RISINGFACT[0] 1
[1] 1, 1
[2] 1, 2, 6
[3] 1, 3, 12, 60
[4] 1, 4, 20, 120, 840
[5] 1, 5, 30, 210, 1680, 15120

      OEIS Similars: A124320

↕ Type↕ Trait↕ Anum↕ Sequence
StdTriangleT(n, k), 0 ≤ k ≤ nA1243201 1 1 1 2 6 1 3 12 60 1 4 20 120 840 1 5 30 210 1680 15120 1 6 42 336 3024 30240 332640 1 7 56 504
StdRevT(n, n - k), 0 ≤ k ≤ nmissing1 1 1 6 2 1 60 12 3 1 840 120 20 4 1 15120 1680 210 30 5 1 332640 30240 3024 336 42 6 1 8648640
StdInvRev(T(n, n - k))-1, 0 ≤ k ≤ nmissing1 -1 1 -4 -2 1 -36 -6 -3 1 -496 -56 -8 -4 1 -9040 -800 -80 -10 -5 1 -203136 -15024 -1200 -108 -12
StdAccsee docsmissing1 1 2 1 3 9 1 4 16 76 1 5 25 145 985 1 6 36 246 1926 17046 1 7 49 385 3409 33649 366289 1 8 64 568
StdAccRevsee docsmissing1 1 2 6 8 9 60 72 75 76 840 960 980 984 985 15120 16800 17010 17040 17045 17046 332640 362880
StdAntiDiagsee docsmissing1 1 1 1 1 2 1 3 6 1 4 12 1 5 20 60 1 6 30 120 1 7 42 210 840 1 8 56 336 1680 1 9 72 504 3024 15120
StdDiffx1T(n, k) (k+1)missing1 1 2 1 4 18 1 6 36 240 1 8 60 480 4200 1 10 90 840 8400 90720 1 12 126 1344 15120 181440 2328480 1
StdRowSum k=0..n T(n, k)A1236801 2 9 76 985 17046 366289 9374968 278095761 9375293170 353906211241 14785127222724 677150215857193
StdEvenSum k=0..n T(n, k) even(k)missing1 1 7 13 861 1711 335707 670377 260702713 521092531 336205086471 672212685277 648930517555477
StdOddSum k=0..n T(n, k) odd(k)missing0 1 2 63 124 15335 30582 8704591 17393048 8854200639 17701124770 14112914537447 28219698301716
StdAltSum k=0..n T(n, k) (-1)^kmissing1 0 5 -50 737 -13624 305125 -8034214 243309665 -8333108108 318503961701 -13440701852170
StdAbsSum k=0..n | T(n, k) |A1236801 2 9 76 985 17046 366289 9374968 278095761 9375293170 353906211241 14785127222724 677150215857193
StdDiagSum k=0..n // 2 T(n - k, k)missing1 1 2 3 10 17 86 157 1100 2081 18730 36101 397112 773665 10057646 19726085 295891276 582913217
StdAccSum k=0..n j=0..k T(n, j)missing1 3 13 97 1161 19261 403789 10168593 298184977 9966246661 373698496821 15528330266329
StdAccRevSum k=0..n j=0..k T(n, n - j)missing1 3 23 283 4749 100061 2526523 74206119 2482772633 93161978209 3873176038071 176678323629083
StdRowLcmLcm k=0..n | T(n, k) | > 1A0004071 1 6 60 840 15120 332640 8648640 259459200 8821612800 335221286400 14079294028800 647647525324800
StdRowGcdGcd k=0..n | T(n, k) | > 1A0000271 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
StdRowMaxMax k=0..n | T(n, k) |A0004071 1 6 60 840 15120 332640 8648640 259459200 8821612800 335221286400 14079294028800 647647525324800
StdColMiddleT(n, n // 2)missing1 1 2 3 20 30 336 504 7920 11880 240240 360360 8910720 13366080 390700800 586051200 19769460480
StdCentralET(2 n, n)A3526011 2 20 336 7920 240240 8910720 390700800 19769460480 1133836704000 72684900288000 5150244363264000
StdCentralOT(2 n + 1, n)A0643521 3 30 504 11880 360360 13366080 586051200 29654190720 1700755056000 109027350432000
