A122848 | BesselInv | \(T_{n,k}\) |
A000004 | CentralO | \(T_{2 n + 1, n}\) |
A000007 | TablCol0 | \(T_{n ,0}\) |
A000012 | TablDiag0 | \(T_{n ,n}\) |
A000027 | PolyRow1 | \(\sum_{k=0}^{1}T_{1,k}\ n^k\) |
A000085 | TablSum | \(\sum_{k=0}^{n} T_{n,k}\) |
A000217 | TablDiag1 | \(T_{n+1,n}\) |
A000704 | RevEvenSum | \(\sum_{k=0}^{n}T_{n,n-k}\ (2 \mid k) \) |
A000898 | PolyCol2 | \(\sum_{k=0}^{n}T_{n,k}\ 2^k\) |
A001147 | CentralE | \(T_{2 n, n}\) |
A001464 | AltSum | \(\sum_{k=0}^{n} T_{n,k}\ (-1)^{k}\) |
A001465 | RevOddSum | \(\sum_{k=0}^{n}T_{n,n-k}\ (1- (2 \mid k)) \) |
A001475 | AccRevSum | \(\sum_{k=0}^{n} \sum_{j=0}^{k} T_{n,n-j}\) |
A001497 | Tinv11 | \(T^{-1}_{n+1,k+1}\) |
A001498 | Trevinv11 | \((T^{-1}_{n+1,n-k+1})\) |
A002378 | PolyRow2 | \(\sum_{k=0}^{2}T_{2,k}\ n^k\) |
A016777 | RevPolyRow3 | \(\sum_{k=0}^{3}T_{3,n-k}\ n^k\) |
A019590 | TablCol1 | \(T_{n+1,1}\) |
A047974 | PosHalf | \(\sum_{k=0}^{n}T_{n,k}\ 2^{n-k} \) |
A049403 | Toff11 | \(T_{n+1,k+1} \) |
A050534 | TablDiag2 | \(T_{n+2,n}\) |
A062267 | RevNegHalf | \(\sum_{k=0}^{n}T_{n,n-k}\ (-2)^{n-k} \) |
A069834 | TablGcd | \(\text{gcd} \{ \ \| T_{n,k} \| : k=0..n \} \) |
A085386 | EvenSum | \(\sum_{k=0}^{n} T_{n,k}\ ( 2 \mid k) \) |
A104548 | Trevinv | \((T_{n,n-k})^{-1}\) |
A111924 | Trev11 | \(T_{n+1,n-k+1} \) |
A115327 | RevPolyCol3 | \(\sum_{k=0}^{n}T_{n,n-k}\ 3^k\) |
A122848 | Triangle | \(T_{n,k}\) |
A122849 | AntiDSum | \(\sum_{k=0}^{n/2} T_{n-k, k}\) |
A123023 | ColMiddle | \(T_{n, n / 2}\) |
A132062 | Tinv | \(T^{-1}_{n,k}\) |
A133221 | RevColMiddle | \(T_{n, n/2}\) |
A144299 | Trev | \(T_{n,n-k}\) |
A162970 | RevTransNat0 | \(\sum_{k=0}^{n}T_{n,n-k}\ k\) |
A174764 | RevTransSqrs | \(\sum_{k=0}^{n}T_{n,n-k}\ k^{2}\) |
A189940 | TransNat0 | \(\sum_{k=0}^{n}T_{n,k}\ k\) |
A240440 | TablDiag3 | \(T_{n+3,n}\) |
A277614 | RevPolyDiag | \(\sum_{k=0}^{n}T_{n,n-k}\ n^k\) |
A293604 | NegHalf | \(\sum_{k=0}^{n}T_{n,k}\ (-2)^{n-k} \) |
A335819 | PolyCol3 | \(\sum_{k=0}^{n}T_{n,k}\ 3^k\) |
A366151 | PolyRow3 | \(\sum_{k=0}^{3}T_{3,k}\ n^k\) |
I N D E X |