Schroederp
A104684 \(\bbox[yellow, 5px]{\color{DarkGreen} T_{n, k} \ = \ \binom{n}{k} \binom{2n - k}{n} } \)
\(T^{-1}_{n, k}\)  ➤  Tinv  ➤  1 -2 1 6 -6 1 -32 42 -12 1 310 -440 150
\(T^{-1}_{n, n - k}\)  ➤  Trevinv  ➤  1 1 -2 1 -6 6 1 -12 42 -32 1 -20 150
\(T_{n + 1, k + 1} \)  ➤  Toff11  ➤  1 6 1 30 12 1 140 90 20 1 630 560 210
\(T_{n + 1, n - k + 1} \)  ➤  Trev11  ➤  1 1 6 1 12 30 1 20 90 140 1 30 210 560
\(T^{-1}_{n + 1, k + 1}\)  ➤  Tinv11  ➤  1 -6 1 42 -12 1 -440 150 -20 1 7110
\(T^{-1}_{n + 1, n - k + 1}\)  ➤  Trevinv11  ➤  1 1 -6 1 -12 42 1 -20 150 -440 1 -30
\(T_{n - k, k} \ \ (k \le n/2)\)  ➤  Tantidiag  ➤  1 2 6 1 20 6 70 30 1 252 140 12 924 630
\(\sum_{j=0}^{k} T_{n, j}\)  ➤  Tacc  ➤  1 2 3 6 12 13 20 50 62 63 70 210 300
\(T_{n + 1, k + 1}\ (k + 1) \)  ➤  Tder  ➤  1 6 2 30 24 3 140 180 60 4 630 1120 630
\(T_{n + 3, 3}\)  ➤  TablCol3  ➤  1 20 210 1680 11550 72072 420420
\(T_{n + 3, n}\)  ➤  TablDiag3  ➤  20 140 560 1680 4200 9240 18480 34320
\(\text{lcm}_{k=0}^{n}\ | T_{n, k} |\ \ (T_{n,k}>1)\)  ➤  TablLcm  ➤  1 2 6 60 1260 5040 277200 5405400
\(\text{gcd}_{k=0}^{n}\ | T_{n, k} |\ \ (T_{n,k}>1)\)  ➤  TablGcd  ➤  1 2 6 2 10 2 42 2 6 2 22 2 26 2 2 2 34
\(\text{max}_{k=0}^{n}\ | T_{n, k} |\)  ➤  TablMax  ➤  1 2 6 30 140 630 3150 16632 84084
\(\sum_{k=0}^{n} \sum_{j=0}^{k} T_{n, j}\)  ➤  AccSum  ➤  1 5 31 195 1221 7593 46915 288263
\(\sum_{k=0}^{n} \sum_{j=0}^{k} T_{n, n - j}\)  ➤  AccRevSum  ➤  1 4 21 120 705 4188 24997 149488 894465
\(T_{n, n / 2}\)  ➤  ColMiddle  ➤  1 2 6 30 90 560 1680 11550 34650 252252
\(\sum_{k=0}^{n} T_{n, k} \ (k + 1)\)  ➤  TransNat1  ➤  1 4 21 120 705 4188 24997 149488 894465
\(\sum_{k=0}^{n} T_{n, k} \ k^{2}\)  ➤  TransSqrs  ➤  0 1 10 87 696 5265 38298 270655 1870816
\(\sum_{k=0}^{n} T_{n, k} \ (-1)^{n - k} \ \binom{n}{k} \)  ➤  InvBinConv  ➤  1 -1 -5 35 -29 -751 3991 4115 -137885
\(\sum_{k=0}^{3} T_{3, k}\ n^k\)  ➤  PolyRow3  ➤  20 63 136 245 396 595 848 1161 1540
\(T_{n + 1, n-k} \)  ➤  RevToff11  ➤  2 6 6 12 30 20 20 90 140 70 30 210 560
\(T_{n + 1, n-k} \)  ➤  RevTrev11  ➤  2 6 6 20 30 12 70 140 90 20 252 630 560
\(T_{n - k, n - 2k} \ \ (k \le n/2)\)  ➤  RevTantidiag  ➤  1 1 1 2 1 6 1 12 6 1 20 30 1 30 90 20 1
\(\sum_{j=0}^{n-k} T_{n, n-j}\)  ➤  RevTacc  ➤  1 1 3 1 7 13 1 13 43 63 1 21 111 251
\(T_{n + 1, n-k}\ (n-k + 1) \)  ➤  RevTder  ➤  2 6 12 12 60 60 20 180 420 280 30 420
\(\sum_{k=0}^{n} T_{n, n-k}\ [2 | k]\)  ➤  RevEvenSum  ➤  1 1 7 31 161 841 4495 24319 132865
\(\sum_{k=0}^{n} T_{n, n-k}\ (1 - [2 | k])\)  ➤  RevOddSum  ➤  0 2 6 32 160 842 4494 24320 132864
\(\sum_{k=0}^{n} \sum_{j=0}^{k} T_{n, n - j}\)  ➤  RevAccRevSum  ➤  1 5 31 195 1221 7593 46915 288263
\(T_{n, n / 2}\)  ➤  RevColMiddle  ➤  1 1 6 12 90 210 1680 4200 34650 90090
\(T_{2 n + 1, n}\)  ➤  RevCentralO  ➤  1 12 210 4200 90090 2018016 46558512
\(\sum_{k=0}^{n} T_{n, n-k}\ k\)  ➤  RevTransNat0  ➤  0 2 18 132 900 5910 37926 239624
\(\sum_{k=0}^{n} T_{n, n-k}\ (k + 1)\)  ➤  RevTransNat1  ➤  1 5 31 195 1221 7593 46915 288263
\(\sum_{k=0}^{n} T_{n, n-k}\ k^{2}\)  ➤  RevTransSqrs  ➤  0 2 30 312 2760 22290 169806 1242080

[online][index]