StdColLeftT(n, 0)A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
StdColRightT(n, n)A0004071 1 6 60 840 15120 332640 8648640 259459200 8821612800 335221286400 14079294028800 647647525324800
StdBinConv k=0..n C(n, k) T(n, k)A2780701 2 11 106 1457 25946 566827 14665106 438351041 14862109042 563501581931 23624177026682
StdInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kA2780691 0 3 32 465 8544 190435 4996032 150869313 5155334720 196677847971 8286870547680 382200680031313
StdTransNat0 k=0..n T(n, k) kmissing0 1 14 207 3764 83015 2160234 64831151 2204676872 83786685039 3519269826830 161893196406359
StdTransNat1 k=0..n T(n, k) (k + 1)missing1 3 23 283 4749 100061 2526523 74206119 2482772633 93161978209 3873176038071 176678323629083
StdTransSqrs k=0..n T(n, k) k^2missing0 1 26 591 14604 406895 12782622 449204847 17499943736 749432500119 35016922627290 1773472063683287
StdPosHalf k=0..n 2^n T(n, k) (1/2)^kmissing1 3 14 104 1208 19672 408832 10251712 299911808 10009405376 374956361984 15570161718784
StdNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kmissing1 -1 6 40 664 12408 282112 7506112 229153920 7898352832 303445214464 12859786968576 596006635380736
StdDiagRow1T(n + 1, n)A0018131 2 12 120 1680 30240 665280 17297280 518918400 17643225600 670442572800 28158588057600
StdDiagRow2T(n + 2, n)A0069631 3 20 210 3024 55440 1235520 32432400 980179200 33522128640 1279935820800 53970627110400
StdDiagRow3T(n + 3, n)A0017611 4 30 336 5040 95040 2162160 57657600 1764322560 60949324800 2346549004800 99638080819200
StdDiagCol1T(n + 1, 1)A0000271 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
StdDiagCol2T(n + 2, 2)A0023786 12 20 30 42 56 72 90 110 132 156 182 210 240 272 306 342 380 420 462 506 552 600 650 702 756 812
StdDiagCol3T(n + 3, 3)A00753160 120 210 336 504 720 990 1320 1716 2184 2730 3360 4080 4896 5814 6840 7980 9240 10626 12144 13800
StdPolysee docsmissing1 1 1 1 2 1 1 9 3 1 1 76 29 4 1 1 985 535 61 5 1 1 17046 14489 1738 105 6 1 1 366289 512531 71473
StdPolyRow1 k=0..1 T(1, k) n^kA0000271 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
StdPolyRow2 k=0..2 T(2, k) n^kA1363921 9 29 61 105 161 229 309 401 505 621 749 889 1041 1205 1381 1569 1769 1981 2205 2441 2689 2949
StdPolyRow3 k=0..3 T(3, k) n^kmissing1 76 535 1738 4045 7816 13411 21190 31513 44740 61231 81346 105445 133888 167035 205246 248881
StdPolyCol2 k=0..n T(n, k) 2^kmissing1 3 29 535 14489 512531 22307893 1151462831 68717854385 4653803729899 352558473432461
StdPolyCol3 k=0..n T(n, k) 3^kmissing1 4 61 1738 71473 3816196 250097293 19413459094 1741065412993 177112972757008 20148313089850141
StdPolyDiag k=0..n T(n, k) n^kmissing1 2 29 1738 223057 48327026 15758791309 7201740515026 4389605098172993 3440167561753695082
