-1/2)^k | missing | 0 1 -4 10 -16 16 -64 400 -256 -7424 -1024 355840 -4096 -22360064 -16384 1903790080 -65536 |
Rev | DiagRow1T(n + 1, n) | A109573 | 0 2 0 -8 0 96 0 -2176 0 79360 0 -4245504 0 313155584 0 -30460116992 0 3777576173568 0 |
Rev | DiagRow2T(n + 2, n) | missing | 0 3 0 -20 0 336 0 -9792 0 436480 0 -27595776 0 2348666880 0 -258910994432 0 35886973648896 0 |
Rev | DiagRow3T(n + 3, n) | missing | 0 4 0 -40 0 896 0 -32640 0 1745920 0 -128780288 0 12526223360 0 -1553465966592 0 239246490992640 0 |
Rev | DiagCol1T(n + 1, 1) | A000027 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
Rev | DiagCol3T(n + 3, 3) | A007290 | -2 -8 -20 -40 -70 -112 -168 -240 -330 -440 -572 -728 -910 -1120 -1360 -1632 -1938 -2280 -2660 -3080 |
Rev | Polysee docs | missing | 0 0 0 0 1 0 0 2 2 0 0 1 4 3 0 0 -4 -10 6 4 0 0 1 -56 -45 8 5 0 0 62 362 -204 -116 10 6 0 0 1 2764 |
Rev | PolyRow1∑ k=0..1 T(1, k) n^k | A000027 | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 |
Rev | PolyRow2∑ k=0..2 T(2, k) n^k | A005843 | 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 |
Rev | PolyRow3∑ k=0..3 T(3, k) n^k | missing | 0 1 -10 -45 -116 -235 -414 -665 -1000 -1431 -1970 -2629 -3420 -4355 -5446 -6705 -8144 -9775 -11610 |
Rev | PolyCol2∑ k=0..n T(n, k) 2^k | A326325 | 0 2 4 -10 -56 362 2764 -24610 -250736 2873042 36581524 -512343610 -7828053416 129570724922 |
Rev | PolyCol3∑ k=0..n T(n, k) 3^k | missing | 0 3 6 -45 -204 3363 22266 -515085 -4544184 135274563 1491632526 -54276473325 -718181418564 |
Rev | PolyDiag∑ k=0..n T(n, k) n^k | missing | 0 1 4 -45 -496 47525 737892 -218380505 -4534099904 3027853088649 79034002960100 -99913537539058309 |
<< | Table | Source | Similars | Index | >> |
Note: The A-numbers are based on a finite number of numerical comparisons. They ignore the sign and the OEIS-offset. Sometimes they differ in the first few values. In such cases, we consider our version to be the better one because it has a common formula as a root. Since the offset of all triangles is 0 also the offset of all sequences is 0.