Partition
A072233 \(\bbox[yellow, 5px]{\color{DarkGreen} T_{n, k} \ = \ T_{n - 1, k - 1} + T_{n - k, k} } \)
\(T^{-1}_{n, k}\)  ➤  Tinv  ➤  1 0 1 0 -1 1 0 0 -1 1 0 1 -1 -1 1 0 0 1
\(T_{n, n - k}\)  ➤  Trev  ➤  1 1 0 1 1 0 1 1 1 0 1 1 2 1 0 1 1 2 2 1
\(T^{-1}_{n + 1, n - k + 1}\)  ➤  Trevinv11  ➤  1 1 -1 1 -1 0 1 -1 -1 1 1 -1 -1 1 0 1
\((T_{n + 1, n - k + 1})^{-1}\)  ➤  Tinvrev11  ➤  1 -1 1 0 -1 1 0 1 -2 1 0 -1 2 -2 1 0 1
\(T_{n - k, k} \ \ (k \le n/2)\)  ➤  Tantidiag  ➤  1 0 0 1 0 1 0 1 1 0 1 1 0 1 2 1 0 1 2 1
\(\sum_{j=0}^{k} T_{n, j}\)  ➤  Tacc  ➤  1 0 1 0 1 2 0 1 2 3 0 1 3 4 5 0 1 3 5 6
\(\text{lcm}_{k=0}^{n}\ | T_{n, k} |\ \ (T_{n,k}>1)\)  ➤  TablLcm  ➤  1 1 1 1 2 2 6 12 60 420 2520 2310 60060
\(\sum_{k=0}^{n} T_{n, k} \ (-1)^{n - k} \ \binom{n}{k} \)  ➤  InvBinConv  ➤  1 1 -1 1 5 1 4 15 55 139 152 397 1429
\(T_{n + 1, n-k} \)  ➤  RevToff11  ➤  0 1 0 1 1 0 1 2 1 0 1 2 2 1 0 1 2 3 3 1
\(T_{n + 1, n-k} \)  ➤  RevTrev11  ➤  0 0 1 0 1 1 0 1 2 1 0 1 2 2 1 0 1 3 3 2
\(T_{n - k, n - 2k} \ \ (k \le n/2)\)  ➤  RevTantidiag  ➤  1 1 1 0 1 1 1 1 0 1 1 1 1 1 2 0 1 1 2 1
\(\sum_{j=0}^{n-k} T_{n, n-j}\)  ➤  RevTacc  ➤  1 1 1 1 2 2 1 2 3 3 1 2 4 5 5 1 2 4 6 7
\(T_{n, n-k}\ (-1)^{n-k}\)  ➤  RevTalt  ➤  1 1 0 1 -1 0 1 -1 1 0 1 -1 2 -1 0 1 -1
\(T_{n + 1, n-k}\ (n-k + 1) \)  ➤  RevTder  ➤  0 1 0 1 2 0 1 4 3 0 1 4 6 4 0 1 4 9 12
\(\sum_{k=0}^{n} T_{n, n-k}\ k^{2}\)  ➤  RevTransSqrs  ➤  0 0 1 5 18 43 109 211 434 778 1408 2335

[online][index]