AltTriangleT(n, k), 0 ≤ k ≤ nA1243201 1 -1 1 -2 6 1 -3 12 -60 1 -4 20 -120 840 1 -5 30 -210 1680 -15120 1 -6 42 -336 3024 -30240 332640
AltRevT(n, n - k), 0 ≤ k ≤ nmissing1 -1 1 6 -2 1 -60 12 -3 1 840 -120 20 -4 1 -15120 1680 -210 30 -5 1 332640 -30240 3024 -336 42 -6 1
AltInvRev(T(n, n - k))-1, 0 ≤ k ≤ nmissing1 1 1 -4 2 1 36 -6 3 1 -496 56 -8 4 1 9040 -800 80 -10 5 1 -203136 15024 -1200 108 -12 6 1 5401984
AltAccsee docsmissing1 1 0 1 -1 5 1 -2 10 -50 1 -3 17 -103 737 1 -4 26 -184 1496 -13624 1 -5 37 -299 2725 -27515 305125
AltAccRevsee docsmissing1 -1 0 6 4 5 -60 -48 -51 -50 840 720 740 736 737 -15120 -13440 -13650 -13620 -13625 -13624 332640
AltAntiDiagsee docsmissing1 1 1 -1 1 -2 1 -3 6 1 -4 12 1 -5 20 -60 1 -6 30 -120 1 -7 42 -210 840 1 -8 56 -336 1680 1 -9 72
AltDiffx1T(n, k) (k+1)missing1 1 -2 1 -4 18 1 -6 36 -240 1 -8 60 -480 4200 1 -10 90 -840 8400 -90720 1 -12 126 -1344 15120
AltRowSum k=0..n T(n, k)missing1 0 5 -50 737 -13624 305125 -8034214 243309665 -8333108108 318503961701 -13440701852170
AltEvenSum k=0..n T(n, k) even(k)missing1 1 7 13 861 1711 335707 670377 260702713 521092531 336205086471 672212685277 648930517555477
AltOddSum k=0..n T(n, k) odd(k)missing0 -1 -2 -63 -124 -15335 -30582 -8704591 -17393048 -8854200639 -17701124770 -14112914537447
AltAltSum k=0..n T(n, k) (-1)^kA1236801 2 9 76 985 17046 366289 9374968 278095761 9375293170 353906211241 14785127222724 677150215857193
AltAbsSum k=0..n | T(n, k) |A1236801 2 9 76 985 17046 366289 9374968 278095761 9375293170 353906211241 14785127222724 677150215857193
AltDiagSum k=0..n // 2 T(n - k, k)missing1 1 0 -1 4 9 -44 -95 666 1393 -12536 -25839 284230 580921 -7551972 -15353351 230300266 466542945
AltAccSum k=0..n j=0..k T(n, j)missing1 1 5 -41 649 -12289 280069 -7466465 228226769 -7873131761 302661429421 -12832375818481
AltAccRevSum k=0..n j=0..k T(n, n - j)missing1 -1 15 -209 3773 -83079 2160931 -64841461 2204869881 -83791057427 3519386110991 -161896748259729
AltRowLcmLcm k=0..n | T(n, k) | > 1A0004071 1 6 60 840 15120 332640 8648640 259459200 8821612800 335221286400 14079294028800 647647525324800
AltRowGcdGcd k=0..n | T(n, k) | > 1A0000271 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
AltRowMaxMax k=0..n | T(n, k) |A0004071 1 6 60 840 15120 332640 8648640 259459200 8821612800 335221286400 14079294028800 647647525324800
AltColMiddleT(n, n // 2)missing1 1 -2 -3 20 30 -336 -504 7920 11880 -240240 -360360 8910720 13366080 -390700800 -586051200
AltCentralET(2 n, n)A3526011 -2 20 -336 7920 -240240 8910720 -390700800 19769460480 -1133836704000 72684900288000
AltCentralOT(2 n + 1, n)A0643521 -3 30 -504 11880 -360360 13366080 -586051200 29654190720 -1700755056000 109027350432000
AltColLeftT(n, 0)A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
AltColRightT(n, n)A0004071 -1 6 -60 840 -15120 332640 -8648640 259459200 -8821612800 335221286400 -14079294028800
AltBinConv k=0..n C(n, k) T(n, k)A2780691 0 3 -32 465 -8544 190435 -4996032 150869313 -5155334720 196677847971 -8286870547680
AltInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kA2780701 -2 11 -106 1457 -25946 566827 -14665106 438351041 -14862109042 563501581931 -23624177026682
AltTransNat0 k=0..n T(n, k) kmissing0 -1 10 -159 3036 -69455 1855806 -56807247 1961560216 -75457949319 3200882149290 -148456046407559
AltTransNat1 k=0..n T(n, k) (k + 1)missing1 -1 15 -209 3773 -83079 2160931 -64841461 2204869881 -83791057427 3519386110991 -161896748259729
AltTransSqrs k=0..n T(n, k) k^2missing0 -1 22 -495 12436 -352895 11264562 -401142959 15800045320 -682854888519 32153057599510
AltPosHalf k=0..n 2^n T(n, k) (1/2)^kmissing1 1 6 -40 664 -12408 282112 -7506112 229153920 -7898352832 303445214464 -12859786968576
AltNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kmissing1 -3 14 -104 1208 -19672 408832 -10251712 299911808 -10009405376 374956361984 -15570161718784
AltDiagRow1T(n + 1, n)A0018131 -2 12 -120 1680 -30240 665280 -17297280 518918400 -17643225600 670442572800 -28158588057600
AltDiagRow2T(n + 2, n)A0069631 -3 20 -210 3024 -55440 1235520 -32432400 980179200 -33522128640 1279935820800 -53970627110400
AltDiagRow3T(n + 3, n)A0017611 -4 30 -336 5040 -95040 2162160 -57657600 1764322560 -60949324800 2346549004800 -99638080819200
AltDiagCol1T(n + 1, 1)A000027-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25 -26 -27
AltDiagCol2T(n + 2, 2)A0023786 12 20 30 42 56 72 90 110 132 156 182 210 240 272 306 342 380 420 462 506 552 600 650 702 756 812
AltDiagCol3T(n + 3, 3)A007531-60 -120 -210 -336 -504 -720 -990 -1320 -1716 -2184 -2730 -3360 -4080 -4896 -5814 -6840 -7980 -9240
AltPolysee docsmissing1 1 1 1 0 1 1 5 -1 1 1 -50 21 -2 1 1 737 -437 49 -3 1 1 -13624 12553 -1520 89 -4 1 1 305125 -458529
AltPolyRow1 k=0..1 T(1, k) n^kA0000271 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25 -26
AltPolyRow2 k=0..2 T(2, k) n^kA2012791 5 21 49 89 141 205 281 369 469 581 705 841 989 1149 1321 1505 1701 1909 2129 2361 2605 2861 3129
AltPolyRow3 k=0..3 T(3, k) n^kmissing1 -50 -437 -1520 -3659 -7214 -12545 -20012 -29975 -42794 -58829 -78440 -101987 -129830 -162329
AltPolyCol2 k=0..n T(n, k) 2^kmissing1 -1 21 -437 12553 -458529 20367133 -1066145261 64283656593 -4387840371737 334477034675941
AltPolyCol3 k=0..n T(n, k) 3^kmissing1 -2 49 -1520 64969 -3543494 235382473 -18442663364 1665360881905 -170300571156746
AltPolyDiag k=0..n T(n, k) n^kmissing1 0 21 -1520 207665 -46225524 15288353605 -7045177254016 4317048818201025 -3395489792303713220
RevTriangleT(n, k), 0 ≤ k ≤ nmissing1 1 1 6 2 1 60 12 3 1 840 120 20 4 1 15120 1680 210 30 5 1 332640 30240 3024 336 42 6 1 8648640
RevInvT-1(n, k), 0 ≤ k ≤ nmissing1 -1 1 -4 -2 1 -36 -6 -3 1 -496 -56 -8 -4 1 -9040 -800 -80 -10 -5 1 -203136 -15024 -1200 -108 -12
RevRevInvT-1(n, n - k), 0 ≤ k ≤ nmissing1 1 -1 1 -2 -4 1 -3 -6 -36 1 -4 -8 -56 -496 1 -5 -10 -80 -800 -9040 1 -6 -12 -108 -1200 -15024
RevAccsee docsmissing1 1 2 6 8 9 60 72 75 76 840 960 980 984 985 15120 16800 17010 17040 17045 17046 332640 362880
RevAccRevsee docsmissing1 1 2 1 3 9 1 4 16 76 1 5 25 145 985 1 6 36 246 1926 17046 1 7 49 385 3409 33649 366289 1 8 64 568
RevAntiDiagsee docsmissing1 1 6 1 60 2 840 12 1 15120 120 3 332640 1680 20 1 8648640 30240 210 4 259459200 665280 3024 30 1
RevDiffx1T(n, k) (k+1)missing1 1 2 6 4 3 60 24 9 4 840 240 60 16 5 15120 3360 630 120 25 6 332640 60480 9072 1344 210 36 7
RevRowSum k=0..n T(n, k)A1236801 2 9 76 985 17046 366289 9374968 278095761 9375293170 353906211241 14785127222724 677150215857193
RevEvenSum k=0..n T(n, k) even(k)missing1 1 7 63 861 15335 335707 8704591 260702713 8854200639 336205086471 14112914537447 648930517555477
RevOddSum k=0..n T(n, k) odd(k)missing0 1 2 13 124 1711 30582 670377 17393048 521092531 17701124770 672212685277 28219698301716
RevAltSum k=0..n T(n, k) (-1)^kmissing1 0 5 50 737 13624 305125 8034214 243309665 8333108108 318503961701 13440701852170 620710819253761
RevAbsSum k=0..n | T(n, k) |A1236801 2 9 76 985 17046 366289 9374968 278095761 9375293170 353906211241 14785127222724 677150215857193
RevDiagSum k=0..n // 2 T(n - k, k)missing1 1 7 62 853 15243 334341 8679094 260127535 8838965861 335741445403 14096969782350 648318950246937
RevAccSum k=0..n j=0..k T(n, j)missing1 3 23 283 4749 100061 2526523 74206119 2482772633 93161978209 3873176038071 176678323629083
RevAccRevSum k=0..n j=0..k T(n, n - j)missing1 3 13 97 1161 19261 403789 10168593 298184977 9966246661 373698496821 15528330266329
RevRowLcmLcm k=0..n | T(n, k) | > 1A0004071 1 6 60 840 15120 332640 8648640 259459200 8821612800 335221286400 14079294028800 647647525324800
RevRowGcdGcd k=0..n | T(n, k) | > 1A0000271 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
RevRowMaxMax k=0..n | T(n, k) |A0004071 1 6 60 840 15120 332640 8648640 259459200 8821612800 335221286400 14079294028800 647647525324800
RevColMiddleT(n, n // 2)missing1 1 2 12 20 210 336 5040 7920 154440 240240 5765760 8910720 253955520 390700800 12893126400
RevCentralET(2 n, n)A3526011 2 20 336 7920 240240 8910720 390700800 19769460480 1133836704000 72684900288000 5150244363264000
RevCentralOT(2 n + 1, n)missing1 12 210 5040 154440 5765760 253955520 12893126400 741354768000 47621141568000 3379847863392000
RevColLeftT(n, 0)A0004071 1 6 60 840 15120 332640 8648640 259459200 8821612800 335221286400 14079294028800 647647525324800
RevColRightT(n, n)A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
RevBinConv k=0..n C(n, k) T(n, k)A2780701 2 11 106 1457 25946 566827 14665106 438351041 14862109042 563501581931 23624177026682
RevInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kA2780691 0 3 -32 465 -8544 190435 -4996032 150869313 -5155334720 196677847971 -8286870547680
RevTransNat0 k=0..n T(n, k) kmissing0 1 4 21 176 2215 37500 793625 20089216 590953491 19792285580 743203043605 30914356920240
RevTransNat1 k=0..n T(n, k) (k + 1)missing1 3 13 97 1161 19261 403789 10168593 298184977 9966246661 373698496821 15528330266329
RevTransSqrs k=0..n T(n, k) k^2missing0 1 6 33 252 2895 46218 942165 23242488 670916187 22147214790 822136692993 33879993308340
RevPosHalf k=0..n 2^n T(n, k) (1/2)^kmissing1 3 29 535 14489 512531 22307893 1151462831 68717854385 4653803729899 352558473432461
RevNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kmissing1 -1 21 -437 12553 -458529 20367133 -1066145261 64283656593 -4387840371737 334477034675941
RevDiagRow1T(n + 1, n)A0000271 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
RevDiagRow2T(n + 2, n)A0023786 12 20 30 42 56 72 90 110 132 156 182 210 240 272 306 342 380 420 462 506 552 600 650 702 756 812
RevDiagRow3T(n + 3, n)A00753160 120 210 336 504 720 990 1320 1716 2184 2730 3360 4080 4896 5814 6840 7980 9240 10626 12144 13800
RevDiagCol1T(n + 1, 1)A0018131 2 12 120 1680 30240 665280 17297280 518918400 17643225600 670442572800 28158588057600
RevDiagCol2T(n + 2, 2)A0069631 3 20 210 3024 55440 1235520 32432400 980179200 33522128640 1279935820800 53970627110400
RevDiagCol3T(n + 3, 3)A0017611 4 30 336 5040 95040 2162160 57657600 1764322560 60949324800 2346549004800 99638080819200
RevPolysee docsmissing1 1 1 6 2 1 60 9 3 1 840 76 14 4 1 15120 985 104 21 5 1 332640 17046 1208 150 30 6 1 8648640 366289
RevPolyRow1 k=0..1 T(1, k) n^kA0000271 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
RevPolyRow2 k=0..2 T(2, k) n^kA1179516 9 14 21 30 41 54 69 86 105 126 149 174 201 230 261 294 329 366 405 446 489 534 581 630 681 734
RevPolyRow3 k=0..3 T(3, k) n^kmissing60 76 104 150 220 320 456 634 860 1140 1480 1886 2364 2920 3560 4290 5116 6044 7080 8230 9500 10896
RevPolyCol2 k=0..n T(n, k) 2^kmissing1 3 14 104 1208 19672 408832 10251712 299911808 10009405376 374956361984 15570161718784
RevPolyCol3 k=0..n T(n, k) 3^kmissing1 4 21 150 1569 23508 465237 11341242 325929825 10745031672 398895975189 16449628071726
RevPolyDiag k=0..n T(n, k) n^kmissing1 2 14 150 2152 38770 843264 21549262 634033280 21141335178 788749062400 32578586797174
Rev:InvTriangleT(n, k), 0 ≤ k ≤ nmissing1 -1 1 -4 -2 1 -36 -6 -3 1 -496 -56 -8 -4 1 -9040 -800 -80 -10 -5 1 -203136 -15024 -1200 -108 -12
Rev:InvRevT(n, n - k), 0 ≤ k ≤ nmissing1 1 -1 1 -2 -4 1 -3 -6 -36 1 -4 -8 -56 -496 1 -5 -10 -80 -800 -9040 1 -6 -12 -108 -1200 -15024
Rev:InvInvT-1(n, k), 0 ≤ k ≤ nmissing1 1 1 6 2 1 60 12 3 1 840 120 20 4 1 15120 1680 210 30 5 1 332640 30240 3024 336 42 6 1 8648640
Rev:InvRevInvT-1(n, n - k), 0 ≤ k ≤ nA1243201 1 1 1 2 6 1 3 12 60 1 4 20 120 840 1 5 30 210 1680 15120 1 6 42 336 3024 30240 332640 1 7 56 504
Rev:InvAccsee docsmissing1 -1 0 -4 -6 -5 -36 -42 -45 -44 -496 -552 -560 -564 -563 -9040 -9840 -9920 -9930 -9935 -9934
Rev:InvAccRevsee docsmissing1 1 0 1 -1 -5 1 -2 -8 -44 1 -3 -11 -67 -563 1 -4 -14 -94 -894 -9934 1 -5 -17 -125 -1325 -16349
Rev:InvAntiDiagsee docsmissing1 -1 -4 1 -36 -2 -496 -6 1 -9040 -56 -3 -203136 -800 -8 1 -5401984 -15024 -80 -4 -165519616 -345968
Rev:InvDiffx1T(n, k) (k+1)missing1 -1 2 -4 -4 3 -36 -12 -9 4 -496 -112 -24 -16 5 -9040 -1600 -240 -40 -25 6 -203136 -30048 -3600
Rev:InvRowSum k=0..n T(n, k)missing1 0 -5 -44 -563 -9934 -219485 -5773228 -175499655 -6042972554 -232246373889 -9850262502200
Rev:InvEvenSum k=0..n T(n, k) even(k)missing1 -1 -3 -39 -503 -9125 -204347 -5425539 -166077743 -5749682913 -221950389139 -9448177450591
Rev:InvOddSum k=0..n T(n, k) odd(k)missing0 1 -2 -5 -60 -809 -15138 -347689 -9421912 -293289641 -10295984750 -402085051609 -17283828113988
Rev:InvAltSum k=0..n T(n, k) (-1)^kmissing1 -2 -1 -34 -443 -8316 -189209 -5077850 -156655831 -5456393272 -211654404389 -9046092398982
Rev:InvAbsSum k=0..n | T(n, k) |missing1 2 7 46 565 9936 219487 5773230 175499657 6042972556 232246373891 9850262502202 456894339095341
Rev:InvDiagSum k=0..n // 2 T(n - k, k)missing1 -1 -3 -38 -501 -9099 -203943 -5417092 -165866793 -5743580385 -221750217783 -9440844072498
Rev:InvAccSum k=0..n j=0..k T(n, j)missing1 -1 -15 -167 -2735 -58599 -1518575 -45787251 -1568883807 -60103592351 -2543376213919
Rev:InvAccRevSum k=0..n j=0..k T(n, n - j)missing1 1 -5 -53 -643 -10939 -237305 -6171801 -186112743 -6369105743 -243580272749 -10289258689181
Rev:InvRowLcmLcm k=0..n | T(n, k) | > 1missing1 1 4 36 3472 90400 14305852800 1063695513077120 157260241978386426880 932582012970654073013760
Rev:InvRowGcdGcd k=0..n | T(n, k) | > 1A0000271 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
Rev:InvRowMaxMax k=0..n | T(n, k) |missing1 1 4 36 496 9040 203136 5401984 165519616 5734169856 221457226240 9430557047296 438912069279744
Rev:InvColMiddleT(n, n // 2)missing1 -1 -2 -6 -8 -80 -108 -1708 -2336 -49536 -68480 -1803296 -2515008 -78677248 -110538176 -3991212480
Rev:InvCentralET(2 n, n)missing1 -2 -8 -108 -2336 -68480 -2515008 -110538176 -5642382848 -327491107200 -21275730682880
Rev:InvCentralOT(2 n + 1, n)missing-1 -6 -80 -1708 -49536 -1803296 -78677248 -3991212480 -230430401024 -14901804369280
Rev:InvColLeftT(n, 0)missing1 -1 -4 -36 -496 -9040 -203136 -5401984 -165519616 -5734169856 -221457226240 -9430557047296
Rev:InvColRightT(n, n)A0000121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Rev:InvBinConv k=0..n C(n, k) T(n, k)missing1 0 -7 -62 -783 -13964 -313655 -8380350 -258295615 -9001013768 -349517244999 -14955985502270
Rev:InvInvBinConv k=0..n C(n, k) T(n, n - k) (-1)^kmissing1 2 1 28 -303 5766 -128975 3416652 -104195007 3593202778 -138198777279 5863853725500
Rev:InvTransNat0 k=0..n T(n, k) kmissing0 1 0 -9 -80 -1005 -17820 -398573 -10613088 -326133189 -11333898860 -438996186981 -18741344742720
Rev:InvTransNat1 k=0..n T(n, k) (k + 1)missing1 1 -5 -53 -643 -10939 -237305 -6171801 -186112743 -6369105743 -243580272749 -10289258689181
Rev:InvTransSqrs k=0..n T(n, k) k^2missing0 1 2 -9 -108 -1265 -21102 -457765 -11965272 -362838681 -12480646250 -479412420685 -20325564358452
Rev:InvPosHalf k=0..n 2^n T(n, k) (1/2)^kmissing1 -1 -19 -317 -8423 -302769 -13501595 -714373477 -43611278287 -3012793579673 -232160352434819
Rev:InvNegHalf k=0..n (-2)^n T(n, k) (-1/2)^kmissing1 3 -11 271 -7511 277091 -12538307 670034807 -41205979311 2862958130443 -221636060785179
Rev:InvDiagRow1T(n + 1, n)A000027-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25 -26 -27
Rev:InvDiagRow2T(n + 2, n)A005843-4 -6 -8 -10 -12 -14 -16 -18 -20 -22 -24 -26 -28 -30 -32 -34 -36 -38 -40 -42 -44 -46 -48 -50 -52
Rev:InvDiagRow3T(n + 3, n)A139570-36 -56 -80 -108 -140 -176 -216 -260 -308 -360 -416 -476 -540 -608 -680 -756 -836 -920 -1008 -1100
Rev:InvDiagCol1T(n + 1, 1)missing1 -2 -6 -56 -800 -15024 -345968 -9387008 -292434048 -10271527040 -401288987264 -17254810337280
Rev:InvDiagCol2T(n + 2, 2)missing1 -3 -8 -80 -1200 -23408 -555776 -15463296 -491899520 -17583209600 -697200377856 -30358972347392
Rev:InvDiagCol3T(n + 3, 3)missing1 -4 -10 -108 -1708 -34720 -852480 -24388960 -794255968 -28962914304 -1168183823872 -51619944527872
Rev:InvPolysee docsmissing1 -1 1 -4 0 1 -36 -5 1 1 -496 -44 -4 2 1 -9040 -563 -52 -1 3 1 -203136 -9934 -656 -54 4 4 1
Rev:InvPolyRow1 k=0..1 T(1, k) n^kA000027-1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
Rev:InvPolyRow2 k=0..2 T(2, k) n^kA028875-4 -5 -4 -1 4 11 20 31 44 59 76 95 116 139 164 191 220 251 284 319 356 395 436 479 524 571 620 671
Rev:InvPolyRow3 k=0..3 T(3, k) n^kmissing-36 -44 -52 -54 -44 -16 36 118 236 396 604 866 1188 1576 2036 2574 3196 3908 4716 5626 6644 7776
Rev:InvPolyCol2 k=0..n T(n, k) 2^kmissing1 1 -4 -52 -656 -11088 -239168 -6204224 -186839296 -6388620544 -244185629696 -10310479881216
Rev:InvPolyCol3 k=0..n T(n, k) 3^kmissing1 2 -1 -54 -763 -12592 -263625 -6714334 -199874647 -6778659564 -257479807381 -10817642424586
Rev:InvPolyDiag k=0..n T(n, k) n^kmissing1 0 -4 -54 -848 -16290 -375360 -10128034 -313491712 -10948767282 -425793008640 -18242962464210
 << TableSourceSimilarsIndex >> 

Note: The A-numbers are based on a finite number of numerical comparisons. They ignore the sign and the OEIS-offset. Sometimes they differ in the first few values. In such cases, we consider our version to be the better one because it has a common formula as a root. Since the offset of all triangles is 0 also the offset of all sequences is 0.